THE NUMBER OF MINIMUM CO - ISOLATED LOCATING DOMINATING SETS OF PATHS

S. MUTHAMMAI

Government Arts College for Women (Autonomous), Pudukkottai - 622 001, India.

N. MEENAL*

J. J. College of Arts and Science, Pudukkottai - 622 422, India.

(Received On: 25-04-15; Revised & Accepted On: 27-05-15)

ABSTRACT

Keywords: Dominating set, locating dominating set, co – isolated locating dominating set.

1. INTRODUCTION

Let G = (V, E) be a simple graph of order n. For $v \in V(G)$, the neighborhood $N_G(v)$ (or simply N(v)) of v is the set of all vertices adjacent to v in G. The concept of domination in graphs was introduced by Ore [7]. A nonempty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in V(G) - S is adjacent to some vertex in S. A special case of dominating set S is called a locating dominating set. It was defined by S. F. Rall and S. J. Slater in [8]. A dominating set S in a graph S is called a locating dominating set in S, if for any two vertices S, where S is a locating dominating set in S, are distinct. The location dominating number of S is defined as the minimum number of vertices in a locating dominating set in S. A locating dominating set $S \subseteq V(G)$ is called a co - isolated locating dominating set in S. The number of minimum cardinality of a co - isolated locating dominating set is called the co - isolated locating domination number and is denoted by S contains at S in a graph S is denoted by S is obtained locating dominating sets of Path S no n vertices, S is obtained

2. PRIOR RESULTS

The following results are obtained in [3] & [4]

Theorem: 2.1 [3] For every non – trivial simple connected graph G, $1 \le \gamma_{cild}(G) \le n-1$.

Theorem: 2.2 [3] $\gamma_{cild}(G) = 1$ if and only if $G \cong K_2$.

Theorem: 2.3 [3] $\gamma_{\text{cild}}(K_n) = n - 1$, where K_n is a complete graph on n vertices.

Theorem: 2.4 [3] $\gamma_{cild}(K_n - e) = n - 1$, where $e \in E(K_n)$

Observation: 2.1 [4] If S is an co – isolated locating dominating set of G(V, E) with |S| = k, then V(G) - S contains atmost $nC_1 + nC_2 + ... + nC_k$ vertices.

Corresponding Author: N. Meenal*
J. J. College of Arts and Science, Pudukkottai – 622 422, India.

Theorem: 2.5 [4] If P_n is a path on n vertices, $n \ge 3$, then

$$\gamma_{\text{cild}} (P_{n}) = \begin{cases} \left[\frac{2n}{5}\right] & ; n \equiv 0 \text{ (mod 5)} \\ 2\left[\frac{n}{5}\right] + 1; n \equiv 1 \text{ or } 2 \text{ (mod 5)} \\ 2\left[\frac{n}{5}\right] + 2; n \equiv 3 \text{ or } 4 \text{ (mod 5)} \end{cases}$$

3. MAIN RESULTS

Using the value of $\gamma_{cild}(P_n)$ given in Theorem 2.5., the minimum number of co-isolated locating dominating sets $\gamma_{Dcild}(P_n)$ of P_n , for all $n \ge 3$, are found in this section.

Observation: 3.1Let $V(P_n) = \{v_1, v_2, ..., v_n\}$ with $deg(v_1) = deg(v_n) = 1$ and $deg(v_2) = deg(v_3) = ... = deg(v_{n-1}) = 2$ and let D be a minimum co – isolated locating dominating set of P_n . Then one of the following holds.

- (i) $v_1, v_n \in D$
- (ii) $v_1, v_{n-1} \in D$
- (iii) $v_2,v_n \in D$
- (iv) $v_2, v_{n-1} \in D$

It is sufficient to consider (i), (iii) and (iv), since the number of minimum co – isolated locating dominating sets of P_n containing v_2 and v_n is same as that of minimum co – isolated locating dominating sets containing v_1 and v_{n-1} .

Theorem: 3.2 For any integer $n \ge 1$, $\gamma_{Doild}(P_{5n}) = 1$.

Proof: Let the labellings of vertices of P_{5n} be v_1 , v_2 , v_3 , ..., v_{5n-1} , v_{5n} . Let D be a minimum co – isolated locating dominating set of P_{5n} . The theorem is proved by the method of induction on n. For n = 1, the following cases arise.

- (i) If $v_1, v_5 \in D$, then $D = \{v_1, v_3, v_5\}$ and |D| = 3. But $\gamma_{cild}(P_5) = 2$. Therefore, D cannot be a minimum coisolated locating dominating set of P_5 .
- (ii) If $v_2, v_5 \in D$, then $D = \{v_2, v_3, v_5\}$ or $\{v_2, v_4, v_5\}$, which is also not possible.
- (iii) If v_2 , $v_4 \in D$, then $D = \{v_2, v_4\}$ is the only minimum co isolated locating dominating set of P_5 and |D| = 2 and hence $\gamma_{Decild}(P_5) = 1$.

Similarly for n=2, $D=\{v_2,v_4,v_7,v_9\}$ is the only minimum co-isolated locating dominating set of P_{10} and |D|=4 and hence γ_{Dcild} $(P_{10})=1$. Assume that the theorem holds when n=k-1. That is, the result holds for all paths having 5(k-1) vertices. Therefore, $D=\{v_2,v_4,v_7,v_9,...,v_{5k-8},v_{5k-6}\}$ is the only minimum co-isolated locating dominating set of $P_{5(k-1)}$ with |D|=2(k-1) and γ_{Dcild} $(P_{5(k-1)})=1$. Let n=k. Consider the path P_{5k} on 5k vertices. Let D'=D $\cup\{v_{5k-3},v_{5k-1}\}$ is a co-isolated locating dominating set of P_{5n} . Also, |D'|=|D|+2=2k. Therefore, D' is the only minimum co-isolated locating dominating set of P_{5k} . It can be proved that, if $v_1,v_{5k}\in D'$ or $v_2,v_{5k}\in D'$, then D' will not be a minimum co-isolated locating dominating set of P_{5k} . Therefore, D' is the unique $\gamma_{cild}-set$ of P_{5k} . Hence, $\gamma_{Dcild}(P_{5k})=1$.

By induction hypothesis, $\gamma_{\text{Deild}}(P_{5n}) = 1$, for $n \ge 1$.

Theorem: 3.3 There are exactly n+1 minimum co-isolated locating dominating sets of P_{5n+1} containing v_1 and v_{5n+1} with the labellings $v_1, v_2, v_3, ..., v_{5n-1}, v_{5n}, v_{5n+1}$ where $n \ge 1$.

Proof: Let the labellings of vertices of P_{5n+1} be $v_1, v_2, v_3, ..., v_{5n-1}, v_{5n}, v_{5n+1}$. The Theorem is proved by the method of induction on n. For n = 1, $D_1 = \{v_1, v_3, v_6\}$ and $D_2 = \{v_1, v_4, v_6\}$ are the only minimum co – isolated locating dominating sets of P_6 containing v_1 and v_6 since, $|D_1| = |D_2| = 3 = 2\left\lfloor \frac{5n+1}{5} \right\rfloor + 1$, (Theorem 2.5.).

For n=2, $D_1=\{v_1,\,v_3,\,v_6,\,v_8,\,v_{11}\}$, $D_2=\{v_1,\,v_4,\,v_6,\,v_8,\,v_{11}\}$ and $D_3=\{v_1,\,v_4,\,v_6,\,v_9,\,v_{11}\}$ are the only minimum comisolated locating dominating sets of P_{11} containing v_1 and v_{11} , since $|D_1|=|D_2|=|D_3|=5=2\left\lfloor\frac{5n+1}{5}\right\rfloor+1$. Therefore, the result is true for n=1 and n=2. Assume that the theorem holds when n=k-1. That is, the result holds for all paths having 5(k-1)+1 vertices. Let $D_1,\,D_2,\,D_3,\,\ldots,\,D_k$ be the only k minimum comisolated locating dominating sets of $P_{5(k-1)+1}$ containing v_1 and v_{5k-4} with $|D_i|=2\left\lfloor\frac{5(k-1)+1}{5}\right\rfloor+1$. Let n=k. Consider the path P_{5k+1} .

Then $D_i' = D_i \cup \{v_{5k-2}, v_{5k+1}\}; i = 1, 2, 3, ..., k$ are the minimum co – isolated locating dominating sets of P_{5k} since, $|D_i'| = |D_i| + 2 = 2\left\lfloor \frac{5k}{5} \right\rfloor + 1$.

In addition, $D_{k+1}' = \{v_1, v_4, v_6, v_9, v_{11}, ..., v_{5k-1}, v_{5k+1}\}$ is also a minimum co – isolated locating dominating sets of P_{5k+1} containing v_1 and v_{5k+1} such that $D_{k+1}' \neq D_i'$; i = 1, 2, 3, ..., k. Therefore, there are k+1 minimum co – isolated locating dominating sets of P_{5k+1} containing v_1 and v_{5k+1} . By induction hypothesis, there are exactly n+1 minimum co – isolated locating dominating sets of P_{5n+1} containing v_1 and v_{5n+1} with the labellings $v_1, v_2, v_3, ..., v_{5n-1}, v_{5n}, v_{5n+1}$, for all $n \geq 1$.

Theorem: 3.4 There are exactly $\frac{n(n+3)}{2}$ minimum co – isolated locating dominating sets of P_{5n+1} containing v_1 and v_{5n} with the labellings v_1 , v_2 , v_3 , ..., v_{5n-1} , v_{5n} , v_{5n+1} , where $n \ge 1$.

Proof: Let the labellings of vertices of P_{5n+1} be v_1 , v_2 , v_3 , ..., v_{5n-1} , v_{5n} , v_{5n+1} . The theorem is proved by the method of induction on n.

For n = 1, the sets $A_{11} = \{v_1, v_3, v_5\}$ and $A_{12} = \{v_1, v_4, v_5\}$ are the only minimum co – isolated locating dominating sets of P_6 containing v_1 and v_5 since, $|A_{11}| = |A_{12}| = 3 = 2 \left| \frac{5n+1}{5} \right| + 1$, (Theorem 2.5).

