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ABSTRACT

LetG (V, E) be a simple, finite, undirected connected graph. A non —empty set S <V of a graph G is a dominating
set, if every vertex in V — S is adjacent to atleast one vertex in S. A dominating set S <V is called a locating dominating
set, if for any two vertices v, w € V — S, N(v) nS #N(w) n S. A locating dominating set S <V is called a co — isolated
locating dominating set, if there exists atleast one isolated vertex in <V — S >. The co — isolated locating domination
number y;q is the minimum cardinality of a co — isolated locating dominating set. The number of minimum co -
isolated locating dominating sets in a graph G is denoted by .iiq(G). In this paper, the number jpq is obtained for a
Path P, where n > 3.

Keywords: Dominating set, locating dominating set, co — isolated locating dominating set.

1. INTRODUCTION

Let G = (V, E) be a simple graph of order n. For v € V(G), the neighborhood Ng(v) (or simply N(v)) of v is the set of
all vertices adjacent to v in G. The concept of domination in graphs was introduced by Ore [7]. A nonempty set
S € V(G) of a graph G is a dominating set, if every vertex in V(G) — S is adjacent to some vertex in S. A special case
of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [8]. A dominating
set S in a graph G is called a locating dominating set in G, if for any two vertices v, w € V(G) - S, Ng (V) N S,
Ng (W) n' S are distinct. The location dominating number of G is defined as the minimum number of vertices in a
locating dominating set in G. A locating dominating set S € V(G) is called a co - isolated locating dominating set , if
<V - S> contains atleast one isolated vertex. The minimum cardinality of a co — isolated locating dominating set is
called the co — isolated locating domination number and is denoted by vy ¢i4(G). The number of minimum co — isolated
locating dominating sets in a graph G is denoted by yp.iig(G). In this paper, the minimum number yp4 of co-isolated
locating dominating sets of Path P, on n vertices, n > 3, is obtained

2. PRIOR RESULTS

The following results are obtained in [3] & [4]

Theorem: 2.1 [3] For every non — trivial simple connected graph G, 1 < Y i4(G) <n -1.
Theorem: 2.2 [3] Y ¢is (G) =1 ifand only if G = K,

Theorem: 2.3 [3] Y i (Kn) = n -1, where K, is a complete graph on n vertices.
Theorem: 2.4 [3] ¥ cia (Kn—€) =n—1, where e € E(K;)

Observation: 2.1 [4] If S is an co — isolated locating dominating set of G(V, E) with | S | = k, then V(G) — S contains
atmost nC; + nC, + ... + nC, vertices.
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Theorem: 2.5 [4] If P, is a path on n vertices, n = 3, then
2n
(l?J ;n = 0(mod)5)
Y citg (Pn) =9 2 EJ +1;n = 1or2 (modb5)
(2 EJ +2;n =3 or4 (mod5)

3. MAIN RESULTS

Using the value of y i4(P,) given in Theorem 2.5., the minimum number of co-isolated locating dominating sets ypciig
(Pn) of P, for all n> 3, are found in this section.

Observation: 3.1Let V(P,) = {vy, Vs, ..., Vo} with deg(v,) = deg(v,) = 1 and deg(v,) = deg(vs) = ... = deg(v,.1) = 2 and
let D be a minimum co — isolated locating dominating set of P,. Then one of the following holds.

@i vy,v, €D

(if) vi,v,.1 €D

(iii) vo,v, €D

(iv) vo,v,.1 €D

It is sufficient to consider (i), (iii) and (iv), since the number of minimum co — isolated locating dominating sets of P,
containing v, and v, is same as that of minimum co — isolated locating dominating sets containing v, and v;.1.

Theorem: 3.2 For any integer n = 1, ¥ peitg (Psn) = 1.

Proof: Let the labellings of vertices of Ps, be vi, V5, V3, ..., Vsn.1, V5. Let D be a minimum co — isolated locating
dominating set of Ps,. The theorem is proved by the method of induction on n. For n = 1, the following cases arise.
(i) If vy, vs € D, then D = {vy, v3, Vs} and |D| = 3. But 7Y ¢ja(Ps) = 2. Therefore, D cannot be a minimum co-
isolated locating dominating set of Ps.
(if) 1f vy, vs € D, then D = {v,, Vs, Vs} or {Vv,, V4, Vs}, Which is also not possible.
(iii) If vy, v4 € D, then D = {v,, v,} is the only minimum co — isolated locating dominating set of Psand |D| = 2 and
hence Y peig (Ps) = 1.

Similarly for n =2, D = {v,, V4, V7, Vg} is the only minimum co — isolated locating dominating set of P;, and |D| = 4 and
hence ¥ peilg (P10) = 1. Assume that the theorem holds when n = k-1. That is, the result holds for all paths having

5(k — 1) vertices. Therefore, D = {v;, V4, V7, Vg, ..., V5. g, Vs -6} 1S the only minimum co — isolated locating dominating
set of Psy _ 1y with |D| = 2(k — 1) and Y peiig (Psiy) = 1. Let n = k. Consider the path Ps, on 5k vertices. Let D' = D

U{Vsk -3, Vsk- 1} is a co — isolated locating dominating set of Ps,. Also, |D’| = |D| + 2 = 2k. Therefore, D’ is the only
minimum co — isolated locating dominating set of Psy . It can be proved that, if v;, Vs € D’ or vy, Vg, € D', then D' will
not be a minimum co - isolated locating dominating set of Ps,. Therefore, D' is the unique Y g — set of Ps,. Hence,

Y peitd (Psi) =1
By induction hypothesis, Y peig (Psn) = 1, forn > 1.

Theorem: 3.3 There are exactly n + 1 minimum co — isolated locating dominating sets of Pg,.; containing v; and Vsp.g
with the labellings vy, vy, V3, ..., V5.1, Vsn, Vsneg Where n > 1.

Proof: Let the labellings of vertices of Ps,.q be vy, Vo, V3, ..., Ven1, Vsn, Vsne1. The Theorem is proved by the method of
induction on n. For n = 1, D; = {vy, V3, Vg} and D, = {vy, V4, Ve} are the only minimum co — isolated locating

dominating sets of Pg containing v, and vg since, [D4| = |D,| =3 = [SnHJ + 1, (Theorem 2.5.).

