• CERTAIN COEFFICIENT INEQUALITIES FOR SAKAGUCHI TYPE FUNCTIONS AND APPLICATIONS TO FRACTIONAL DERIVATIVES

B. Srutha Keerthi*

Abstract


In the present paper, sharp upper bounds of for the functions f(z) = z + a2z2 + a3z3 +  belonging to a new subclass of Sakaguchi type functions are obtained. Also, application of our results for subclass of functions defined by convolution with a normalized analytic function are given. In particular, Fekete-Szegö inequalities for certain classes of functions defined through fractional derivatives are obtained.

Keywords


Sakaguchi functions, Analytic functions, Subordination, Fekete-Szegö inequality.

Full Text:

PDF


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2010-2020 International Journal of Mathematical Archive (IJMA)
Copyright Agreement & Authorship Responsibility
Web Counter