Let
$$\mathcal{D}_1 = \{A_{1,1}, A_{1,2}\}$$
 and $|\mathcal{D}_1| = 2 = \frac{n(n+3)}{2}$, where $n = 1$.

Let n = 2. In order to construct the minimum co – isolated locating dominating sets of P_{11} containing v_1 and v_{10} , the following sets are defined using $A_{1,1}$ and $A_{1,2}$.

Let
$$A_{2,1} = A_{1,1} \cup \{v_8, v_{10}\}; A_{2,2} = A_{1,2} \cup \{v_8, v_{10}\} \text{ and } B_{2,1} = (A_{1,1} - \{v_5\}) \cup \{v_6, v_8, v_{10}\}; B_{2,2} = (A_{1,2} - \{v_5\}) \cup \{v_6, v_8, v_{10}\}; B_{2,3} = (A_{1,2} - \{v_5\}) \cup \{v_6, v_9, v_{10}\}.$$

These are the only minimum co – isolated locating dominating sets of P_{11} containing v_1 and v_{10} since,

$$|A_{2,1}| = |A_{2,2}| = |B_{2,1}| = |B_{2,2}| = |B_{2,3}| = 5 = 2\left[\frac{5n+1}{5}\right] + 1.$$

Let
$$\mathcal{D}_2 = \{A_{2,1}, A_{2,2}, B_{2,1}, B_{2,2}, B_{2,3}\}$$
 and $|\mathcal{D}_2| = 5 = \frac{n(n+3)}{2}$, where $n = 2$.

Let n = 3. In order to construct the minimum co – isolated locating dominating sets of P_{16} containing v_1 and v_{15} , the following sets are defined using the sets in \mathcal{D}_2 .

Let
$$A_{3,1} = A_{2,1} \cup \{v_{13}, v_{15}\}; A_{3,2} = A_{2,2} \cup \{v_{13}, v_{15}\}; A_{33} = B_{2,1} \cup \{v_{13}, v_{15}\};$$

 $A_{3,4} = B_{2,2} \cup \{v_{13}, v_{15}\}; A_{3,5} = B_{2,3} \cup \{v_{13}, v_{15}\} \text{ and } B_{3,1} = (B_{2,1} - \{v_{10}\}) \cup \{v_{11}, v_{13}, v_{15}\};$
 $B_{3,2} = (B_{2,2} - \{v_{10}\}) \cup \{v_{11}, v_{13}, v_{15}\}; B_{3,3} = (B_{2,3} - \{v_{10}\}) \cup \{v_{11}, v_{13}, v_{15}\};$
 $B_{3,4} = (B_{2,3} - \{v_{10}\}) \cup \{v_{11}, v_{14}, v_{15}\}.$

These are the only minimum co – isolated locating dominating sets of P_{16} containing v_1 and v_{15} since,

$$|A_{3,i}| = |B_{2,j}| = 7 = 2 \left| \frac{5n+1}{5} \right| + 1$$
; i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4.

Let $\mathcal{D}_3 = \{A_{3,1}, A_{3,2}, A_{3,3}, A_{3,4}, A_{3,5}, B_{3,1}, B_{3,2}, B_{3,3}, B_{3,4}\}$ and $|\mathcal{D}_3| = 9 = \frac{n(n+3)}{2}$, where n = 3. Therefore, the result is true for n = 1, 2 and 3. Let n = k-1. Assume that the theorem holds for all paths having 5(k-1)+1 vertices. Let \mathcal{D}_{k-1} be the set of all minimum co – isolated locating dominating sets of $P_{5(k-1)+1}$ containing v_1 and $v_{5(n-1)}$.

Then,
$$\mathcal{D}_{k-1} = \{A_{(k-1),1}, A_{(k-1),2}, A_{(k-1),3}, \dots, A_{(k-1),r}, B_{(k-1),1}, B_{(k-1),2}, \dots, B_{(k-1),s}\}$$
, where $r = \frac{(k-2)(k+1)}{2}$, $s = k, k \ge 3$.

Also, $|\mathcal{D}_{k-1}| = r + s = \frac{(k-1)(k+2)}{2} = \frac{n(n+3)}{2}$, where n = k-1. and $|A_{(k-1),i}| = |B_{(k-1),j}| = 2\left\lfloor \frac{5(k-1)+1}{5} \right\rfloor + 1$; i = 1, 2, ..., r and j = 1, 2, ..., s. Let n = k. In order to construct the minimum co – isolated locating dominating set of P_{5k+1} containing v_1 and v_{5k} , the following sets are defined using the sets in \mathcal{D}_{k-1} .

Let \mathcal{D}_k be the set of all minimum co – isolated locating dominating sets of P_{5k+1} containing v_1 and v_{5k} .

Then,
$$\mathcal{D}_n = \{A_{k,1}, A_{k,2}, A_{k,3}, \ldots, A_{k,\ell}, B_{k,1}, B_{k,2}, \ldots, B_{k,m}\}$$
, where $\ell = \frac{(k-1)(k+2)}{2}$,
$$m = k+1 \ (k \geq 2) \ \text{and}$$

$$A_{k,i} = A_{(k-1),i} \cup \{v_{5k-2}, v_{5k}\}, \ i = 1, 2, \ldots, \ell-k, \ \text{and}$$

$$A_{k,j} = B_{(k-1),(j-r)} \cup \{v_{5k-2}, v_{5k}\}, \ j = (\ell-k+1), (\ell-k+2), \ldots, \ell.$$

$$B_{k,i} = (B_{(k-1),i} - \{v_{5k-5}\}) \cup \{v_{5k-4}, v_{5k-2}, v_{5k}\}; \ i = 1, 2, \ldots, m-1 \ \text{and}$$

$$B_{k,m} = (B_{(k-1),(m-1)} - \{v_{5k-5}\}) \cup \{v_{5k-4}, v_{5k-1}, v_{5k}\}.$$

S. Muthammai, N. Meenal* / The Number Of Minimum Co – Isolated Locating Dominating Sets Of Paths / IJMA- 6(5), May-2015.

Also, $|A_{k,i}| = |B_{k,j}| = 2\left\lfloor\frac{5k}{5}\right\rfloor + 1$; $i = 1, 2, ..., \ell$ and j = 1, 2, ..., m and $|\mathcal{D}_n| = \ell + m = \frac{k(k+3)}{2}$. By induction hypothesis, there are exactly $\frac{n(n+3)}{2}$ minimum co – isolated locating dominating sets of P_{5n+1} containing v_1 and v_{5n} with the labellings $v_1, v_2, v_3, ..., v_{5n-1}, v_{5n}, v_{5n+1}$, for all $n \ge 1$.

Theorem: 3.5 There are exactly $\frac{n(n+1)(n+5)}{6}$ minimum co – isolated locating dominating sets of P_{5n+1} containing v_2 and v_{5n} with the labellings $v_1, v_2, v_3, ..., v_{5n-1}, v_{5n}, v_{5n+1}$, where $n \ge 1$.

Proof: Let the labellings of vertices of P_{5n+1} be v_1 , v_2 , v_3 , ..., v_{5n-1} , v_{5n} , v_{5n+1} . The theorem is proved by the method of induction on n.

For n = 1, the sets $A_{1,1} = \{v_2, v_3, v_5\}$; $A_{1,2} = \{v_2, v_4, v_5\}$ are the only minimum co – isolated locating dominating sets of P_6 containing v_2 and v_5 , since $|A_{1,1}| = |A_{1,2}| = 3 = 2\left\lfloor \frac{5n+1}{5} \right\rfloor + 1$.

Let
$$\mathcal{D}_1 = \{A_{1,1}, A_{1,2}\}$$
. Then $|\mathcal{D}_1| = 2$.

For n = 2, the sets $A_{2,i} = A_{1,i} \cup \{v_8, v_{10}\}$; i = 1, 2 and $B_{2,i} = (A_{2,i} - v_5) \cup \{v_6, v_8, v_{10}\}$; i = 1, 2; $B_{2,3} = (A_{22} - \{v_5\}) \cup \{v_6, v_9, v_{10}\}$, $C_{2,1} = \{v_2, v_4, v_7, v_8, v_{10}\}$ and $E_{2,1} = \{v_2, v_4, v_7, v_9, v_{10}\}$ are the only minimum co – isolated locating dominating sets of P_{11} containing v_2 and v_{10} , since $|A_{2,i}| = |B_{2,j}| = |C_{2,1}| = |E_{2,1}| = 5 = 2 \left| \frac{5n+1}{5} \right| + 1$; i = 1, 2 and j = 1, 2, 3.

Let
$$\mathcal{D}_2 = \{A_{2,1}, A_{2,2}, B_{2,1}, B_{2,2}, B_{2,3}, C_{2,1}, E_{2,1}\}$$
. Then $|\mathcal{D}_2| = 7 = \frac{n(n+1)(n+5)}{6}$.

Let n = 3. In order to construct the minimum co – isolated locating dominating sets containing v_2 and v_{15} of P_{16} , the following sets are defined using the sets in \mathcal{D}_2 .