For n =2, Dy ={Vvy, V3, Vs, Vg, V11}, Do = ={Vy, V4, Vg, Vg, Vi1} and D3 ={Vvy, V4, Ve, Vg, V11} are the only minimum co —
isolated locating dominating sets of Py, containing v, and vy, since |Dy| = |Dy| = |Ds|= 5 =2 lsn“J + 1. Therefore, the

result is true for n = 1 and n = 2. Assume that the theorem holds when n = k-1. That is, the result holds for all paths
having 5(k — 1) + 1 vertices. Let Dy, D,, Ds, ...., D¢ be the only k minimum co — isolated locating dominating sets of

Psq-1)+1 containing vy and Vs _ 4 with | Dj| = 2 ls(k DHJ + 1. Let n = k. Consider the path Psy.;.

Then D;" = D; U{Vsk .o, Vsk+ 1} 1 =1, 2, 3, ..., k are the minimum co - isolated locating dominating sets of Ps since,
, 5k
D1 =i +2=2 5]+ 1,
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In addition, D, 1" = { V1, Va4, Ve, Vo, V11, ..., Vsk_1, Vsk + 1} IS also @ minimum co — isolated locating dominating sets of
Psi+1 cOntaining v; and vsgsq such that D" # D;';i=1,2, 3, ..., k. Therefore, there are k + 1 minimum co — isolated
locating dominating sets of Px.; containing v; and vg,.;. By induction hypothesis, there are exactly n + 1 minimum co
— isolated locating dominating sets of Ps,.; containing v; and v, with the labellings vy, v, V3, ..., Ven1, Vsn, Vsnag, fOr
alln>1.

n(n+3)

Theorem: 3.4 There are exactly ——— minimum co — isolated locating dominating sets of Ps,.; containing v; and v,

with the labellings vy, v, va, .. v5n_1, Vsn, Vsne1, Where n > 1.

Proof: Let the labellings of vertices of Ps,.1 be Vi, V, V3, ..., Vi1, Ven, Vsner. The theorem is proved by the method of
induction on n.

Forn =1, the sets A;; = {Vvy, V3, s} and Ay, = {v1, V4, Vs} are the only minimum co — isolated locating dominating sets
of Pgcontaining vy and vs since, |Ay| = |4 =3 =2 lS"HJ + 1, (Theorem 2.5).

n(n+3)

Let D= {A11, A1} and |D4| = , where n =1.

Let n = 2. In order to construct the minimum co — isolated locating dominating sets of Py, containing v, and vy, the
following sets are defined using 4;; and Ay 5.

Let Ayg= Ay U{vg, Vio}; Aro= A1, U{Vs, Vio} and B, 1= (A11—{Vvs}) U{ Vs Vg, Vio};
Bj2= (A1,—{Vs}) U{Ve, Vs, Vio}; B23= (A12—{Vs}) U{Ve, Vg, Vio}.

These are the only minimum co — isolated locating dominating sets of P;; containing v; and vy, since,
5n+1
|A21] = 1Azl = |Boal = B2l = |Boal = 5=2 |72 + 1.

M where n = 2.

Let D, ={A;1, A22, B2, B2, Bos} and [D,| =
Let n = 3. In order to construct the minimum co — isolated locating dominating sets of P;s containing v; and vs, the
following sets are defined using the sets in D,.

Let A31 = Ap1 U{Vi3, Vis}; Ao = Apo U{Vi3, Vis} Asz= Bp1 U{Vas, Vis};
A34= By U{Vi3, Vis}, Ass= By3U{Vi3, Vis} and B31= (Bo1—{Vio}) U{Va1 Vi3, Vis};
B3,= (Byo—{Vio}) U{Viy Vi3, Vis} Bs3z= (Boz—{Vio}) U{Viy Vi3, Vis},
B34= (B23—{Vi0}) U{V11, V14, Vis}.

These are the only minimum co — isolated locating dominating sets of P;¢ containing v, and v;s since,
s = B2y =7 =2 | "2 + 1;i=1,2,3,4,5andj =1, 2,3, 4.

n(n+3)

Let D3 = {A31, A3, A33, A34, Azs, B31, Bsa, Bas, B3s} and |D;| =9 = , where n = 3. Therefore, the result is true

forn=1, 2 and 3. Let n = k-1. Assume that the theorem holds for all paths having 5(k — 1) +1 vertices. Let Dy _, be the
set of all minimum co — isolated locating dominating sets of Ps _1y+1 containing v, and Vs, gy

(T

Then, Dy_1={A k-11 Ak-120 Ak-1)3 +++r A=1)rs Bk-1,10 B=1)2) +++» Be=1)s}, Wherer =

5(k—1)+1

Also, [D y_q| =1 + 5= ERED _ 20 \yhere n = k-1. and |Ak-1il = Bkl = [ +1;i=1,2,....,rand

j=1,2,...,s Letn=Kk. Inorder to construct the minimum co — isolated locating dominatmg set of P5k+1conta|n|ng Vi
and vsy, the following sets are defined using the sets in D _;.

Let D be the set of all minimum co — isolated locating dominating sets of Py . ; containing vy and V.

Then, D ={A k1, Ax2, Akzr -+ Ak,ey Bia, Biar -oos Bm}bs

wheret”:(k_l)zﬂ,

m=k+1(k>=2)and

Ak,i = A(k—l),i U{Vsx_2, Vs 1=1,2, ..., £ —k, and

Apj = Bg-1),G-r) Y {Vsk-2,Vsi} [ = (€ —k +1), (£ —k +2), ..., ¢
Bk| (Bwn,i— {Vsk-s5}) U{Vsk_s, V52, Vsi};1=1,2, ..., m-1 and

Bym= (B),m1~{Vsk-s}) U{Vsk—s, Vsk—1, V5K }-
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Also, Ayl = By =2 [%J +1;i=1,2 ...,2andj=1,2,....,mand [Dy=f+m= @ By induction hypothesis,

there are exactly @ minimum co — isolated locating dominating sets of Psn.; containing v; and vs, with the

|abe||ings V1, Vo, V3, ...., Vsn.1, Vs, Venet, foralln>1.
. nn+1)(n+5) . . . - . . ..
Theorem: 3.5 There are exactly —————= minimum co — isolated locating dominating sets of Ps,.; containing v, and
Vs, With the labellings vy, V,, V3, ..., Vi1, Vsn, Ve, Where n > 1.

Proof: Let the labellings of vertices of Ps,.q be Vi, V, V3, ..., Vi1, Ven, Vsner. The theorem is proved by the method of
induction on n.

For n =1, the sets Ay 1 = {V,, V3, V5}; A1, = {Vs, V4, Vs} are the only minimum co - isolated locating dominating sets of

Ps containing v, and vs , since |A; 1| = |41, = 3 =2 ls'l&_)—JrlJ + 1.

Let Dlz {Al,la Al,Z}- Then |Dl| =2.

