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ABSTRACT 
Let G (V, E) be a simple, finite, undirected connected graph. A non – empty set   S ⊆ V of a graph G is a dominating 
set, if every vertex in V – S is adjacent to atleast one vertex in S. A dominating set S ⊆ V is called a locating dominating 
set, if for any two vertices v, w ∈ V – S, N(v) ∩ S ≠ N(w) ∩ S. A locating dominating set S  ⊆ V is called a co – isolated 
locating dominating set, if there exists atleast one  isolated vertex in <V – S >. The co – isolated locating domination 
number γcild is the minimum cardinality of a co – isolated locating dominating set.  The number of minimum co – 
isolated locating dominating sets in a graph G is denoted by γDcild(G). In this paper, the number γDcild is obtained for a 
Path Pn, where n ≥ 3. 
 
Keywords:  Dominating set, locating dominating set, co – isolated locating dominating set. 
 
 
1. INTRODUCTION 
 
Let G = (V, E) be a simple graph of order n. For v ∈ V(G), the neighborhood NG(v) (or simply N(v)) of v is the set of 
all vertices adjacent to v in G. The concept of domination in graphs was introduced by Ore [7]. A nonempty set            
S ⊆ V(G) of a graph G is a dominating set, if every vertex in V(G) – S is adjacent to some vertex in S. A special case 
of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [8]. A dominating 
set S in a graph G is called a locating dominating set in G, if for any two vertices v, w ∈ V(G) – S,  NG (v) ∩ S,          
NG (w) ∩ S are distinct. The location dominating number of G is defined as the minimum number of vertices in a 
locating dominating set in G. A locating dominating set S ⊆ V(G) is called a co - isolated locating dominating set , if 
<V – S> contains atleast one isolated vertex. The minimum cardinality of a co – isolated locating dominating set is 
called the co – isolated locating domination number and is denoted by γ cild(G). The number of minimum co – isolated 
locating dominating sets in a graph G is denoted by γDcild(G). In this paper, the minimum number γDcild of co-isolated 
locating dominating sets of Path Pn on n vertices, n ≥ 3, is obtained 
 
2. PRIOR RESULTS 
 
The following results are obtained in [3] & [4] 
 
Theorem: 2.1 [3] For every non – trivial simple connected graph G, 1 ≤  γ cild(G) ≤ n -1. 
 
Theorem: 2.2 [3] γ cild (G) = 1 if and only if G ≅  K2. 
 
Theorem: 2.3 [3] γ cild (Kn) = n – 1, where Kn is a complete graph on n vertices. 
 
Theorem: 2.4 [3] γ cild (Kn – e) = n – 1, where e ∈ E(Kn) 
 
Observation: 2.1 [4] If S is an co – isolated locating dominating set of G(V, E) with | S | = k, then V(G) – S contains 
atmost nC1 + nC2 + … + nCk  vertices. 
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Theorem: 2.5 [4] If Pn is a path on n vertices, n ≥ 3, then  

γ cild (Pn) =

⎩
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⎨
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3. MAIN RESULTS 
 
Using the value of γ cild(Pn) given in Theorem 2.5., the minimum number of co-isolated locating dominating sets γDcild 
(Pn) of Pn, for all  n ≥ 3, are found in this section.  
 
Observation: 3.1 Let  V(Pn) = {v1, v2, …, vn} with deg(v1) = deg(vn) = 1 and deg(v2) = deg(v3) = ... = deg(vn- 1) = 2 and 
let D be a minimum co – isolated locating dominating set of  Pn.  Then one of the following holds. 

(i) v1,vn    ∈ D 
(ii) v1,vn - 1 ∈ D 
(iii) v2,vn     ∈ D  
(iv) v2,vn - 1 ∈ D 

 
It is sufficient to consider (i), (iii) and (iv), since the number of minimum co – isolated locating dominating sets of Pn 
containing v2 and vn is same as that of minimum co – isolated locating dominating sets containing v1 and vn-1. 
 
Theorem: 3.2 For any integer n ≥ 1, γ Dcild (P5n) = 1. 
 