Let
$$A_{3,i} = A_{2,i} \cup \{v_{13}, v_{15}\}; i = 1, 2;$$

 $A_{3,j} = A_{2,(j-2)} \cup \{v_{13}, v_{15}\}; j = 3, 4, 5;$
 $A_{3,k} = C_{2,(k-5)} \cup \{v_{13}, v_{15}\}; k = 6, 7;$
 $B_{3,i} = (B_{2,i} - \{v_{10}\}) \cup \{v_{11}, v_{13}, v_{15}\}; i = 1, 2, 3;$
 $B_{3,4} = (B_{2,3} - \{v_{10}\}) \cup \{v_{11}, v_{14}, v_{15}\}$
 $C_{3,i} = (C_{2,i} - \{v_{10}\}) \cup \{v_{11}, v_{13}, v_{15}\}; i = 1, 2;$
 $E_{3,1} = (E_{2,1} - \{v_{10}\}) \cup \{v_{11}, v_{14}, v_{15}\};$
 $E_{3,2} = (E_{2,1} - \{v_{10}\}) \cup \{v_{12}, v_{14}, v_{15}\};$ and
 $E_{3,3} = (E_{3,2} - \{v_{14}\}) \cup \{v_{13}\}.$

These are the only minimum co – isolated locating dominating sets of P_{16} containing v_2 and v_{15} , since $|A_{3,i}| = |B_{3,j}| = |C_{3,k}| = |E_{3,t}| = 7 = 2\left\lfloor \frac{5n+1}{5} \right\rfloor + 1; i = 1, 2, ..., 7; j = 1, 2, 3, 4, k = 1, 2, and t = 1, 2, 3.$

Let $\mathcal{D}_3 = \{A_{31}, A_{32}, ..., A_{37}, B_{31}, B_{32}, B_{33}, B_{34}, C_{31}, C_{32}, E_{3,1}, E_{3,2}, E_{3,3}\}$. Then $|\mathcal{D}_3| = 16 = \frac{n(n+1)(n+5)}{6}$. Therefore the result is true for n = 1, 2 and 3.

Assume that the Theorem holds for n=k-1. That is, there are exactly $\frac{(k-1)k(k+4)}{6}$ minimum co – isolated locating dominating sets of $P_{5(k-1)+1}$ containing v_2 and $v_{5(k-1)}$ with the labellings $v_1, v_2, v_3, \ldots, v_{5(k-1)-1}, v_{5(k-1)}, v_{5(k-1)+1}$, where $k \ge 2$.

Let \mathcal{D}_{k-1} be the set of all minimum co – isolated locating dominating sets of $P_{5(k-1)+1}$ containing v_2 and $v_{5(k-1)}$.

Then
$$\mathcal{D}_{k-1} = \{A_{(k-1),1}, A_{(k-1),2}, A_{(k-1),3}, \ldots, A_{(k-1),r}, B_{(k-1),1}, B_{(k-1),2}, \ldots, B_{(k-1),k}, C_{(k-1),1}, C_{(k-1),2}, C_{(k-1),3}, \ldots, C_{(k-1),s}, E_{(k-1),1}, E_{(k-1),2}, \ldots, E_{(k-1)(k-1)}\}\}$$
, where $r = \frac{(k-2)(k-1)(k+3)}{6}$ and $s = \frac{k(k-3)}{2}$, where $k \ge 4$.

Also
$$|\mathcal{D}_{k-1}| = r + k + s + (k-1) = \frac{(k-1)k(k+4)}{6}$$
 and $|A_{(k-1),i}| = |B_{(k-1),j}| = |\mathcal{C}_{(k-1),p}| = |E_{(k-1),q}| = 2\left\lfloor \frac{5(k-1)+1}{5} \right\rfloor + 1; i = 1, 2, \ldots, r \; ; j = 1, 2, \ldots, n \; ; p = 1, 2, \ldots, s \; \text{and} \; q = 1, 2, \ldots, k-1.$

Let n = k. In order to construct the minimum co-isolated locating dominating sets of P_{5k+1} containing v_2 and v_{5k} , the following sets are defined using the sets in \mathcal{D}_{k-1} . Let \mathcal{D}_k be the set of all minimum co-isolated locating dominating sets of P_{5k+1} containing v_2 and v_{5k} . Then, $\mathcal{D}_k = \{A_{k,1}, A_{k,2}, A_{k,3}, ..., A_{k,l}, B_{k,1}, B_{k,2}, ..., B_{k,k+1}, C_{k,1}, C_{k,2}, ..., C_{k,m}, E_{k,1}, E_{k,2}, ..., E_{k,k}\}$, where $\ell = \frac{(k-1)k(k+4)}{6}$, $m = \frac{(k+1)(k-2)}{2}$,

$$\begin{array}{l} A_{n,\,i} = A_{(k-1),i} \ \cup \{v_{5k-2},v_{5k}\}, \ i=1,\,2,\,...,\,r; \\ A_{n,\,j} = B_{(k-1),(j-r)} \ \cup \{v_{5k-2},v_{5k}\}, \ j=r+1,\,r+2,\,...,\,r+k; \\ A_{n,\,t} = C_{(k-1),(t-r-k)} \ \cup \{v_{5k-2},v_{5k}\}, \ t=r+k+1,\,r+k+2,\,...,\,r+k+s \ (=\ell); \\ B_{k,\,i} = (B_{(k-1),i} - \{v_{5k-5}\}) \ \cup \{v_{5k-4},v_{5k-2},v_{5k}\}; \ i=1,\,2,\,...,\,k; \ \text{and} \\ B_{k,\,k+1} = (B_{(k-1),k} - \{v_{5k-5}\}) \ \cup \{v_{5k-4},v_{5k-1},v_{5k}\} \ \text{and} \\ C_{k,i} = (C_{(k-1),i} - \{v_{5k-5}\}) \ \cup \{v_{5k-4},v_{5k-2},v_{5k}\}; \ i=1,\,2,\,...,\,m \\ E_{k,h} = (E_{(k-1),h} - \{v_{5k-5}\}) \ \cup \{v_{5k-4},v_{5k-1},v_{5k}\}; \ h=1,\,2,\,...,\,k-2 \ ; \\ E_{k,(k-1)} = (E_{(k-1),(k-2)} - \{v_{5k-5}\}) \ \cup \{v_{5k-3},v_{5k-1},v_{5k}\}; \ \text{and} \\ E_{k,k} = (E_{k,(k-2)} - \{v_{5k-1}\}) \ \cup \{v_{5k-2}\} \end{array}$$

Also, $|A_{k,i}| = |B_{k,j}| = |C_{k,p}| = |E_{k,q}| = 2\left|\frac{k}{5}\right| + 1$; $i = 1, 2, ..., \ell$ and j = 1, 2, ..., k+1; p = 1, 2, ..., m and q = 1, 2, ..., k and $|\mathcal{D}_k| = \ell + k + 1 + m + k = \frac{k(k+1)(k+5)}{6}$. Therefore, there are $\frac{k(k+1)(k+5)}{6}$ minimum co – isolated locating dominating sets of P_{5k+1} containing v_2 and v_{5k} . The Theorem is true for n=k. By induction hypothesis, the theorem is true for all $n \ge 1$.

Theorem: 3.6 For any integer $n \ge 1$, $\gamma_{Deild}(P_{5n+1}) = \frac{(n+3)(n^2+9n+2)}{6}$.

Proof: $\gamma_{\text{Deild}}(P_{5n+1})$ is the sum of the number of minimum co – isolated locating dominating sets of P_{5n+1} containing

- (i) v_1 and v_{5n+1}
- (ii) v_1 and v_{5n}
- (iii) v_2 and v_{5n+1}
- (iv) v_2 and v_{5n}
- (a) For (i), the number of minimum co-isolated dominating sets of P_{5n+1} containing v_1 and v_{5n+1} is (n+1) by Theorem 3.3.
- (b) For (ii), the number of minimum co-isolated dominating sets of P_{5n+1} containing v_1 and v_{5n} is $\frac{n(n+3)}{2}$ by Theorem 3.4.
- (c) For (iii), the number of minimum co isolated locating dominating sets of P_{5n+1} containing v_2 and v_{5n+1} is same as that of minimum co – isolated locating dominating sets containing v_1 and v_{5n} and hence it is $\frac{n(n+3)}{n}$).
- (d) For (iv), the number of minimum co-isolated dominating sets of P_{5n+1} containing v_2 and v_{5n} is $\frac{n(n+1)(n+5)}{6}$, by

Hence,
$$\gamma_{Dcild}(P_{5n+1}) = \frac{(n+3)(n^2+9n+2)}{6}$$
.

Remark: 3.7 The Recurrence relation is given by

$$\begin{split} & \gamma_{\text{Dcild}}\left(P_{5n+1}\right) - \gamma_{\text{Dcild}}\left(P_{5(n-1)+1}\right) = \frac{(n+3)(n^2+9n+2)}{6} - \frac{(n+2)(n^2+7n-6)}{6} \,. \\ & = \frac{7n^2+21n+18}{6} \,. \\ & \text{Therefore, } \gamma_{\text{Dcild}}\left(P_{5n+1}\right) = \gamma_{\text{Dcild}}\left(P_{5n-4}\right) + \frac{7n^2+21n+18}{6}; \, n \geq 2. \end{split}$$

In the following, the number of minimum co-isolated locating dominating sets of P_{5n+2} is found.

Theorem: 3.8 There is no minimum co – isolated locating dominating set of P_{5n+2} containing v_1 and v_{5n+2} with the labellings $v_1, v_2, v_3, ..., v_{5n}, v_{5n+1}, v_{5n+2}$, where $n \ge 1$.

Proof: On the contrary, let D be a minimum co – isolated locating dominating set of P_{5n+2} containing v_1 and v_{5n+2} with the labellings $v_1, v_2, v_3, ..., v_{5n}, v_{5n+1}, v_{5n+2}$. Then, $|D| = 2\left[\frac{5n+2}{5}\right] + 1$ (By Theorem 2.5.) and $D' = D - \{v_1, v_{5n+2}\}$ will be a minimum co – isolated locating dominating set of P_{5n} with the labellings $v_3, v_4, v_5, \ldots, v_{5n-1}, v_{5n}$. $|D^{'}| = 2 \left| \frac{5n+2}{5} \right| - 1$. Therefore, $\gamma_{\text{cild}}(P_{5n}) \le 2\left\lfloor \frac{5n+2}{5} \right\rfloor - 1$. But, $\gamma_{\text{cild}}(P_{5n}) = 2\left\lfloor \frac{5n+2}{5} \right\rfloor$, which is a contradiction. Hence, there is no minimum co – isolated locating dominating set of P_{5n+2} containing v_1 and v_{5n+2} .