Forn =2, the sets Az = A1 U{Vs, Vio}; 1 = 1, 2and By = (A — Vs) U{Vs Vg, Vio}; | = 1, 2; Boz = (A2 — {Vs}) U{Ve, Vo,
Vio}, €21 = {Va, V4, V7, Vg, Vio} and E, 1 = {v,, V4, V7, Vg, 10} are the only minimum co — isolated locating dominating sets

of Py, containing v, and vy, since |4l = [Byjl = [Co| = |E21| =5=2 [S"SHJ +1;i=1,2andj=1,2,3.

_ nn+1)(n+5)

Let D,={A21, A22 B2, Boo Bas, Co1, Ezi}. Then [Dy = 7 P

Let n = 3. In order to construct the minimum co — isolated locating dominating sets containing v, and vys of Pyg, the
following sets are defined using the sets in D,.

Let A3j= Az U{Vis, Vis}; 1 =1, 2;
Azj= Az U{Vis, Vis} ] = 3,4, 5;
Az = Co -5 U{V13, Vis}; k=6, 7,
B3i= (Byi—{Vio}) U{Va1 Va3, Vis}; 1 =1, 2, 3;
B34= (B23—{Vi0}) U {V11, V14, Vis}
C3i= (C2i—{V10}) U{Viy Vi3, Vis}; 1=1,2;
E31= (E21 —{V10}) U {V11, V14, Vis};
E32= (E21—{V1o}) U {V12, V14, V15}; and
E33= (Es2 —{V1s}) U{Vis}.

These are the only minimum co - isolated locating dominating sets of Pys containing v, and vis since

A = |Bsjl = [Caud = |Esd =7=2 [5"5“ +1i=1,2,...,7;j=1,2,3,4, k=1,2,and t = 1, 2, 3.

Let Dg = {Agl, A32, veny A37, Bgl, Bgz, ng, 834, C31, C32, E3’1, Egyz, E3’3}. Then |D3| =16= w Therefore the result
is true forn=1, 2 and 3.

Assume that the Theorem holds for n = k -1. That is, there are exactly E=DEED minimum co — isolated locating

dominating sets of Psy.1y.1 containing v, and vs.;) with the labellings vy, vy, Vs, ..., Vsga)-1, Vse1) Vseny+1, Where k = 2.
Let Dy _, be the set of all minimum co — isolated locating dominating sets of Ps _1y:1 containing v, and Vs .y).

Then Dy_1={A k-1, Ak-12 Ak-1)3 -+ Ak-1rs Bk-11 Br-12s ++0s Be=1)ko € k=110 Ck=120 Ck=1)3+ --+» Ci=1)s

JE (k-1)1s E(k_1)2’ ceny E(k—l)(k—l)}}i where r = (k_Z)(kgl)UH—?’) and s = k(k2_3), where k > 4.

5(k—1 .
Also [Dy_g| =r+k+s+(k-1)= and |Ax- 1yl = Bx- 1l = 1Cx- 10l = |E-1).dl =Zl : S)HJ +1;i=1,2,
warj=1,2,...,n;p=1,2,....,sandq=1,2, ..., k-1

(k=1)k (k+4)
6

Let n = k. In order to construct the minimum co - isolated locating dominating sets of Ps.; containing v, and vsy, the
following sets are defined using the sets in D  _;. Let Dy be the set of all minimum co — isolated locating dominating
sets of Psy . ;containing v, and vse. Then, Dy = {A 1, Ak, Awas v Apir Bia, Biay «vos Biket, Cir, C2 ooy Ckom s Exct,

Ek,2! sy Ek,k},
Where{’:w’m:(kﬂ)zﬂ,
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where k = 2 and
Ani =Aw-1); U{vsk—a,Vsk}, 1=1,2,..,1;
A nj = B(k—l),(j—r) V) {VSk—ZlVSk}vj =r+ 1, r+ 2, R o k,
At = Cer)t=r—i) Y {Vskz, Vs t=r+k+ 1L r+k+2, ...,r+k+s (=),
By i= (Bk-1i— {Vsk—5}) U{Vsk—4, Vsk—2,Vsk};1=1,2, ...,k and
By k1= (B(nk— {Vsk—s}) U{Vsk_4, Vsk_1, Vs } and
Cxi= (Cni—{vsk—s}) U{Vsi_s, Vo2, Vs }i 1=1,2, ..., m
Exnh = (Ewnh—{Vsk—s}) U{vsk_4, Vsk_1, Vsl h=1,2, ..., k-2;
Exk-1) = (1,2~ {Vsk-s}) U{Vsk_3 Vsrk_1, Vs }; and
Exk = (Exi-2— {Vsk-1}) U{Vsk_2}

Also, |Ail = |Bijl = [Cipl = [Evl =2 [§J +1i=1,2 ... andj=1,2,... k+1;p=1,2, ...,mandq=1,2, ..., k and

[D=f+k+1+m+k= w Therefore, there are LEHDERS) minimum co - isolated locating dominating sets
of Psy . scontaining v, and vs,. The Theorem is true for n = k. By induction hypothesis, the theorem is true for all n > 1.

(n+3)(n249n+2)

Theorem: 3.6 For any integer n = 1, ¥ peitg (Psn+1) = c

Proof: ¥ peilg (Psn+1) is the sum of the number of minimum co — isolated locating dominating sets of Ps;, . ; containing
(i) viand Vs
(if) vy and vs,
(iii) v, and Vspag
(iv) v, and vs,
(@) For (i), the number of minimum co-isolated dominating sets of Ps,,; containing v; and Vs, is (n + 1) by

Theorem 3.3.

(b) For (ii), the number of minimum co-isolated dominating sets of Ps,.; containing vy and vs, is @ by
Theorem 3.4.

(c) For (iii), the number of minimum co — isolated locating dominating sets of Ps,.; containing v, and Vsn.; IS

same as that of minimum co — isolated locating dominating sets containing v; and vs, and hence it is @).

(d) For (iv), the number of minimum co-isolated dominating sets of Ps,.; containing v, and vs, is w by

Theorem 3.5.

_ (n+3)(n2+9n+2)
Hence, Y peilg (Psney) = 2 ——=2,

6
Remark: 3.7 The Recurrence relation is given by

+3)(n?+9n+2 +2)(n?+7n—6
Y oeitd (Psn+1) = Y peitd (Psn-1)+1) = E+9)n 4912 _ GH2n 47n78)

6 6
_ 7n?421n+18

7n2421n+18,

n=2.
6

6
Therefore, ¥ pcilg (Psn+1) = ¥ it (Psn-) +
In the following, the number of minimum co-isolated locating dominating sets of Ps., is found.