Proof: Let the labellings of vertices of P5n be v1, v2, v3, ..., v5n-1, v5n. Let D be a minimum co – isolated locating 
dominating set of  P5n. The theorem is proved by the method of induction on n. For n = 1, the following cases arise. 

(i) If v1, v5 ∈ D, then D = {v1, v3, v5} and |D| = 3. But γ cild(P5) = 2. Therefore, D cannot be a minimum co-
isolated locating dominating set of P5. 

(ii) If v2, v5 ∈ D, then D = {v2, v3, v5} or {v2, v4, v5}, which is also not possible. 
(iii) If v2, v4 ∈ D, then D = {v2, v4} is the only minimum co – isolated locating dominating set of P5 and |D| = 2 and 

hence γ Dcild (P5) = 1. 
 
Similarly for n = 2, D = {v2, v4, v7, v9} is the only minimum co – isolated locating dominating set of P10 and |D| = 4 and 
hence γ Dcild (P10) = 1. Assume that the theorem holds when n = k-1. That is, the result holds for all paths having        
5(k – 1) vertices. Therefore, D = {v2, v4, v7, v9, …, v5k - 8, v5k - 6} is the only minimum co – isolated locating dominating 
set of P5(k – 1) with |D| = 2(k – 1) and γ Dcild (P5(k-1)) = 1. Let n = k. Consider the path P5k on 5k vertices. Let D′ = D 
∪{v5k - 3, v5k - 1} is a co – isolated locating dominating set of P5n. Also, |D′| = |D| + 2 = 2k. Therefore, D′ is the only 
minimum co – isolated locating dominating set of P5k . It can be proved that, if v1, v5k ∈ D′ or v2, v5k ∈ D′, then D′ will 
not be a minimum co – isolated locating dominating set of P5k. Therefore, D′ is the unique γ  cild – set of P5k. Hence,     
γ  Dcild (P5k) = 1.  
 
By induction hypothesis, γ Dcild (P5n) = 1, for n ≥ 1. 
 
Theorem: 3.3 There are exactly n + 1 minimum co – isolated locating dominating sets of P5n+1 containing v1 and v5n+1 
with the labellings v1, v2, v3, …, v5n-1, v5n, v5n+1 where n ≥ 1. 
 
Proof: Let the labellings of vertices of P5n+1 be v1, v2, v3, ..., v5n-1, v5n, v5n+1. The Theorem is proved by the method of 
induction on n. For n = 1, 𝐷𝐷1 = {v1, v3, v6} and 𝐷𝐷2 = {v1, v4, v6} are the only minimum co – isolated locating 
dominating sets of P6 containing v1 and v6 since, |𝐷𝐷1| = |𝐷𝐷2| = 3 = 2 �5𝑛𝑛+1

5
� + 1, (Theorem 2.5.).   

 
For n = 2, D1 ={v1, v3, v6, v8, v11}, D2 = ={v1, v4, v6, v8, v11} and 𝐷𝐷3 ={v1, v4, v6, v9, v11} are the only minimum co – 
isolated locating dominating sets of P11 containing v1 and v11, since |D1| = |D2| = |D3|=  5 = 2 �5𝑛𝑛+1

5
� + 1. Therefore, the 

result is true for n = 1 and n = 2. Assume that the theorem holds when n = k-1. That is, the result holds for all paths 
having 5(k – 1) + 1 vertices. Let D1, 𝐷𝐷2, D3, …., Dk  be the only  k minimum co – isolated locating dominating sets of 
P5(k–1)+1 containing v1 and v5k – 4 with | 𝐷𝐷i| = 2 �5(𝑘𝑘−1)+1

5
� + 1. Let n = k. Consider the path P5k+1.  