Theorem: 3.9 There is exactly one minimum co – isolated locating dominating set of P_{5n+2} containing v_2 and v_{5n+2} with the labellings $v_1, v_2, v_3, ..., v_{5n}, v_{5n+1}, v_{5n+2}$, where $n \ge 1$.

Proof: Clearly, $D = \{v_2, v_4, v_7, ..., v_{5n-1}, v_{5n+2}\}$ is a minimum co – isolated locating dominating set of P_{5n+2} containing v_2 and v_{5n+2} , which proves the existence and $|D| = 2\left[\frac{5n+2}{5}\right] + 1$. To prove the uniqueness, Let $D' = D - \{v_{5n+2}\}$. D' is a minimum co – isolated locating dominating set of P_{5n} with the labellingss $v_1, v_2, v_3, ..., v_{5n}$, since

 $|D'| = |D| - 1 = 2 \left\lfloor \frac{5n+2}{5} \right\rfloor = \gamma_{cild} (P_{5n})$. But by Theorem 3.2, D' is the unique minimum co – isolated locating dominating set of P_{5n} and hence D is unique.

Theorem: 3.10 There are exactly n minimum co – isolated locating dominating sets of P_{5n+2} containing v_2 and v_{5n+1} with the labellings v_1 , v_2 , v_3 , ..., v_{5n} , v_{5n+1} , v_{5n+2} , where $n \ge 1$.

Proof: Let the labellings of vertices of P_{5n+2} be v_1 , v_2 , v_3 , ..., v_{5n-1} , v_{5n} , v_{5n+2} . The theorem is proved by the method of induction on n. For n=1, $A_{1,1}=\{v_2, v_4, v_6\}$ is the only minimum co – isolated locating dominating set of P_7 containing v_2 and v_6 , since, $|A_{1,1}|=3=2\left\lfloor\frac{5n+2}{5}\right\rfloor+1$. Let $\mathcal{D}_1=\{A_{1,1}\}$ and $|\mathcal{D}_1|=1=n$. Let n=2. In order to construct the minimum co – isolated locating dominating sets of P_{12} containing v_2 and v_{11} , the following sets are defined using \mathcal{D}_1 . Let $A_{2,1}=A_{1,1}\cup\{v_9, v_{11}\}$; and $A_{2,1}=\{A_{1,1}-\{v_6\}\}\cup\{v_7, v_9, v_{11}\}$. These are the only minimum co – isolated locating dominating sets of P_{12} containing v_2 and v_{11} , since, $A_{2,1}=|B_{2,1}|=5=2\left\lfloor\frac{5n+2}{5}\right\rfloor+1$. Let $\mathcal{D}_2=\{A_{2,1}, B_{2,1}\}$ and $|\mathcal{D}_2|=2=n$. Let $v_2=\{A_{2,1}, B_{2,1}\}$ and $v_3=\{A_{2,1}, A_{2,1}\}$ and $v_4=\{A_{2,1}, A_{2,1}\}$

Let
$$A_{3,1} = A_{2,1} \cup \{v_{14}, v_{16}\}; A_{3,2} = B_{2,1} \cup \{v_{14}, v_{16}\} \text{ and } B_{3,1} = (B_{2,1} - \{v_{11}\}) \cup \{v_{12}, v_{14}, v_{16}\}.$$

These are the only minimum co – isolated locating dominating sets of P_{17} containing v_2 and v_{16} , since, $|A_{3,i}| = |B_{31}| = 7 = 2 \left| \frac{5n+2}{5} \right| + 1$; i = 1, 2, where n = 3.

Let $\mathcal{D}_3=\{A_{3,1},A_{3,2},B_{3,1}\}$ and $|\mathcal{D}_3|=3=n$. Therefore, the result is true for n=1,2 and 3. Assume that the theorem holds for n=k-1. That is, there are exactly k-1 minimum co – isolated locating dominating sets of $P_{5(k-1)+2}$ containing v_2 and $v_{5(k-1)+1}$ with the labellings $v_1,v_2,v_3,...,v_{5n},v_{5(k-1)+1},v_{5(k-1)+2}$, where $k\geq 4$. Let \mathcal{D}_{k-1} be the set of all minimum co – isolated locating dominating sets of $P_{5(k-1)+2}$ containing v_2 and $v_{5(k-1)+1}$.

Also, $\mathcal{D}_{k-1} = \{A_{(k-1),1}, A_{(k-1),2}, A_{(k-1),3}, \ldots, A_{(k-1),(k-2)}, B_{(k-1),1}\}$, $|\mathcal{D}_{k-1}| = k-1$ and $|A_{(k-1),i}| = |B_{(k-1),1}| = 2\left\lfloor \frac{5(k-1)+2}{5} \right\rfloor + 1$; $i=1,2,\ldots,(k-1)$. The result is to be proved, when n=k. In order to construct the minimum co – isolated locating dominating sets of P_{5k+2} containing v_2 and v_{5k+1} , the following sets are defined using the sets in \mathcal{D}_{k-1} . Let \mathcal{D}_k be the set of all minimum co – isolated locating dominating set of P_{5k+1} containing v_2 and v_{5k+1} .

Then,
$$\mathcal{D}_{k} = \{A_{k,1}, A_{k,2}, A_{k,3}, ..., A_{k,(k-1)}, B_{k,1}\}$$
 and $A_{k,i} = A_{(k-1),i} \cup \{v_{5k-1}, v_{5k+1}\}; i = 1, 2, ..., (k-2)$ and $A_{k,(k-1)} = B_{(k-1),1} \cup \{v_{5k-1}, v_{5k+1}\}$ and $B_{k,1} = \{B_{(k-1),1} - \{v_{5k-4}\}\} \cup \{v_{5k-3}, v_{5k-1}, v_{5k+2}\}.$

Also, $|A_{k,i}| = |B_{k,1}| = 2\left\lfloor\frac{5k+2}{5}\right\rfloor + 1; i = 1, 2, ..., (k-1)$ and $|\mathcal{D}_k| = k$. Therefore, there are exactly k minimum co-isolated locating dominating sets of P_{5k+2} containing v_2 and v_{5k+1} with the labellings $v_1, v_2, v_3, ..., v_{5k}, v_{5k+1}, v_{5k+2}$. By induction hypothesis, the theorem is proved for all $n \ge 1$.

Theorem: 3.11 For any integer $n \ge 1$, $\gamma_{Doild}(P_{5n+2}) = n + 2$.

Proof: $\gamma_{\text{Dcild}}(P_{5n+2})$ is the sum of the number of minimum co – isolated locating dominating sets of P_{5n+2} containing

- (i) v_1 and v_{5n+2}
- (ii) v_2 and v_{5n+2}
- (iii) v_1 and v_{5n+1}
- (iv) v_2 and v_{5n+1}
- (a) For (i), there is no minimum co-isolated dominating sets of P_{5n+2} containing v_1 and v_{5n+2} , by Theorem 3.8.
- (b) For (ii), the number of minimum co-isolated dominating sets of P_{5n+2} containing v_2 and v_{5n+2} is 1, by Theorem 3.9.
- (c) For (iii), the number of minimum co isolated locating dominating sets of P_{5n+2} containing v_1 and v_{5n+1} is same as that of minimum co isolated locating dominating sets containing v_2 and v_{5n+2} and hence it is 1.
- (d) For (iv), the number of minimum co-isolated dominating sets of P_{5n+2} containing v_2 and v_{5n+1} is n, By Theorem 3.10. Hence, $\gamma_{Dcild}(P_{5n+2}) = n+2$.

In the following, the number of minimum co-isolated locating dominating sets of P_{5n+3} is found.

Theorem: 3.12 There are exactly $\frac{n^2+5n+2}{2}$ minimum co – isolated locating dominating sets of P_{5n+3} containing v_1 and v_{5n+3} with the labellings $v_1, v_2, v_3, ..., v_{5n+2}, v_{5n+3}$, where $n \ge 2$.

Proof: Let the labellings of vertices of P_{5n+3} be v_1 , v_2 , v_3 , ..., v_{5n+2} , v_{5n+3} . The theorem is proved by the method of induction on n. For n=1, $A_{1,1}=\{v_1, v_3, v_5, v_8\}$; $A_{1,2}=\{v_1, v_3, v_6, v_8\}$; $A_{1,3}=\{v_1, v_3, v_6, v_8\}$; $A_{1,4}=\{v_1, v_4, v_6, v_8\}$ are the only minimum co – isolated locating dominating sets of P_8 containing v_1 and v_8 , since, $|A_{1,i}|=4=2\left\lfloor\frac{5n+3}{5}\right\rfloor+2$, i=1,2, 3, 4, by Theorem 2.5. Let $\mathcal{D}_1=\{A_{1,1}, A_{1,2}, A_{1,3}\}$ and $|\mathcal{D}_1|=4$. Let n=2. In order to construct the minimum co – isolated locating dominating sets of P_{13} containing v_1 and v_{13} , the following sets are defined using the sets in \mathcal{D}_1 .

Let $A_{2,i} = A_{1,i} \cup \{v_{10}, v_{13}\}; i = 1, 2, 3, 4 \text{ and } A_{2,5} = (A_{1,4} - \{v_8\}) \cup \{v_{9,} v_{10}, v_{13}\};$ $B_{2,1} = A_{1,3} \cup \{v_{11}, v_{13}\}; B_{2,2} = A_{1,4} \cup \{v_{11}, v_{13}\} \text{ and } B_{2,3} = (A_{1,4} - \{v_8\}) \cup \{v_{9,} v_{11}, v_{13}\}. \text{ These are the only minimum co} - \text{isolated locating dominating sets of } P_{13} \text{ containing } v_1 \text{ and } v_{13}, \text{ since } |A_{2,i}| = |B_{2,j}| = 6 = 2 \left\lfloor \frac{5n+3}{5} \right\rfloor + 2; i = 1, 2, ..., 5 \text{ and } j = 1, 2, 3.$

Let $\mathcal{D}_2 = \{A_{2,1}, A_{2,2}, ..., A_{2,5}, B_{2,1}, B_{2,2}, B_{2,3}\}$ and $|\mathcal{D}_2| = 8 = \frac{n^2 + 5n + 2}{2}$. Let n = 3. In order to construct the minimum co-isolated locating dominating sets of P_{18} containing v_1 and v_{18} , the following sets are defined using the sets in \mathcal{D}_2 .