Theorem: 3.8 There is no minimum co — isolated locating dominating set of Ps,., containing v; and Vs,., with the
|abe||ings V1, Vo, V3, ..., V5n, V5n+1, Vone2 where n > 1.

Proof: On the contrary, let D be a minimum co — isolated locating dominating set of Ps,., containing v, and Vs, with

the labellings Vi, Vz, Va, ..., Ven, Vane1, Vanea. Then, [D] = 2 [Sns”J +1 (By Theorem 2.5.) and D' = D — {V; Vsne2} will be
a minimum co — isolated locating dominating set of Pg, with the labellings vs, V4,Vs, ...., V5.1, Vsp. |D'| =2 [5";2] - 1.
5n+2 Sn+2

Therefore, Y cig (Psn) < 2 [ s J — 1. But, Y ciig (Psn) = 2 lTJ , Which is a contradiction. Hence, there is no minimum

co — isolated locating dominating set of P, containing vy and Vs.;.

Theorem: 3.9 There is exactly one minimum co — isolated locating dominating set of P, containing v, and Vs, with
the labellings vi, vy, V3, ..., Vsn, Vine1, Vsnso , Where n > 1.

Proof: Clearly, D = {vy, V4, V7, ..., V5n_1, Vsnso} IS @ Mminimum co — isolated locating dominating set of Ps,., containing

V, and Vsy.p, Which proves the existence and |D| = 2 [Sn;zj + 1. To prove the uniqueness, Let D'= D — {Vspso}. D' isa

minimum co — isolated locating dominating set of Ps, with the labellingss vi, V5, Vs, ..., Vs, Since
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5n+2

ID'| = |D|-1=2 [ J Y citd (Psn). But by Theorem 3.2, D' is the unique minimum co — isolated locating dominating set
of Ps, and hence D is unique.

Theorem: 3.10 There are exactly n minimum co — isolated locating dominating sets of Ps,., containing v, and Vsp.;
with the labellings vy, Vo, V3, ..., Vsn, Vsns1, Vsnso , Where n > 1.

Proof: Let the labellings of vertices of Ps,., be vy, Vo, Vs, ..., Va1, Ven, Venso.  The theorem is proved by the method of
induction on n. For n = 1, Ay 1={V,, V4, Ve} is the only minimum co - isolated locating dominating set of P; containing

V, and v, since, |44 =3 = [5"+2J + 1. Let D;={A4;,} and |[D4| = 1 = n. Let n = 2. In order to construct the minimum

co — isolated locating dominating sets of Py, containing v, and vy, the following sets are defined using D;. Let
Ay = A1 U{Vy, vii}; and Byg = (A1g — {Ve}) U{ V7 Vg, Vi1}. These are the only minimum co - isolated locating

dominating sets of Py, containing v, and vy, since, |Ay4| = |B21| =5 =2 l5n+2J + 1. Let D,={A,1, B, 1} and | Dy =2 =

Let n = 3. In order to construct the minimum co — isolated locating dominating sets of P;; containing v, and v the
following sets are defined using the sets in D,.

Let A1 = Ay 1 U{Vis4, Vie}; Az2= B33 U{Vis, Vie} and Bz1= (Bs1—{V11}) U{Vis Via, Vis}-

These are the only minimum co — isolated locating dominating sets of P, containing v, and vi¢ since,
|As = |Baal =7 =2 | 72| + 1;i= 1,2, where n = 3,

Let D3={A31, A3, B3} and |D| = 3 = n. Therefore, the result is true for n = 1, 2 and 3. Assume that the theorem holds
for n = k-1. That is, there are exactly k-1 minimum co — isolated locating dominating sets of Ps.y)., containing v, and
Vsk-1)+1 With the labellings vi, Vo, Vs, ..., Vs, Vsgenys1, Vseny+2 Where kK = 4. Let Dy _; be the set of all minimum co —
isolated locating dominating sets of Ps _ 1)+, containing v, and Vs - 1y+1 -

Also, Dy_1={A k-11, Ak-1.2 Ak-13 -» Ax-1)K-2)» Bk-11} [Dk-1/=k-1and
|Ak -1l = [Br-11 = [S(k 1)+2J +1;i=1,2, ..., (k- 1). The result is to be proved, when n = k. In order to construct
the minimum co — isolated locating domlnatlng sets of Pgy . » containing v, and vg.; , the following sets are defined

using the sets in D, _ ;. Let D be the set of all minimum co — isolated locating dominating set of Py . ;containing
Vs and V1.

Then, D K = {A K1 Akyz,Akyg, ceny Ak,(k—l) , Bk,l} and A Kii :A(k—l),i U {VSk—lﬁV5k+1}; i=1 2 .. (k - 2) and
Avi-1= Br-1)1 YU{Vsk_1,Vsks1} and By1= (Bw-1)1— {Vsk-4}) U{Vsk_3, Vsk—1, Vsk+2}-

Also, |Axi| = |Bka =2 [ﬂj +1;i=1,2, ..., (k-1) and |Dy = k. Therefore, there are exactly k minimum co —

isolated locating dominating sets of Psy., contalning V, and Vs, With the labellings vy, vy, Va, ..., Vi, Vske1, Ve - BY
induction hypothesis, the theorem is proved for all n > 1.

Theorem: 3.11 For any integer n > 1, ¥ pgiig (Psns2) =N + 2.

Proof: ¥ peiig (Psn+2) is the sum of the number of minimum co — isolated locating dominating sets of Ps, . , containing

(i) viand Vsnsp

(i) vz and Vsnsp

(lll) \ and Vine1

(iv) vz and Vsnsy

(@) For (i), there is no minimum co-isolated dominating sets of P, containing vy and vs,.,, by Theorem 3.8.

(b) For (ii), the number of minimum co-isolated dominating sets of Ps,., containing v, and Vsp., is 1, by Theorem
3.9.

(c) For (iii), the number of minimum co — isolated locating dominating sets of Ps., containing v; and Vg, is
same as that of minimum co — isolated locating dominating sets containing v, and vs,., and hence it is 1.

(d) For (iv), the number of minimum co-isolated dominating sets of Ps., containing v, and Vg, is n, By Theorem
3.10. Hence, 7 peilg (Psne2) =N + 2.

In the following, the number of minimum co-isolated locating dominating sets of Ps,.5 is found.