 
Then 𝐷𝐷𝑖𝑖′ = 𝐷𝐷i ∪{v5k - 2, v5k + 1}; i = 1, 2, 3, …, k  are the minimum co – isolated locating dominating sets of P5k since,  
|𝐷𝐷𝑖𝑖′| = | 𝐷𝐷i | + 2 = 2 �5𝑘𝑘

5
� + 1.  
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In addition, 𝐷𝐷𝑘𝑘+1′ = { v1, v4, v6, v9, v11, …, v5k – 1, v5k + 1} is also a minimum co – isolated locating dominating sets of 
P5k+1 containing v1 and v5k+1 such that  𝐷𝐷𝑘𝑘+1′ ≠  𝐷𝐷𝑖𝑖′ ; i = 1, 2, 3, …, k. Therefore, there are k + 1 minimum co – isolated 
locating dominating sets of P5k+1 containing v1 and v5k+1. By induction hypothesis, there are exactly n + 1 minimum co 
– isolated locating dominating sets of P5n+1 containing v1 and v5n+1 with the labellings v1, v2, v3, …, v5n-1, v5n, v5n+1, for 
all n ≥ 1. 
 
Theorem: 3.4 There are exactly 𝑛𝑛(𝑛𝑛+3)

2
 minimum co – isolated locating dominating sets of P5n+1 containing v1 and v5n 

with the labellings v1, v2, v3, …, v5n-1, v5n, v5n+1, where n ≥ 1. 
 
Proof: Let the labellings of vertices of P5n+1 be v1, v2, v3, ..., v5n-1, v5n, v5n+1. The theorem is proved by the method of 
induction on n.  
 
For n = 1, the sets  𝐴𝐴11 = {v1, v3, v5} and 𝐴𝐴12 = {v1, v4, v5} are the only minimum co – isolated locating dominating sets 
of P6 containing v1 and v5 since, |𝐴𝐴11| = |𝐴𝐴12| = 3 = 2 �5𝑛𝑛+1

5
� + 1, (Theorem 2.5).   

 
Let 𝒟𝒟1= {𝐴𝐴1,1, 𝐴𝐴1,2} and |𝒟𝒟1| = 2 = 𝑛𝑛(𝑛𝑛+3) 

2
, where n =1.  

 
Let n = 2.  In order to construct the minimum co – isolated locating dominating sets of P11 containing v1 and v10, the 
following sets are defined using 𝐴𝐴1,1  and 𝐴𝐴1,2.  
 
Let 𝐴𝐴2,1 = 𝐴𝐴1,1 ∪{v8, v10}; 𝐴𝐴2,2 = 𝐴𝐴1,2 ∪{v8, v10} and 𝐵𝐵2,1 = (𝐴𝐴1,1 – {v5})  ∪{ v6, v8, v10};  
      𝐵𝐵2,2 = (𝐴𝐴1,2 – {v5})  ∪{v6, v8, v10}; 𝐵𝐵2,3 = (𝐴𝐴1,2 – {v5})  ∪{v6, v9, v10}.  
 
These are the only minimum co – isolated locating dominating sets of P11 containing v1 and v10 since,  
|𝐴𝐴2,1| = |𝐴𝐴2,2| = |𝐵𝐵2,1| = |𝐵𝐵2,2| = |𝐵𝐵2,3| = 5 =2 �5𝑛𝑛+1

5
� + 1.  

 
Let 𝒟𝒟2 ={𝐴𝐴2,1, 𝐴𝐴2,2, 𝐵𝐵2,1, 𝐵𝐵2,2, 𝐵𝐵2,3} and |𝒟𝒟2| = 5 = 𝑛𝑛(𝑛𝑛+3)

2
,  where n = 2. 

 
Let n = 3. In order to construct the minimum co – isolated locating dominating sets of P16 containing v1 and v15, the 
following sets are defined using the sets in 𝒟𝒟2.  
 
Let 𝐴𝐴3,1 = 𝐴𝐴2,1 ∪{v13, v15}; 𝐴𝐴3,2 = 𝐴𝐴2,2 ∪{v13, v15}; 𝐴𝐴33 = 𝐵𝐵2,1 ∪{v13, v15};   
      𝐴𝐴3,4 = 𝐵𝐵2,2 ∪{v13, v15}; 𝐴𝐴3,5 = 𝐵𝐵2,3 ∪{v13, v15}  and 𝐵𝐵3,1 = (𝐵𝐵2,1 – {v10})  ∪{v11, v13, v15};  
      𝐵𝐵3,2 = (𝐵𝐵2,2 – {v10})  ∪{v11, v13, v15}; 𝐵𝐵3,3 = (𝐵𝐵2,3 – {v10})  ∪{v11, v13, v15};  
      𝐵𝐵3,4 = (𝐵𝐵2,3 – {v10})  ∪{v11, v14, v15}.  
 