Let
$$A_{3,i} = A_{2,i} \cup \{v_{15}, v_{18}\}$$
, for $i = 1, 2, ..., 5$, and $A_{3,j} = B_{2,(j-5)} \cup \{v_{15}, v_{18}\}$, for $j = 6, 7, 8$ and $A_{3,9} = B_{2,3} - \{v_{13}\} \cup \{v_{14}, v_{15}, v_{18}\}$; $B_{3,i} = B_{2,i} \cup \{v_{16}, v_{18}\}$; $i = 1, 2, 3$; $B_{3,4} = (B_{2,3} - \{v_{13}\}) \cup \{v_{14}, v_{16}, v_{18}\}$.

These are the only minimum co – isolated locating dominating sets of P_{18} containing v_1 and v_{18} , since, $|A_{3,i}| = |B_{3,j}| = 8 = 2 \left| \frac{5n+3}{5} \right| + 2$; i = 1, 2, ..., 9 and j = 1, 2, ..., 4.

Let $\mathcal{D}_3=\{A_{3,1},A_{3,2},...,A_{3,9},B_{3,1},B_{3,2},B_{3,3},B_{3,4}\}$ and $|\mathcal{D}_3|=13=\frac{n^2+5n+2}{2}$, where n=3. Therefore, the result is true for n=1,2 and 3. Assume that the theorem holds for n=k-1. That is, there are exactly $\frac{(k-1)^2+5(k-1)+2}{2}=\frac{k^2+3k-2}{2}$ minimum co—isolated locating dominating sets of $P_{5(k-1)+3}$ containing v_1 and $v_{5(k-1)+3}$ with the labellings v_1 , v_2 , v_3 , ..., $v_{5(k-1)+2}$, $v_{5(k-1)+3}$. Let \mathcal{D}_{k-1} be the set of all minimum co—isolated locating dominating sets of $P_{5(k-1)+3}$ containing v_1 and $v_{5(k-1)+3}$.

Then,
$$\mathcal{D}_{k-1} = \{A_{(k-1),1}, A_{(k-1),2}, A_{(k-1),3}, \ldots, A_{(k-1),r}, B_{(k-1),1}, B_{(k-1),2}, \ldots, B_{(k-1),s}\}$$
 where $r = \frac{(k-1)(k+2)}{2}$; $s = k, k \ge 2$.

Also, $|\mathcal{D}_{k-1}| = \frac{k^2 + 3k - 2}{2}$ and $|A_{(k-1),i}| = |B_{(k-1),j}| = 2\left[\frac{5(k-1) + 3}{5}\right] + 2$, i = 1, 2, ..., r and j = 1, 2, ..., s. The theorem is to be proved for n = k. In order to construct the minimum co – isolated locating dominating sets of P_{5k+3} containing v_1 and v_{5k+3} , the following sets are defined using the sets in \mathcal{D}_{k-1} . Let \mathcal{D}_k be the set of all minimum co – isolated locating dominating sets of P_{5k+3} containing v_1 and v_{5k+3} .

```
Then, \mathcal{D}_k = \{A_{k,1}, A_{k,2}, A_{k,3}, \ldots, A_{k,l}, B_{k,1}, B_{k,2}, \ldots, B_{k,m}\}, where l = \frac{k(k+3)}{2} and m = k+1. A_{k,i} = A_{(k-1),i} \cup \{v_{5k}, v_{5k+3}\}, for i = 1, 2, \ldots, r; A_{k,j} = B_{(k-1),(j-r)} \cup \{v_{5k}, v_{5k+3}\}, for j = r+1, r+2, \ldots, r+s \ (=l); A_{k,(l+1)} = (B_{(k-1),k} - \{v_{5k-3}\}) \cup \{v_{5k-2}, v_{5k}, v_{5k+3}\}; B_{k,i} = B_{(k-1),i} \cup \{v_{5k+1}, v_{5k+3}\}; i = 1, 2, \ldots, k; B_{k,(k+1)} = (B_{(k-1),k} - \{v_{5k-3}\}) \cup \{v_{5k-2}, v_{5k+1}, v_{5k+3}\}.
```

Also, $|A_{k,i}| = |B_{k,j}| = 2\left[\frac{5k+3}{5}\right] + 2; \ i=1,2,\ldots,l; \ j=1,2,\ldots,m$ and $|\mathcal{D}_k| = l+m = \frac{k^2+5k+2}{2}$. The theorem is proved for n=k. By induction hypothesis, there are exactly $\frac{n^2+5n+2}{2}$ minimum co – isolated locating dominating sets of P_{5n+3} containing v_1 and v_{5n+3} with the labellings $v_1, v_2, v_3, \ldots, v_{5n+2}, v_{5n+3}$, for all $n \geq 2$.

Theorem: 3.13 There are exactly $\frac{n^2+21n-24}{2}$ minimum co – isolated locating dominating sets of P_{5n+3} containing v_1 and v_{5n+2} with the labellings $v_1, v_2, v_3, ..., v_{5n+2}, v_{5n+3}$, where $n \ge 3$.

Proof: Let the labellings of vertices of P_{5n+3} be v_1 , v_2 , v_3 , ..., v_{5n+2} , v_{5n+3} . The theorem is proved by the method of induction on n.

For n = 1, $A_{1,1} = \{v_1, v_2, v_5, v_7\}$; $A_{1,2} = \{v_1, v_3, v_5, v_7\}$; $A_{1,3} = \{v_1, v_3, v_6, v_7\}$ are the only minimum co – isolated locating dominating sets of P_8 containing v_1 and v_7 , since $|A_{1,i}| = 4 = 2 \left| \frac{5n+3}{5} \right| + 2$, by Theorem 2.5.

Let $\mathcal{D}_1 = \{A_{1,1}, A_{1,2}, A_{1,3}\}$ and $|\mathcal{D}_1| = 3$. Let n = 2. In order to construct the minimum co – isolated locating dominating sets of P_{13} containing v_1 and v_{12} , the following sets are defined using \mathcal{D}_1 .

```
Let A_{2,i} = A_{1,i} \cup \{v_{10}, v_{12}\}; i = 1, 2, 3 and B_{2,1} = (A_{1,2} - \{v_7\}) \cup \{v_8, v_{10}, v_{12}\}; B_{2,2} = (A_{1,3} - \{v_7\}) \cup \{v_8, v_{10}, v_{12}\}; B_{2,3} = (A_{1,1} - \{v_2, v_7\}) \cup \{v_4, v_8, v_{10}, v_{12}\}; B_{2,4} = (A_{1,1} - \{v_2, v_5, v_7\}) \cup \{v_4, v_6, v_8, v_{10}, v_{12}\}; B_{2,5} = (A_{1,2} - \{v_2, v_5, v_7\}) \cup \{v_4, v_6, v_9, v_{10}, v_{12}\}; B_{2,6} = (A_{13} - \{v_7\}) \cup \{v_6, v_8, v_{11}, v_{12}\}; B_{2,7} = (B_{2,4} - \{v_{10}\}) \cup \{v_{11}, v_{12}\} \text{ and } B_{2,8} = (B_{2,5} - \{v_{10}\}) \cup \{v_{11}, v_{12}\};
```

These are the only minimum co – isolated locating dominating sets of P_{13} containing v_1 and v_{12} , since $|A_{2,i}| = |B_{2,j}| = 6 = 2 \left| \frac{5n+3}{5} \right| + 2$; i = 1, 2, 3 and j = 1, 2, ..., 8.

Let
$$\mathcal{D}_2 = \{A_{2,1}, A_{2,2}, A_{2,3}, B_{2,1}, B_{2,2}, \dots, B_{2,8}\}$$
 and $|\mathcal{D}_2| = 11 = \frac{n^2 + 21n - 24}{2}$, where $n = 2$.

Let n = 3. In order to construct the minimum co – isolated locating dominating set of P_{18} containing v_1 and v_{17} , the following sets are defined using the sets in \mathcal{D}_2 .

$$\begin{array}{l} A_{3,i} = A_{2,i} \ \cup \{v_{15}, v_{17}\}, \ \text{for } i = 1, 2, 3; \\ A_{3,j} = B_{2,(j-3)} \ \cup \{v_{15}, v_{17}\}, \ \text{for } j = 4, 5, ..., 11; \\ B_{3,i} = B_{2,i} - \{v_{12}\} \cup \{v_{13}, v_{15}, v_{17}\}; \ i = 1, 2, ..., 8; \\ B_{3,j} = B_{2,(j-3)} - \{v_{12}\} \cup \{v_{13}, v_{16}, v_{17}\}; \ j = 9, \ 10, \ 11; \ \text{and} \ B_{3,12} = (B_{2,8} - \{v_{12}\}) \ \cup \{v_{14}, v_{15}, v_{17}\}; \\ B_{3,13} = (B_{2,8} - \{v_{12}\}) \ \cup \{v_{14}, v_{16}, v_{17}\}. \end{array}$$

These are the only minimum co – isolated locating dominating set of P_{18} containing v_1 and v_{18} , since $|A_{3,i}| = |B_{3,j}| = 8 = 2 \left| \frac{5n+3}{5} \right| + 2$; i = 1, 2, ..., 11 and j = 1, 2, ..., 13.

Let
$$\mathcal{D}_3 = \{A_{3,1}, A_{3,2}, ..., A_{3,11}, B_{3,1}, B_{3,2}, ..., B_{3,13}\}$$
 and $|\mathcal{D}_3| = 24 = \frac{n^2 + 21n - 24}{2}$, where $n = 3$.

Let n = 4. In order to construct the minimum co – isolated locating dominating sets of P_{21} containing v_1 and v_{20} , the following sets are defined using the sets in \mathcal{D}_3 .