2
Theorem: 3.12 There are exactly A2 minimum co — isolated locating dominating sets of Pg,.3 containing v; and

Vgn43 with the Iabellings V1, Vo, V3, ..., V5n+2, V5n43, where n > 2.
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Proof: Let the labellings of vertices of Psn.3 be vy, Vo, Vs, ..., Vsneo, Vsnes. The theorem is proved by the method of
induction on n. For n = 1, Ay 1={V1, V3, Vs, Vg}; A1,={V1, V3, Vs, Vg}; A13={V1, V3, Vg, Vg}; A14={V1, V4, Vs, Vg} are the

only minimum co — isolated locating dominating sets of Pg containing v; and vg, since, |4, = 4 =2 [5”3] +2,i=1,2,

5
3, 4, by Theorem 2.5. Let D;={A11, A1, A13} and [D4| = 4. Let n = 2. In order to construct the minimum co - isolated

locating dominating sets of P53 containing v, and v3, the following sets are defined using the sets in D, .

Let Api=A1iU{Vio, Vas}; 1=1,2,3,4and Ay5= (A14— {Vs}) U{ Vo Vio, Vis};

By1= A13U{Vi1, Viz}; Bro= A1 4U{V1y, Viz} and B, 3= (A14— {Vs}) U{Vg V11, Vi3}. These are the only minimum co
— isolated locating dominating sets of P13 containing v, and vys, since |A,| = |B,j| = 6 =2 5n5+3J +2;i=12,...,5and
j=1,2,3.

2
Let D,={A,1, A2z, ..., A2, B21, B2, Boa} and |Dy| = 8 = 742 | et n = 3. In order to construct the minimum co —

isolated locating dominating sets of P,g containing v, and vig, the following sets are defined using the sets in D,.

Let Agi=A,; U{vys,vig), fori=1,2,...,5, and
Agj= By j_5) U{vys,vigh, forj=6,7,8 and Az o= Bys— {Vis} U{Vi4 V15, Vig};
B3i=B;ijU{Vi, Vig};1=1,2,3;
B34= (B23—{Vi3}) U{Vi4, Vig, V1g}.

These are the only minimum co — isolated locating dominating sets of P;g containing v, and vig since,

s = |Bss =8 =2 |2 + 2;i=1,2, ..., 9and = 1,2, .. 4.

n2+5n42

Let D3={A31, A3z, ..., As9, Ba1, B3 Bas, Bsa} and [Dg = 13 =

, Wwhere n = 3. Therefore, the result is true for

_1\2 _ 2 —
n=1,2 and 3. Assume that the theorem holds for n= k-1. That is, there are exactly (k1) +2(k D2 - K552 minimum

co— isolated locating dominating sets of Psy.1)+3 containing v; and Vsy.1y+3 With the labellings v, vy, Vs, ..., V512,
Vsk-1)+3. Let Dy _ 1 be the set of all minimum co — isolated locating dominating sets of Ps _ 1):3 containing v, and
V5(k - 1)+3-

k—1)(k+2
Then, Dy_1={A k-1 Ak-12 Ak-1)3 ++» Ak-1r» Bk-1)1 Bk-1)2: ---» Bk-1)s} Where r = #; s=k k=2

k243k—2 5(k—1)+3

Also, |Dy_q|= and [Ag- 1l = 1Bk-n,l =2 l - J +2,i=1,2,...,randj=1,2, ..., s The theoremis to

be proved for n = k. In order to construct the minimum co — isolated locating dominating sets of Psy . 3 containing v; and
Vsk3 , the following sets are defined using the sets in D  _ ;. Let D  be the set of all minimum co - isolated locating
dominating sets of Pgy . 3 containing v; and Vgy.s.

Then, D« ={A w1, Ak2r Axas .-y Ay B Bia, -y Bim}, Where [ = @ andm=k+ 1.

Agi = A(k—l)i U {Vsy, Vsrast, fori=1,2, ...,r;

Ai = Bae—1),—r) YU {Vsi Vskash forj=r+l, r+2, ... r+s (= 1);
Ak,(l+1)= (B(k-l),k—{VSk—3}) U{Vsk—2, Vsk Vsk+31;
Byi=B—1); Y {Vsk+1, Vskash 1=1,2, .0, K

By (1) = (B(k-l),k— {Vsk-3}) U{Vsk—2, Vsk+1, Vsk+3}:

5k+3 k2+5k+2

Also, A = Byl =2 TJ +2i=1,2 ..,5j=12 ... mand [Dd =1+ m =

n = k. By induction hypothesis, there are exactly minimum co — isolated locating dominating sets of Psp.3
containing v; and Vs,.3 With the labellings vy, V,, Vs, ..., Vsns2, Vsnss, for all n > 2.

. The theorem is proved for

nZ+5n+2

Z - - - - - - - - -
Theorem: 3.13 There are exactly nor2InT2t inimum co — isolated locating dominating sets of Ps,.3 containing v, and

Vsn+p With the labellings vy, vy, Vs, ..., Vsni2, Vsnes , Where n > 3.

Proof: Let the labellings of vertices of Psn.3 be vy, vy, Vs, ..., Vsneo, Vsnes. The theorem is proved by the method of
induction on n.

For n =1, Ay 1={V1, Vo, Vs, V7}; A1,={V1, V3, V5, V7}; A13={V1, V3, Vg, V7} are the only minimum co - isolated locating

dominating sets of Pg containing v, and v, since |4, | = 4 =2 l5"5+3J + 2, by Theorem 2.5.
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Let D= {411, A1, A13} and [D4] = 3. Let n = 2. In order to construct the minimum co — isolated locating dominating
sets of P15 containing v; and vy,, the following sets are defined using D; .

Let AZ,i = Al,i U{Vlo, V12}; | = 1, 2, 3 and
By1= (A12—{Vv7}) U{ Vg Vio, Vio}; B22= (A13—{Vv7}) U{ Vg Vio, Vio};
By3= (A11—{ V2, V7}) U{ V4, Vg Vio, Vio} s Boa= (Ar1—{ Vo, V5, V7}) U{ V4, Ve, Vg Vio, Vio}
Bys5= (A12—{ V2, Vs, V7}) U{ V4, Vg, Vg Vag, Vio}; Bog= (A1z—{V7}) U{ Ve, Vg V11, Vio},
By7= (B2a—{V10}) U{Vi1, Vio} and Byg= (Bas— {Vio}) U{Va1, V12};

These are the only minimum co — isolated locating dominating sets of P;3 containing v; and vy, since

ol = B2l =6 =2| 2| +2;i=1,2,3andj =1, 2, ..., 8.

nZ+21n-24

Let Dzz{szl, Azyz, A213, BZ,la Bzyz, . Bzyg} and |Dz| =11= . where n = 2.

Let n = 3. In order to construct the minimum co — isolated locating dominating set of P,g containing v, and vy, the
following sets are defined using the sets in D,.