These are the only minimum co – isolated locating dominating sets of P16 containing v1 and v15 since,  
|𝐴𝐴3,i| = |𝐵𝐵2,j| =7 =2 �5𝑛𝑛+1

5
� + 1; i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4.  

 
Let 𝒟𝒟3 = {𝐴𝐴3,1, 𝐴𝐴3,2, 𝐴𝐴3,3, 𝐴𝐴3,4 , 𝐴𝐴3,5, 𝐵𝐵3,1, 𝐵𝐵3,2, 𝐵𝐵3,3, 𝐵𝐵3,4} and |𝒟𝒟3| = 9 = 𝑛𝑛(𝑛𝑛+3)

2
, where n = 3. Therefore, the result is true 

for n = 1, 2 and 3. Let n = k-1. Assume that the theorem holds for all paths having 5(k – 1) +1 vertices. Let 𝒟𝒟k – 1 be the 
set of all minimum co – isolated locating dominating sets of P5(k – 1)+1 containing v1 and v5(n – 1).  
 
Then,  𝒟𝒟k – 1 ={𝐴𝐴 (k – 1),1, 𝐴𝐴(k – 1),2, 𝐴𝐴(k – 1),3, …,  𝐴𝐴(k – 1),r ,  𝐵𝐵(k – 1),1, 𝐵𝐵(k – 1),2, …, 𝐵𝐵(k – 1),s}, where r = (𝑘𝑘−2)(𝑘𝑘+1)

2
 , s = k, k ≥ 3.  

 
Also, |𝒟𝒟 k – 1| = r + s = (𝑘𝑘−1)(𝑘𝑘+2)

2
=  𝑛𝑛(𝑛𝑛+3)

2
 , where n = k-1. and |𝐴𝐴(k – 1),i| = |𝐵𝐵(k – 1),j|  =2 �5(𝑘𝑘−1)+1

5
� + 1; i = 1, 2, …, r and 

j = 1, 2, …, s. Let n = k. In order to construct the minimum co – isolated locating dominating set of P5k + 1 containing v1 
and v5k, the following sets are defined using the sets in 𝒟𝒟 k – 1.  
 
Let 𝒟𝒟 k be the set of all minimum co – isolated locating dominating sets of P5k + 1 containing v1 and v5k.  
 
Then, 𝒟𝒟 n = {𝐴𝐴 k,1, 𝐴𝐴k,2, 𝐴𝐴k,3, …,  𝐴𝐴𝑘𝑘 ,ℓ ,  𝐵𝐵k,1, 𝐵𝐵k,2, …, 𝐵𝐵k,m},   
where ℓ = (𝑘𝑘−1)(𝑘𝑘+2)

2
 ,  

          m = k + 1 ( k ≥ 2) and 
          𝐴𝐴𝑘𝑘 ,𝑖𝑖 = 𝐴𝐴(𝑘𝑘−1),𝑖𝑖 ∪ {v5k−2, v5k}, i = 1, 2, ..., ℓ − 𝑘𝑘, and 
          𝐴𝐴𝑘𝑘 ,𝑗𝑗 = 𝐵𝐵(𝑘𝑘−1),(𝑗𝑗−𝑜𝑜) ∪ {v5k−2, v5k},  j = (ℓ − 𝑘𝑘 +1), (ℓ − 𝑘𝑘 +2), …, ℓ. 
          𝐵𝐵k,i = (𝐵𝐵(k-1),i – {v5k−5})  ∪{v5k−4 , v5k−2, v5k}; i = 1, 2, …., m-1 and 
          𝐵𝐵k,m = (𝐵𝐵(k-1),(m-1) – {v5k−5})  ∪{v5k−4 , v5k−1, v5k}.  
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Also, |𝐴𝐴k,i| = |𝐵𝐵k,j|  =2 �5𝑘𝑘

5
� + 1; i = 1, 2, …, ℓ and j = 1, 2, …, m and  |𝒟𝒟n| = ℓ + m = 𝑘𝑘(𝑘𝑘+3)

2
. By induction hypothesis, 

there are exactly 𝑛𝑛(𝑛𝑛+3)
2

 minimum co – isolated locating dominating sets of P5n+1 containing v1 and v5n with the 
labellings v1, v2, v3, …., v5n-1, v5n, v5n+1, for all n ≥ 1. 
 