Let
$$A_{4,i} = A_{3,i} \cup \{v_{20}, v_{22}\}$$
, for $i = 1, 2, ..., 11$;
 $A_{4,j} = B_{3,(j-11)} \cup \{v_{20}, v_{22}\}$, for $j = 12, 13, ..., 24$;
 $B_{4,i} = B_{3,i} - \{v_{17}\} \cup \{v_{18}, v_{20}, v_{22}\}$, for $i = 1, 2, ..., 13$;
 $B_{4,14} = B_{3,13} - \{v_{18}\} \cup \{v_{19}, v_{20}, v_{22}\}$.

These are the only minimum co – isolated locating dominating set of P_{21} containing v_1 and v_{20} , since $|A_{3,i}| = |B_{3,j}| = 8 = 2\left\lfloor \frac{5n+3}{5} \right\rfloor + 2$; i = 1, 2, ..., 24 and j = 1, 2, ..., 14.

Let $\mathcal{D}_4=\{A_{4,1},A_{4,2},\ldots,A_{4,24},B_{4,1},B_{4,2},\ldots,B_{4,14}\}$ and $|\mathcal{D}_4|=38=\frac{n^2+21n-24}{2}$, where n=4. Therefore, the result is true for n=2,3 and 4. Assume that the theorem holds for n=k-1. That is, there are exactly $\frac{(k-1)^2+21(k-1)-24}{2}$ minimum co-isolated locating dominating sets of $P_{5(k-1)+3}$ containing v_1 and $v_{5(k-1)+2}$ with the labellings $v_1,v_2,v_3,\ldots,v_{5(k-1)+2},v_{5(k-1)+3},v_{5(k-1)+3}$ where $k\geq 4$.

Let \mathcal{D}_{k-1} be the set of all minimum co – isolated locating dominating sets of $P_{5(k-1)+3}$ containing v_1 and $v_{5(k-1)+2}$.

Then, $\mathcal{D}_{k-1} = \{A_{(k-1),1}, A_{(k-1),2}, A_{(k-1),3}, \dots, A_{(k-1),r}, B_{(k-1),1}, B_{(k-1),2}, B_{(k-1),s}\}$ and $r = \frac{k^2 + 17k - 62}{2}$; s = (k-1) + 10 = k + 9, $k \ge 4$. Also, $|\mathcal{D}_{k-1}| = \frac{k-1)^2 + 21(k-1) - 24}{2} = \frac{k^2 + 19k - 44}{2}$; and $|A_{(k-1),i}| = |B_{(k-1),j}| = 2\left[\frac{5(k-1) + 3}{5}\right] + 2$; i = 1, 2, ..., r and j = 1, 2, ..., s. The theorem is to be proved for n = k. In order to construct the minimum co – isolated locating dominating set of P_{5k+3} containing v_1 and v_{5k+2} , the following sets are defined using the sets in \mathcal{D}_{k-1} . Let \mathcal{D}_k be the set of all minimum co – isolated locating dominating sets of P_{5k+3} containing v_1 and v_{5k+2} .

Then,
$$\mathcal{D}_k = \{A_{k,l}, A_{k,2}, A_{k,3}, ..., A_{k,l}, B_{k,l}, B_{k,2}, ..., B_{k,m}\}$$
, where $l = \frac{n^2 + 19n - 44}{2}$ and $m = k + 10$. $A_{k,i} = A_{(k-1),i} \cup \{v_{5k}, v_{5k+2}\}, i = 1, 2, ..., r;$ $A_{k,j} = B_{(k-1),(j-r)} \cup \{v_{5k}, v_{5k+2}\}, j = r+1, r+2, ..., r+s \ (= l);$ $B_{k,i} = (B_{(k-1),i} - \{v_{5k-3}\}) \cup \{v_{5k-2}, v_{5k}, v_{5k+2}\}; i = 1, 2, ..., s;$ $B_{k,(s+1)} = (B_{(k-1),s} - \{v_{5k-2}\}) \cup \{v_{5k-1}, v_{5k}, v_{5k+2}\}.$

Also, $|A_{k,i}| = |B_{k,j}| = 2\left[\frac{5k+3}{5}\right] + 2$; i = 1, 2, ..., l; j = 1, 2, ..., m and $|\mathcal{D}_k| = l + m = \frac{k^2 + 21k - 24}{2}$. The result is true for n = k. By induction hypothesis, there are exactly $\frac{n^2 + 21n - 24}{2}$ minimum co – isolated locating dominating sets of P_{5n+3} containing v_1 and v_{5n+2} with the labellings $v_1, v_2, v_3, ..., v_{5n+2}, v_{5n+3}$, where $n \ge 3$.

Theorem: 3.14 There are exactly $(n + 1)^2$ minimum co – isolated locating dominating sets of P_{5n+3} containing v_2 and v_{5n+2} with the labellings $v_1, v_2, v_3, \ldots, v_{5n+2}, v_{5n+3}$, where $n \ge 3$.

Proof: Let the labellings of vertices of P_{5n+3} be $v_1, v_2, v_3, ..., v_{5n+2}, v_{5n+3}$.

For n=2, $A_{2,1}=\{v_2, v_4, v_7, v_9, v_{10}, v_{12}\}$; $A_{2,2}=\{v_2, v_4, v_7, v_9, v_{11}, v_{12}\}$; $A_{2,3}=\{v_2, v_4, v_7, v_8, v_{10}, v_{12}\}$ and $A_{2,4}=\{v_2, v_4, v_7, v_8, v_{11}, v_{12}\}$ are the only minimum co – isolated locating dominating sets of P_{13} containing v_2 and v_{12} , since $|A_{2,i}|=6=2\left|\frac{5n+3}{5}\right|+2$ (By Theorem 2.5.). Let $\mathcal{D}_2=\{A_{2,1}, A_{2,2}, A_{2,3}, A_{2,4}\}$ and $|\mathcal{D}_2|=4$.

Let n = 3. In order to construct the minimum co – isolated locating dominating sets of P_{18} containing v_2 and v_{17} , the following sets are defined using \mathcal{D}_2 .

Let
$$A_{3,i} = A_{2,i} \cup \{v_{15}, v_{17}\}$$
; and $B_{3,i} = (A_{2,i} - \{v_{12}\}) \cup \{v_{13}, v_{15}, v_{17}\}$; $i = 1, 2, 3, 4$; $B_{3,5} = (A_{2,2} - \{v_{12}\}) \cup \{v_{13}, v_{16}, v_{17}\}$; $B_{3,6} = (A_{2,4} - \{v_{12}\}) \cup \{v_{13}, v_{16}, v_{17}\}$; $B_{3,7} = (A_{2,2} - \{v_{12}\}) \cup \{v_{14}, v_{15}, v_{17}\}$; $B_{3,8} = (A_{2,2} - \{v_{12}\}) \cup \{v_{14}, v_{16}, v_{17}\}$.

Let
$$D = \{v_2, v_4, v_7, v_9\}.$$

$$B_{3,9} = D \cup \{ v_{12}, v_{13}, v_{15}, v_{17} \}; B_{3,10} = D \cup \{ v_{12}, v_{13}, v_{16}, v_{17} \}; B_{3,11} = D \cup \{ v_{12}, v_{14}, v_{15}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{16}, v_{17} \}; B_{3,11} = D \cup \{ v_{12}, v_{14}, v_{15}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{16}, v_{17} \}; B_{3,11} = D \cup \{ v_{12}, v_{13}, v_{15}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{16}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{13}, v_{15}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{16}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{15}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{16}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{15}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{16}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{15}, v_{17} \}; B_{3,12} = D \cup \{ v_{12}, v_{14}, v_{16}, v_{17} \}; B_{3,$$

These are the only minimum co – isolated locating dominating sets of P₁₈ containing v₂ and v₁₇, since

$$|A_{2,i}| = |B_{2,j}| = 6 = 2 \left\lfloor \frac{5n+3}{5} \right\rfloor + 2$$
; $i = 1, 2, ..., 4$ and $j = 1, 2, ..., 12$. Let $\mathcal{D}_3 = \{A_{3,1}, ..., A_{3,4}, B_{3,1}, B_{3,2}, ..., B_{3,12}\}$ and $|\mathcal{D}_3| = 16 = (n+1)^2$.

The theorem is proved by the method of induction on n, where $n \ge 4$.

Let n = 4. In order to construct the minimum co – isolated locating dominating sets of P_{23} containing v_2 and v_{22} , the following sets are defined using the sets in \mathcal{D}_3 .

Let
$$A_{4,i} = A_{3,i} \cup \{v_{20}, v_{22}\}, i = 1, 2, 3, 4;$$

 $A_{4,j} = B_{3,(j-4)} \cup \{v_{20}, v_{22}\}, j = 5, 6, ..., 16;$

Let
$$S = \{v_{17}\} \cup \{v_{20}, v_{22}\};$$

$$B_{4,1} = S \cup B_{3,1}; B_{4,2} = S \cup B_{3,3}; B_{4,3} = S \cup B_{3,4};$$

$$B_{4,4} = S \cup B_{39}; \ B_{4,5} = S \cup B_{3,10}; B_{4,6} = S \cup B_{3,11}; B_{47} = S \cup B_{3,12};$$

$$B_{4,8} = \{v_2, v_4, v_7, v_8, v_{11}, v_{14}, v_{16}, v_{19}, v_{20}, v_{22}\};$$
 and

 $B_{4,9} = \{ v_{2,} v_{4}, v_{7} v_{8,} v_{11}, v_{14}, v_{16,} v_{19}, v_{21}, v_{22} \}$. These are the only minimum co – isolated locating dominating sets of P_{23} containing v_{2} and $v_{22,}$ since $|A_{4,i}| = |B_{4,j}| = 10 = 2 \left[\frac{5n+3}{5} \right] + 2$; i = 1, 2, ..., 16 and j = 1, 2, ..., 9.