A3,i = AZ,i U {Vls,V17}, for | = 1, 2, 3,

Agyj = 3210_3) U {Vls,V17}, forj = 4, 5, ceny 11,

B3;= Byj— {V12} U{Vi3 Vis, V17}; | = _1, 2,...,8;

B3j= By .3~ {Vi2} U{Vi3 Vg, Vi7} ;] = 9, 10, 11; and B3 1, = (B2g— {V12}) U{Vi4, V15, Vi7}s

B313= (Bys—{Vi2}) U{Vi4 Vie, V17}-

These are the only minimum co — isolated locating dominating set of P;g containing v; and vg since

s = B3l =8 =2 |2 +2;i=1,2, ..., 11and = 1,2, .., 13.

2 _
Let D3:{A3’1, Agyz, cany A3’11, B3,1i Bgyz, cany B3,13} and |D3| = 24: 71-!-2;—7124 y Where n= 3

Let n = 4. In order to construct the minimum co — isolated locating dominating sets of P, containing v; and v, the
following sets are defined using the sets in Da.

Let A4yi = A3,i U {Vzo,sz}, fori= 1, 2, ,11,

A41j = B3'(1'_11) V) {VZO'VZZ}’ forj = 12, 13, ceey 24,
By4i= B3i— {V17} U{Vig Voo, V2o }, fori=1, 2, ..., 13;
B414= B3 13— {Vis} U{Vio, Va0, V22}-

These are the only minimum co — isolated locating dominating set of P,; containing v, and vy, since

|Asjl = |Bay| =8 =2 5”5+3J +2i=1,2,....24andj=1,2, ..., 14.

n+21n-24

Let Dy={A41, As2, ..., A424, Ba1, Ba, ..., Basay and [Dy| = 38 = , where n = 4. Therefore, the result is true for

—1)2 —1)—
n =2, 3 and 4. Assume that the theorem holds for n = k-1. That is, there are exactly w minimum co —

isolated locating dominating sets of Psy.1y.3 containing v; and Vsg.1)s» With the labellings vi, v, Vs, ..., Vsica)s2, Vseny+a
where k > 4.

Let Dy _, be the set of all minimum co — isolated locating dominating sets of Ps _1y.3 containing vy and Vs 1)+2

k2+17k—62,

Then, Dy_1={A k-1 Ax-12 Ak-1)31+++1 A= 1)r Bk-11.Bk-121 B-nspand r= —, 8= (k-1)+10=k +9,
_1\2 1V 2 _ —

K = 4. Also, [D |y =KHHEED R and |Ag i = 1Bee- il =2[F522] +25i= 1,2, .., rand

j=1, 2, ..., s. The theorem is to be proved for n = k. In order to construct the minimum co — isolated locating

dominating set of Psy . 3 containing v, and Vs, , the following sets are defined using the sets in D _ ;. Let D be the set
of all minimum co - isolated locating dominating sets of Psy . 3 containing v, and Vsy...

nZ+19n—44

Then, D ={A w1, Ax2r Aas -y Aty B Bia, «+.y Bim}, Where [ = and m =k + 10.
Ai=Age-1),; Y{Vsio Vskaz}, 11,2, .., 15

A k,j = B(k—l),(j—r) V) {V5k1V5k+2}vJ = r+1, r+2, v, IS (: l),

Byi= (Be-1),i — {Vsk—3}) U {Vsk_2, Vs, Vskaa 15 1=1, 2, ..y S;
By s+1) = (Be).s— {Vsk—23) U{Vsk_1, Vsk, Vsk+2}-
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5k+3 _ k2421k-24

Also, |Ayi| = |Bxjl —Zl J+ 2;i=1,2, ..., j=1,2,....,mand [Dy = The result is true for

2 - - - - - - -
n = k. By induction hypothesis, there are exactly D224 minimum co — isolated locating dominating sets of Pgp.3

containing v; and Vs, with the labellings vy, V,, Vs, ..., Vsni2, Vsnsz , Where n > 3.

Theorem: 3.14 There are exactly (n + 1) minimum co — isolated locating dominating sets of Ps.5 containing v, and
Vgne2 with the Iabellings V1, Vo, V3, ..., V5n42, Vone3 where n > 3.

Proof: Let the labellings of vertices of Psp.3 be vy, Vs, Vs, ..., Vnio, Vanaa.

Forn=2, Ay1={V2, V4, V7, Ve, V1o, Vio} Az,z?{sz Va, V7, Vo, Vi1, V12}_;A2,_3={V2, V4, V7, Vg, Vi, Vlg}_and Az 4={V2, V4, V7, Ve,
Vi1, Vipp are the only minimum co — isolated locating dominating sets of Pj3 containing v, and vi,, since

|A2 || =6=2 l5n+3J + 2 (By Theorem 25) Let DZ: {A2,1l Azyz, Azyg, A2’4} and |Dz| =4

Let n = 3. In order to construct the minimum co — isolated locating dominating sets of P,g containing v, and vy, the
following sets are defined using D..

Let A3 = A U{Vis, Vir}; and Bs;= (Agi— {Vi2}) U{ Vis Vis, Vir}s 1=1, 2,3, 4,
B3s5= (A22—{V12}) U{ Vi3 Vie, V17} ; B3s= (A24— {V12}) U{ Vi3 Vie, Vir};
B37= (Az2—{V12}) U{ V14, Vis, Vir}; Bag= (Az2—{V12}) U{ Vis Vis Va7}.

Let D = {va, V4, V7, Vo}.
B3 g=D U{ Viz, V13 V15, Va7}; B3 o= D U{ Vi, Vi3 Vie, Vi7}; Ba 11 = D U{ Vi, Vig Vis, Var}; Ba12= D U{ Vig, Vig Vis, Va7}

These are the only minimum co — isolated locating dominating sets of P;g containing v, and v;7, since
|A2,i| = IBle = 6 =2 l5n+3J + 2 | = 1 2 4 and ] :1, 2, ceay 12 Let Dg = {A3,1i ey A3’4, B3,1i Bgyz, cany 33’12} and
D3| =16 = (n + 1)2

The theorem is proved by the method of induction on n, where n > 4.

Let n = 4. In order to construct the minimum co — isolated locating dominating sets of Py containing v, and v,,, the
following sets are defined using the sets in Dj.

Let Agi=Asz; U{vy, v}, 1=1,2,3,4
Agj= B3 j_ay U{vy, 22}, J=5,6, ..., 16;

Let S={vis} U{vy V2o};

B41=SU B3y; B42=SU B33 By3 = SU B3y,

B4a =SU B3g; Bus =SU B310; Bag= SU B311. B47=SU B3,

Bag={V2, V4, V7 Vg V11, V14, V16, Vg, Voo, V22}; and

Byg={ Vo, V4, V7 Vg V11, Vs, V1g, V19, Va1, V2o }. These are the only minimum co — isolated locating dominating sets of Pp3

containing v, and v, since |A4j| = |B4j| =10 =2 l5n+3J +2;i=1,2,...,16andj=1,2, .., 9.