Theorem: 3.5 There are exactly 𝑛𝑛(𝑛𝑛+1)(𝑛𝑛+5)

6
 minimum co – isolated locating dominating sets of P5n+1 containing v2 and 

v5n with the labellings v1, v2, v3, …, v5n-1, v5n, v5n+1, where n ≥ 1. 
 
Proof: Let the labellings of vertices of P5n+1 be v1, v2, v3, ..., v5n-1, v5n, v5n+1. The theorem is proved by the method of 
induction on n.  
 
For n = 1, the sets 𝐴𝐴1,1 = {v2, v3, v5}; 𝐴𝐴1,2 = {v2, v4, v5} are the only minimum co – isolated locating dominating sets of 
P6 containing v2 and v5 , since |𝐴𝐴1,1| = |𝐴𝐴1,2| = 3 =2 �5𝑛𝑛+1

5
� + 1.  

 
Let 𝒟𝒟1= {𝐴𝐴1,1, 𝐴𝐴1,2}. Then |𝒟𝒟1| = 2.  
 
For n = 2, the sets 𝐴𝐴2,i = A1,i ∪{v8, v10}; i = 1, 2 and 𝐵𝐵2,i = (A2,i – v5) ∪{v6, v8, v10}; i = 1, 2; B2,3 = (A22 – {v5}) ∪{v6, v9, 
v10}, 𝐶𝐶2,1 = {v2, v4, v7, v8, v10} and E2,1 = {v2, v4, v7, v9, 10} are the only minimum co – isolated locating dominating sets 
of P11 containing v2 and v10, since  |𝐴𝐴2,i| = |B2,j| = |C2,1| = |E2,1| = 5 = 2 �5𝑛𝑛+1

5
� + 1; i = 1, 2 and j = 1, 2, 3.  

 
Let 𝒟𝒟2={𝐴𝐴2,1, 𝐴𝐴2,2, B2,1, B2,2, B2,3, C2,1, E2,1}. Then |𝒟𝒟2| = 7 = 𝑛𝑛(𝑛𝑛+1)(𝑛𝑛+5)

6
.   

 
Let n = 3. In order to construct the minimum co – isolated locating dominating sets containing v2 and v15 of P16 , the 
following sets are defined using the sets in 𝒟𝒟2.  
 
Let 𝐴𝐴3,i = 𝐴𝐴2,i ∪{v13, v15}; i = 1, 2;   
      𝐴𝐴3,j = 𝐴𝐴2,(j -2) ∪{v13, v15}; j = 3, 4, 5;  
      𝐴𝐴3,k = 𝐶𝐶2,(k -5) ∪{v13, v15}; k = 6, 7;   
      𝐵𝐵3,i = (𝐵𝐵2,i – {v10})  ∪{v11, v13, v15}; i = 1, 2, 3; 
      𝐵𝐵3,4 = (𝐵𝐵2,3 – {v10})  ∪ {v11, v14, v15}   
      𝐶𝐶3,i = (𝐶𝐶2,i – {v10})  ∪{v11, v13, v15}; i = 1, 2;     
      𝐸𝐸3,1 = (E2,1 –{v10}) ∪ {v11, v14, v15};   
      𝐸𝐸3,2 = (E2,1 –{v10}) ∪ {v12, v14, v15}; and 
      𝐸𝐸3,3 = (E3,2 –{v14}) ∪{v13}.   
 
These are the only minimum co – isolated locating dominating sets of P16 containing v2 and v15, since                          
|𝐴𝐴3,i| = |B3,j| = |C3,k| = |E3,t|  = 7 = 2 �5𝑛𝑛+1

5
� + 1; i = 1, 2, …, 7; j = 1, 2, 3, 4, k = 1, 2, and t = 1, 2, 3.  