Let $\mathcal{D}_4 = \{A_{4,1}, A_{4,2}, ..., A_{4,16}, B_{4,1}, B_{4,2}, ..., B_{4,9}\}$ and $|\mathcal{D}_4| = 25 = (n+1)^2$. Therefore, the result is true for n=4. Assume that the theorem holds for n=k-1. Let \mathcal{D}_{k-1} be the set of all minimum co – isolated locating dominating set of $P_{5(k-1)+3}$ containing v_2 and $v_{5(k-1)+2}$, then $\mathcal{D}_{k-1} = \{A_{(k-1),1}, A_{(k-1),2}, A_{(k-1),3}, ..., A_{(k-1),r}, B_{(k-1),1}, B_{(k-1),2}, ..., B_{(k-1),s}\}$, where

$$r=(k-1)^2;\ s=2(k-1)+1=2k-1,\ k\geq 5$$
. Also, $|\mathcal{D}_{k-1}|=k^2$ and $|A_{(k-1),j}|=|B_{(k-1),j}|=2\left\lfloor\frac{5(k-1)+3}{5}\right\rfloor+2;\ i=1,2,...,r$ and $j=1,2,...,s$. The theorem is to be proved for $n=k$. In order to construct the minimum co – isolated locating dominating set of P_{5k+3} containing v_2 and v_{5k+2} , the following sets are defined using the sets in \mathcal{D}_{k-1} . Let \mathcal{D}_k be the set of all minimum co – isolated locating dominating sets of P_{5k+3} containing v_2 and v_{5k+2} . Then,

$$\mathcal{D}_k = \{A_{k,1}, A_{k,2}, A_{k,3}, \dots, A_{k,l}, B_{k,1}, B_{k,2}, \dots, B_{k,m}\}, \text{ where } l = k^2 \text{ and } m = 2k + 1.$$

$$A_{k,i} = A_{(k-1),i} \cup \{v_{5k}, v_{5k+2}\}; i = 1, 2, ..., k^2;$$

$$B_{k,j} = (B_{(k-1),j} - \{v_{5k-3}\}) \cup \{v_{5k}, v_{5k+2}\}; j = 1, 2, ..., 2k-1;$$

The sets $B_{k,2k}$ and $B_{k,2k+1}$ are defined as follows.

If n is odd,
$$B_{k,2k} = \{v_2, v_4, v_7, v_9, v_{12}, v_{14}, v_{15}, v_{17}, ..., v_{5k}, v_{5k+2}\};$$

$$B_{k,2k+1} = \{v_2, v_4, v_7, v_9, v_{12}, v_{14}, v_{15}, v_{17}, ..., v_{5k+1}, v_{5k+2}\}.$$

If n is even,
$$B_{k,2k} = \{v_2, v_4, v_7 v_8, v_{11}, v_{14}, v_{16}, v_{19}, \dots, v_{5k}, v_{5k+2}\};$$

 $B_{k,2k+1} = \{v_2, v_4, v_7 v_8, v_{11}, v_{14}, v_{16}, v_{19}, \dots, v_{5k+1}, v_{5k+2}\}.$

Also, $|A_{k,i}| = |B_{k,j}| = 2\left\lfloor \frac{5k+3}{5} \right\rfloor + 2; i = 1, 2, ..., l; j = 1, 2, ..., m \text{ and } |\mathcal{D}_k| = l+m = (k+1)^2.$ Therefore, there are exactly $(k+1)^2$ minimum co – isolated locating dominating sets of P_{5k+3} containing v_2 and v_{5k+2} with the labellings $v_1, v_2, v_3, ..., v_{5k+2}, v_{5k+3}$, where $k \ge 4$. By induction hypothesis, the result is true for $n \ge 4$. Also, for n = 3, the number of minimum co-isolated locating dominating sets of P_{18} is 16.

Theorem: 3.15 For any integer $n \ge 4$, $\gamma_{Deild}(P_{5n+3}) = \frac{5n^2 + 51n - 44}{2}$.

Proof: $\gamma_{\text{Doild}}(P_{5n+3})$ is the sum of the number of minimum co – isolated locating dominating sets of P_{5n+3} containing

- (i) v_1 and v_{5n+3}
- (ii) v_1 and v_{5n+2}
- (iii) v_2 and v_{5n+3}
- (iv) v_2 and v_{5n+2}
- (a) For (i), the number number of minimum co isolated locating dominating sets of P_{5n+3} containing v_1 and v_{5n+3} is $\frac{n^2+5n+2}{2}$, by Theorem 3.12.
- (b) For (ii), the number of minimum co isolated locating dominating sets of P_{5n+3} containing v_1 and v_{5n+2} is $\frac{n^2+21n-24}{2}$, by Theorem 3.13.
- (c) For (iii), the number of minimum co isolated locating dominating sets of P_{5n+3} containing v_2 and v_{5n+3} is the same as the number $\frac{n^2+21n-24}{2}$.
- (d) For (iv), the number of minimum co isolated locating dominating sets of P_{5n+3} containing v_2 and v_{5n+2} is $(n+1)^2$, by Theorem 3.14.

Therefore,
$$\gamma_{\text{Dcild}}(P_{5n+3}) = \frac{(5n^2 + 51n - 44)}{2}$$
.

Remark: 3.16 The Recurrence relation is given by

$$\begin{split} \gamma_{\ Dcild} \left(P_{5n+3} \right) - \gamma_{\ Dcild} \left(P_{5(n-1)+3} \right) &= \frac{(5n^2 + 51n - 44)}{2} - \frac{(5n^2 + 41n - 90)}{2} \,. \\ &= 5n + 23 \,. \end{split}$$

Therefore, $\gamma_{Dcild}(P_{5n+3}) = \gamma_{Dcild}(P_{5n-2}) + 5n + 23$; $n \ge 4$.

In the following, the number of minimum co-isolated locating dominating sets of P_{5n+4} is found.

Theorem: 3.17 There is exactly one minimum co – isolated locating dominating set of P_{5n+4} containing v_1 and v_{5n+4} with the labellings v_1 , v_2 , v_3 , ..., v_{5n+2} , v_{5n+3} , v_{5n+4} , where $n \ge 1$.

Proof: Clearly, $D = \{v_1, v_4, v_6, v_9, ..., v_{5n+1}, v_{5n+4}\}$ is a minimum co – isolated locating dominating set of P_{5n+4} containing v_1 and v_{5n+4} , which proves the existence. To prove the uniqueness, let $D^{'} = D - \{v_{5n+4}\}$. $D^{'}$ is a minimum co – isolated locating dominating set of P_{5n+1} with the labellings $v_1, v_2, v_3, ..., v_{5n+1}, v_{5n+2}$ containing v_1 and v_{5n+1} , since, $|D^{'}| = 2n + 1 = \gamma_{cild} (P_{5n+2})$. But by Theorem 3.9, $D^{'}$ is the unique minimum co – isolated locating dominating set of P_{5n+2} and hence D is unique.

Theorem: 3.18 There are exactly n+1 minimum co – isolated locating dominating sets of P_{5n+4} containing v_2 and v_{5n+4} with the labellings v_1 , v_2 , v_3 , ..., v_{5n+2} , v_{5n+3} , v_{5n+4} and $n \ge 0$.

Proof: Let the labellings of vertices of P_{5n+4} be v_1 , v_2 , v_3 , ..., v_{5n+2} , v_{5n+3} , v_{5n+4} . The theorem is proved by the method of induction on n. For n = 0, $\{v_2, v_4\}$ is the only minimum co – isolated locating dominating set of P_4 containing v_2 and v_4 .

For n = 1, $\{v_2, v_4, v_6, v_9\}$ and $\{v_2, v_4, v_7, v_9\}$ are the only minimum co – isolated locating dominating sets of P_9 containing v_2 and v_9 .

Assume that the theorem holds for n=k-1. That is, there are exactly k minimum co – isolated locating dominating sets of $P_{5(k-1)+4}$ containing v_2 and $v_{5(k-1)+4}$ with the labellings $v_1, v_2, v_3, \ldots, v_{5(k-1)+2}, v_{5(k-1)+3}, v_{5(k-1)+4}$. Let the k sets be D_i , $i=1,2,\ldots,k$ and $|D_i|=2\left\lfloor\frac{5(k-1)+4}{5}\right\rfloor+2$, by Theorem 2.5.

Assume n = k. Let $D_i' = D_i \cup \{v_{5i+1}, v_{5i+4}\}; i = 1, 2, 3... k$.

Since, $|D_i'| = |D_i| + 2 = 2\left[\frac{5(k-1)+4}{5}\right] + 2 + 2 = 2\left[\frac{5k+4}{5}\right] + 2$; D_i' are the minimum co – isolated locating dominating set of P_{5k+4} , i=1,2,...,k.

In addition, $D = \{v_2, v_4, v_7, v_9, ..., v_{5k+2}, v_{5k+4}\}$ is also a minimum co – isolated locating dominating set of P_{5k+4} since, $|D| = 2\left\lfloor \frac{5k+4}{5} \right\rfloor + 2$, which is different from D_i' for each i. Therefore, there are k+1 minimum co – isolated locating dominating sets of P_{5k+4} containing v_2 and v_{5k+4} . Therefore, the theorem is proved for n=k. By induction hypothesis, there are exactly n+1 minimum co – isolated locating dominating sets of P_{5n+4} containing v_2 and v_{5n+4} with the labellings $v_1, v_2, v_3, ..., v_{5n+2}, v_{5n+3}, v_{5n+4}$ and $n \ge 0$.

Theorem: 3.19 There are exactly $\frac{(n+1)(n+2)}{2}$ minimum co – isolated locating dominating sets of P_{5n+4} containing v_2 and v_{5n+3} with the labellings $v_1, v_2, v_3, \ldots, v_{5n+2}, v_{5n+4},$ where $n \ge 1$.