Let Dy={A41, A4z, -y As16, Bagy Bap, ...y Bagr and [Dy| =25 =(n + 1)2. Therefore, the result is true for n = 4. Assume
that the theorem holds for n = k - 1. Let D, ; be the set of all minimum co — isolated locating dominating set of
Ps( - 1)+3 containing v, and Vs —1)+2 , then Dy_1 ={A - 1)1, Ak-1.20 Ak-1).3 --+» Ax=1)rs Bk Bk-120 s B-1)sh
where
r=(k-1)7%s=2k-1)+1=2k-1,k>5.Also, |D_4 =k and |4y 1 = 1Bk-1; =2 +2;i=1,2, ...,
and j =1, 2, ..., s. The theorem is to be proved for n = k. In order to construct the minimum co — isolated locating
dominating set of Ps . 3 containing v, and Vs, the following sets are defined using the sets in D _;. Let D be the set
of all minimum co — isolated locating dominating sets of Psy . 3 containing v, and Vs, Then,
D= {A K1s Akz, Aygs, - Akl , Br1, By2, -y Bk,m}a where I = k?and m = 2k + 1.
Akl— Aw-1y,i U{Vsk, V5k+2} i=1,2, ..., K5

= (Bk-1)~ {Vsk-3}) U {vsk, V5k+2}-J =12, ..., 2k-1;

lS (k—=1)+3
5

The sets By ok and By xx+1 are defined as follows.
If nis odd, By ok = {Vz, Va, V7 Vg, V12, V14, V15, Va7, ..., Vs Vske2}s
By k1 = {V2, Va, V7 Vg V12, Vg, V15 V17, -+, Va1, Vskso}
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If nis even, By ok = {Va, V4, V7 Vg V11, Via, V1g, V1o, ---s Vsk Vskeo}s
Bioksr = {V2, Va, V7 Vg Va1, Va4, Vig V19, -.vy Vaie1, Vkeo}-

Also, |Aki| = Byl =2 [5];—+3J +2;i=1,2,...,;j=1,2,...,mand D = [+ m = (k + 1)°>. Therefore, there are exactly

(k + 1) minimum co — isolated locating dominating sets of Ps.3 containing v, and Vs, with the labellings vy, vy, Vs,
..oy Vsie2, Vsies , Where k > 4. By induction hypothesis, the result is true for n > 4. Also, for n = 3, the number of
minimum co-isolated locating dominating sets of Pgis 16.

5n2+51n—44

Theorem: 3.15 For any integer n = 4, ¥ pilg (Psn+3) = >

Proof: ¥ peilg (Psn+s) is the sum of the number of minimum co — isolated locating dominating sets of Ps, . 5 containing
(1) viand Vsn.s
(i) viand Vsnsp
(lll) Vo and V5n+3
(iv) vz and Vsnsp
(@) For (i), the number number of minimum co — isolated locating dominating sets of P, . 3 containing v; and Vi3
n245n+2

is — by Theorem 3.12.

(b) For (ii), the number of minimum co — isolated locating dominating sets of P, . 3 containing v, and Vs, is
nit2in-24 , by Theorem 3.13.

(c) For (iii), the number of minimum co — isolated locating dominating sets of Pg, . 3 containing v, and V.3 is the
same as the number nit2in-24

(d) For (iv), the number of minimum co — isolated locating dominating sets of Ps, . 3 containing v, and Vg, iS
(n + 1)%, by Theorem 3.14.

2 -
Therefore, ¥ pcilg (Psn+a) = W'

Remark: 3.16 The Recurrence relation is given by

_ (5n%+51n-44)  (5n%+41n-90)
Y oeitd (Psnsa) = ¥ peita (Psr1yss) = — 2 — - 2 -

=5n + 23.

Therefore, Y pcitg (Psn+a) = ¥ peitd (Psn2) + 50+ 23; n = 4.

In the following, the number of minimum co-isolated locating dominating sets of Psp.4 is found.

Theorem: 3.17 There is exactly one minimum co — isolated locating dominating set of Ps,., containing v; and Vsp.4
with the labellings vy, vy, V3, ...., Vsne2, Vsnss, Vsnss, Where n > 1.

Proof: Clearly, D = {vi, Va4, V6, Vg, ..., Vsn + 1, Vsnsa} 1S @ minimum co — isolated locating dominating set of P4
containing v; and Vs,.4,Which proves the existence. To prove the uniqueness, let D'= D — {Vsn.4}. D" is a minimum co —
isolated locating dominating set of Ps,.; with the labellings vy, Vy, V3, ...., Vsni1, Vsnep CONtaining vy and vsp.g , Since, |D'|
=2n+ 1 = Y g (Psns+2). But by Theorem 3.9, D is the unique minimum co — isolated locating dominating set of Psp.,

and hence D is unique.

Theorem: 3.18 There are exactly n+1 minimum co — isolated locating dominating sets of Ps,.4 containing v, and Vsp.4
with the Iabellings V1, V2, V3, ..., V5nt2, Vin+3, Vones and n = 0.

Proof: Let the labellings of vertices of Psp.4 be Vi, Vo, V3, ..., Veneo, Vines, Vsneg. The theorem is proved by the method of
induction on n. For n = 0, {V,, v4} is the only minimum co — isolated locating dominating set of P, containing v, and v,.

For n = 1, {v,, V4,Vs, Vo} and {v,, V47, Vo} are the only minimum co — isolated locating dominating sets of Py
containing v, and vyg.

Assume that the theorem holds for n = k-1. That is, there are exactly k minimum co — isolated locating dominating sets
0Of Ps.1)+4 CONtaINing v, and Vsgery+a With the labellings vi, Vo, Vs, ..., Va2, Vsken)+3: Vspensa - Lt the k sets be D,

i=12,...,kand |D; =2 ls(k_sl)HJ + 2, by Theorem 2.5.

Assume n=k. Let D;' = D; U{Vsis1, Vsisa}; 1 =1, 2, 3... k.
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5(k—1)+4 Sk+4

Since, |D{|=|Dj+2= 2 l J +2+2=2 [— + 2 ; Dy are the minimum co — isolated locating dominating

set of Py, 1= 1,2, ..., k.

In addition, D = {V,, V4,V7, Vo, ..., Vsks2, Vsk+4} IS alS0 @ minimum co — isolated locating dominating set of Psy.4 since,
D=2 lSkS—HJ + 2, which is different from D;’ for each i. Therefore, there are k + 1 minimum co — isolated locating

dominating sets of Ps.4 cOntaining v, and vg.4. Therefore, the theorem is proved for n = k. By induction hypothesis,
there are exactly n+1 minimum co — isolated locating dominating sets of Ps,.4 containing v, and Vsn.4 with the
labellings vy, Vo, V3, ..., Vsns2, Vsns3, Vsnsg @nd n > 0.

Theorem: 3.19 There are exactly e+ D0*2) minimum co - isolated locating dominating sets of Pg,., containing v, and

V5n43 with the Iabellings V1, Vo, V3, ..., V5n4+2, V5043, Vsn+4, where n > 1.

Proof: Let the labellings of vertices of Psp.4 be Vi, Vo, Va, ..., Veneo, Vinea, Vsnig. The theorem is proved by the method of
induction on n. For n = 1, Ay 1={V5, V3, Vg, Vg}; A12={V2, Vs, Ve, Va}; A13={V2, V4, V7, Vg} are the only minimum co -

5"*‘*] + 2. Let D1={A11, A1, A1} and

isolated locating dominating sets of Pg containing v, and vg, since, Ay = 4 =2 [
|Dll =3= (n+1)2(n+2).

Let n = 2. In order to construct the minimum co — isolated locating dominating sets of P4 containing v, and vi3, the
following sets are defined using D .

Let A2,i = Al,i U{Vll, V13}; i= 1, 2, 3and
Bj1= (A12—{Vs}) U{ Vo Vi1, Vis}; B2p= (A13— {Vvs}) U{ Vg Vi1, Vi3} and
Byz= (A13—{Vve}) U{ Vo V12, Vi3}.

These are the only minimum co — isolated locating dominating sets of P4 containing v, and vi3, since,
5n+4
Aol = |Boil = 6 =2 |72 + 2.

= (tH(@+2)

Let D, = {41, A2, A3 B21, B22, Bys} and [Dy| = 6 2

Let n = 3. To construct the minimum co — isolated locating dominating sets of P3¢ containing v, and v, the following
sets are defined using the sets in D,.

Azi=Ay; U{vigvigh 1=1,2,3;

A3j=By ;-3 U{vig,vigh]= 4,56;

B3i= (Byi—{Vis}) U{Vi4 Vis, Vig}; i1 =1, 2, 3; and

B34= (B2z—{Vis}) U{Vis V17, Vig}.

These are the only minimum co — isolated locating dominating set of P14 containing v, and vig, since
s = |Bssl =8 =2 |2+ 2;i=1,2, ..., 6and = 1,2,3, 4.

(n+1)(n+2)

Let D3={As1, A3z, ..., Asg, Bs1, B3a, Bas, B3a} and |Ds| = 10 = 2

n=1,2and3.

, when n = 3. Therefore, the result is true for

Assume that the theorem holds for n = k-1. That is, for all paths having 5(k — 1)+4 vertices. Let Dy _; be the set of all
minimum co — isolated locating dominating sets of Ps _ 1)+, containing v, and Vs - 141

Then, Dy _ 1={A (k=-1),1s A(k—l),Zy A(k_l)yg,, vy A(k—l),ry B(k—l),la B(k_ i B(k_ } Where r= :s=k, k= 3. Also

Dy_4 = k(kH) and |Ak - 1l = [Bx-1;l =2 ls(k_sl)+4j +2;i=1,2,..,randj=1,2,..,5. Let n = k. In order to

construct the minimum co — isolated locating dominating sets of Ps . 4 containing v, and vs.s, the following sets are
defined using the sets in D _ ;. Let D  be the set of all minimum co — isolated locating dominating set of Psy . 4
containing v, and Vsy.a.

(n— 1)n

U‘H) and m=Kk+ 1.

Then, D K= {A k1» Ak,z, Aky3, . Ak,l , Bk,ly Bk,z, veny Bk,m}y where [ =
A ki = A(k—l),i U {V5k+1'v5k+3}! ) fori= 1, 2, R

A= Bae-1),-r) Y {Vsks1, Vsias) forj=r+l, r+2, .. r+s (= 0);
Byi= (B.i— {Vsk—2}) YU{Vsk-1, Vsk41, Vska3} 1= 1 2 ., s and
By 1) = (Bnk—{Vsk—23) U{Vsk_1, Vsk42) Vsk43 -

© 2015, IIMA. All Rights Reserved 73



S. Muthammai, N. Meenal* / The Number Of Minimum Co - Isolated Locating Dominating Sets Of Paths / IIMA- 6(5), May-2015.

Also, Al = Bil =2|*2|+2;i=1,2, ., bj=1,2 ..., mand [Dy = I+ m =

proved for n = k. By induction hypothesis, there are exactly

Sk+4 (k+1)(k+2)

2
minimum co — isolated locating dominating sets

. Hence, the Theorem is

(n+1)(n+2)

of Ps.4 CONtaining v, and vs,.3 with the labellings vy, vy, V3, ..., Vsni2, Vsnes, Venes, fOrall n = 1.

Theorem: 3.20 For any integer n > 1, ¥ peilg (Psn+a) =

(n2+7n +8)
P .

Proof: ¥ peilg (Psn+4) is the sum of the number of minimum co — isolated locating dominating sets of Ps;, . 4 containing
(i) viand Vsn.y
(i) viand Vsnsa
(iii) v, and Vspay4
(iv) v, and Vsp.3
(@). For (i), the number number of minimum co — isolated locating dominating sets of Pg, . 4 containing v; and

Vsna4 1S 1, by Theorem 3.17.

(b). For (ii), the number of minimum co — isolated locating dominating sets of Ps, . 4 containing v; and Vsp.s iS

(n+1), by Theorem 3.18.

(c). For (iii), the number of minimum co — isolated locating dominating sets of P, . , containing Vv, and Vs.4 is the

same as the number (n + 1)

(d). For (iv), the number of minimum co — isolated locating dominating sets of Ps, . 4, containing Vv, and Vsy.3 is

Hence, ¥ pcitd (Psn+a) =

("“)Zﬂ, by Theorem 3.19.

(n2+7n+8)
P .

Remark 3.21: The Recurrence relation is given by

Y peitd (Psn+a) = ¥ peitd (Ps(n-1)+4) =

(*+7n+48)  (n?+5n+2)
2 2 ’
=n+3.

Therefore, ¥ pcilg (Psn+a) = ¥ peitd (Psn1) + N+ 3.

4. CONCLUSION

In this paper, the number ypq is obtained for paths P,, n > 4 are studied.
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