Proof: Let the labellings of vertices of P_{5n+4} be $v_1, v_2, v_3, ..., v_{5n+2}, v_{5n+3}, v_{5n+4}$. The theorem is proved by the method of induction on n. For $n = 1, A_{1,1} = \{v_2, v_3, v_6, v_8\}$; $A_{1,2} = \{v_2, v_4, v_6, v_8\}$; $A_{1,3} = \{v_2, v_4, v_7, v_8\}$ are the only minimum co-isolated locating dominating sets of P_9 containing v_2 and v_8 , since, $|A_{1,i}| = 4 = 2\left[\frac{5n+4}{5}\right] + 2$. Let $\mathcal{D}_1 = \{A_{1,1}, A_{1,2}, A_{1,3}\}$ and $|\mathcal{D}_1| = 3 = \frac{(n+1)(n+2)}{2}$.

Let n=2. In order to construct the minimum co – isolated locating dominating sets of P_{14} containing v_2 and v_{13} , the following sets are defined using \mathcal{D}_1 .

Let
$$A_{2,i} = A_{1,i} \cup \{v_{11}, v_{13}\}; i = 1, 2, 3 \text{ and}$$

 $B_{2,1} = (A_{1,2} - \{v_8\}) \cup \{v_9, v_{11}, v_{13}\}; B_{2,2} = (A_{1,3} - \{v_8\}) \cup \{v_9, v_{11}, v_{13}\} \text{ and}$
 $B_{2,3} = (A_{1,3} - \{v_8\}) \cup \{v_9, v_{12}, v_{13}\}.$

These are the only minimum co – isolated locating dominating sets of P_{14} containing v_2 and v_{13} , since, $|A_{2,i}| = |B_{2,i}| = 6 = 2 \left| \frac{5n+4}{5} \right| + 2$.

Let
$$\mathcal{D}_2 = \{A_{2,1}, A_{2,2}, A_{2,3}, B_{2,1}, B_{2,2}, B_{2,3}\}$$
 and $|\mathcal{D}_2| = 6 = \frac{(n+1)(n+2)}{2}$

Let n = 3. To construct the minimum co – isolated locating dominating sets of P_{16} containing v_2 and v_{16} the following sets are defined using the sets in \mathcal{D}_2 .

$$A_{3,i} = A_{2,i} \cup \{v_{16}, v_{18}\}, i = 1, 2, 3;$$

 $A_{3,j} = B_{2,(j-3)} \cup \{v_{16}, v_{18}\}, j = 4, 5, 6;$
 $B_{3,i} = (B_{2,i} - \{v_{13}\}) \cup \{v_{14}, v_{16}, v_{18}\}; i = 1, 2, 3;$ and
 $B_{3,4} = (B_{2,3} - \{v_{13}\}) \cup \{v_{14}, v_{17}, v_{18}\}.$

These are the only minimum co – isolated locating dominating set of P_{19} containing v_2 and v_{18} , since $|A_{3,i}| = |B_{3,j}| = 8 = 2\left\lfloor \frac{5n+4}{5} \right\rfloor + 2$; i = 1, 2, ..., 6 and j = 1, 2, 3, 4.

Let $\mathcal{D}_3 = \{A_{3,1}, A_{3,2}, ..., A_{3,6}, B_{3,1}, B_{3,2}, B_{3,3}, B_{3,4}\}$ and $|\mathcal{D}_3| = 10 = \frac{(n+1)(n+2)}{2}$, when n = 3. Therefore, the result is true for n = 1, 2 and 3.

Assume that the theorem holds for n = k-1. That is, for all paths having 5(k-1)+4 vertices. Let \mathcal{D}_{k-1} be the set of all minimum co – isolated locating dominating sets of $P_{5(k-1)+2}$ containing v_2 and $v_{5(k-1)+1}$.

Then, $\mathcal{D}_{k-1} = \{A_{(k-1),1}, A_{(k-1),2}, A_{(k-1),3}, \ldots, A_{(k-1),r}, B_{(k-1),1}, B_{(k-1),2}, \ldots, B_{(k-1),s}\}$, where $r = \frac{(n-1)n}{2}$; $s = k, k \ge 3$. Also $|\mathcal{D}_{k-1}| = \frac{k(k+1)}{2}$ and $|A_{(k-1),i}| = |B_{(k-1),j}| = 2\left\lfloor \frac{5(k-1)+4}{5} \right\rfloor + 2$; $i = 1, 2, \ldots, r$ and $j = 1, 2, \ldots, s$. Let n = k. In order to construct the minimum co – isolated locating dominating sets of P_{5k+4} containing v_2 and v_{5k+3} , the following sets are defined using the sets in \mathcal{D}_{k-1} . Let \mathcal{D}_k be the set of all minimum co – isolated locating dominating set of P_{5k+4} containing v_2 and v_{5k+3} .

Then,
$$\mathcal{D}_k = \{A_{k,1}, A_{k,2}, A_{k,3}, ..., A_{k,l}, B_{k,1}, B_{k,2}, ..., B_{k,m}\}$$
, where $l = \frac{k(k+1)}{2}$ and $m = k+1$. $A_{k,i} = A_{(k-1),i} \cup \{v_{5k+1}, v_{5k+3}\}$, ; for $i = 1, 2, ..., r$; $A_{k,j} = B_{(k-1),(j-r)} \cup \{v_{5k+1}, v_{5k+3}\}$, for $j = r+1, r+2, ..., r+s \ (=l)$; $B_{k,i} = (B_{(k-1),i} - \{v_{5k-2}\}) \cup \{v_{5k-1}, v_{5k+1}, v_{5k+3}\}$, $i = 1, 2, ..., s$; and $B_{k,(k+1)} = (B_{(k-1),k} - \{v_{5k-2}\}) \cup \{v_{5k-1}, v_{5k+2}, v_{5k+3}\}$.

S. Muthammai, N. Meenal* / The Number Of Minimum Co - Isolated Locating Dominating Sets Of Paths / IJMA- 6(5), May-2015.

Also, $|A_{k,i}| = |B_{k,j}| = 2\left\lfloor \frac{5k+4}{5} \right\rfloor + 2$; i = 1, 2, ..., l; j = 1, 2, ..., m and $|\mathcal{D}_k| = l + m = \frac{(k+1)(k+2)}{2}$. Hence, the Theorem is proved for n = k. By induction hypothesis, there are exactly $\frac{(n+1)(n+2)}{2}$ minimum co – isolated locating dominating sets of P_{5n+4} containing v_2 and v_{5n+3} with the labellings $v_1, v_2, v_3, ..., v_{5n+2}, v_{5n+3}, v_{5n+4}$, for all $n \ge 1$.

Theorem: 3.20 For any integer $n \ge 1$, $\gamma_{\text{Doild}}(P_{5n+4}) = \frac{(n^2 + 7n + 8)}{2}$.

Proof: $\gamma_{\text{Dcild}}(P_{5n+4})$ is the sum of the number of minimum co – isolated locating dominating sets of P_{5n+4} containing

- (i) v_1 and v_{5n+4}
- (ii) v_1 and v_{5n+3}
- (iii) v_2 and v_{5n+4}
- (iv) v_2 and v_{5n+3}
- (a). For (i), the number number of minimum co isolated locating dominating sets of P_{5n+4} containing v_1 and v_{5n+4} is 1, by Theorem 3.17.
- (b). For (ii), the number of minimum co isolated locating dominating sets of P_{5n+4} containing v_1 and v_{5n+3} is (n+1), by Theorem 3.18.
- (c). For (iii), the number of minimum co isolated locating dominating sets of P_{5n+4} containing v_2 and v_{5n+4} is the same as the number (n + 1)
- (d). For (iv), the number of minimum co isolated locating dominating sets of P_{5n+4} containing v_2 and v_{5n+3} is $\frac{(n+1)(n+2)}{2}$, by Theorem 3.19.

Hence, $\gamma_{\text{Deild}}(P_{5n+4}) = \frac{(n^2 + 7n + 8)}{2}$.

$$\begin{array}{l} \textbf{Remark 3.21:} \ The \ Recurrence \ relation \ is \ given \ by \\ \gamma_{\ Deild} \ (P_{5n+4}) - \gamma_{\ Deild} \ (P_{5(n-1)+4}) = \frac{(n^2+7n+8)}{2} - \frac{(n^2+5n+2)}{2} \, . \\ = n+3 \, . \end{array}$$

Therefore, $\gamma_{Deild}(P_{5n+4}) = \gamma_{Deild}(P_{5n-1}) + n + 3$.

4. CONCLUSION

In this paper, the number γ_{Dcild} is obtained for paths P_n , $n \ge 4$ are studied.

REFERENCES

- 1. Harary.F., *Graph Theory*, Addison Wesley, Reading Mass, 1969.
- 2. Kulli.V.R., Theory of Domination in Graphs, Vishwa International Publications, 2010.
- 3. Muthammai.S., Meenal. N., Co isolated Locating Domination Number for some standard Graphs, National conference on Applications of Mathematics & Computer Science (NCAMCS-2012), S.D.N.B Vaishnav College for Women(Autonomous), Chennai, February 10, 2012, p. 60 – 61.
- Muthammai.S., Meenal. N., Co isolated Locating Domination Number of a Graph, Proceedings of the UGC sponsored National Seminar on Applications in Graph Theory, Seethalakshmi Ramaswamy College (Autonomous), Tiruchirappalli, 18th & 19th December 2012, p. 7 – 9.
- Muthammai.S., Meenal. N., isolated locating domination number for some special types of graphs, Proceedings Of National Conference On Recent Trend In Analysis And Applied Mathematics (NCRTAAM'13), National Institute Of Technology, Trichy, May 9 – 10, 2013.
- Muthammai.S., Meenal. N., Co isolated Locating Domination Number on Trees, National Conference On Recent Advances In Graph Theory (NCRAGT - 2014), Periyar University, Salem, March 6 - 7, 2014.
- 7. Ore. O., Theory of Graphs, Amer. Math. Soc. Coel. Publ. 38, Providence, RI, 1962.
- Rall. D. F., Slater. P. J., On location domination number for certain classes of graphs, Congressus Numerantium, 45 (1984), 77 – 106.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]