 
Let 𝒟𝒟3 = {𝐴𝐴31, 𝐴𝐴32, …, A37, B31, B32, B33, B34, C31, C32, E3,1, E3,2, E3,3}. Then |𝒟𝒟3| = 16 = 𝑛𝑛(𝑛𝑛+1)(𝑛𝑛+5)

6
. Therefore the result 

is true for n = 1, 2 and 3.  
 
Assume that the Theorem holds for n = k -1. That is, there are exactly (𝑘𝑘−1)𝑘𝑘(𝑘𝑘+4)

6
 minimum co – isolated locating 

dominating sets of P5(k-1)+1 containing v2 and v5(k-1) with the labellings v1, v2, v3, …, v5(k-1)-1, v5(k-1), v5(k-1)+1, where k ≥ 2. 
 
Let 𝒟𝒟k – 1 be the set of all minimum co – isolated locating dominating sets of P5(k – 1)+1 containing v2 and v5(k -1).   
 
Then  𝒟𝒟k – 1 ={𝐴𝐴 (k – 1),1, 𝐴𝐴(k – 1),2, 𝐴𝐴(k – 1),3, …,  𝐴𝐴(k – 1),r ,  𝐵𝐵(k – 1),1, 𝐵𝐵(k – 1),2, …, 𝐵𝐵(k – 1),k, 𝐶𝐶  (k – 1),1, 𝐶𝐶(k – 1),2, 𝐶𝐶(k – 1),3, …,  𝐶𝐶(k – 1),s 
, 𝐸𝐸 (k – 1)1, 𝐸𝐸(k – 1)2, …, 𝐸𝐸(k – 1)(k – 1)}},  where r = (𝑘𝑘−2)(𝑘𝑘−1)(𝑘𝑘+3)

6
 and s = 𝑘𝑘(𝑘𝑘−3)

2
, where k ≥ 4.  

 
Also |𝒟𝒟k – 1| = r + k + s + (k – 1)= (𝑘𝑘−1)𝑘𝑘(𝑘𝑘+4)

6
 and |𝐴𝐴(k – 1),i| = |𝐵𝐵(k – 1),j|  = |𝐶𝐶(k – 1),p| = |𝐸𝐸(k – 1),q| =2 �5(𝑘𝑘−1)+1

5
� + 1; i = 1, 2, 

…, r ; j = 1, 2,…., n ; p = 1, 2, …., s and q = 1, 2, …, k – 1.   
 
Let n = k. In order to construct the minimum co – isolated locating dominating sets of P5k+1 containing v2 and v5k, the 
following sets are defined using the sets in 𝒟𝒟 k – 1. Let 𝒟𝒟k be the set of all minimum co – isolated locating dominating 
sets of P5k + 1containing v2 and v5k. Then,  𝒟𝒟k = {𝐴𝐴 k,1, 𝐴𝐴k,2, 𝐴𝐴k,3, …, 𝐴𝐴𝑘𝑘 ,𝑙𝑙 , 𝐵𝐵k,1, 𝐵𝐵k,2, …, 𝐵𝐵k,k+1, 𝐶𝐶k,1, 𝐶𝐶k,2, …, 𝐶𝐶k,m , 𝐸𝐸k,1, 
𝐸𝐸k,2, …, 𝐸𝐸k,k },  
where ℓ = (𝑘𝑘−1)𝑘𝑘(𝑘𝑘+4)

6
 , m = (𝑘𝑘+1)(𝑘𝑘−2)

2
 ,  
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where k ≥ 2 and  
          𝐴𝐴 n, i  = 𝐴𝐴(𝑘𝑘−1),𝑖𝑖  ∪ {v5k−2, v5k},  i = 1, 2, ..., r; 
          𝐴𝐴 n, j  = 𝐵𝐵(𝑘𝑘−1),(𝑗𝑗−𝑜𝑜)  ∪ {v5k−2, v5k}, j = r + 1, r + 2, …, r + k; 
          𝐴𝐴 n, t  = 𝐶𝐶(𝑘𝑘−1),(𝑡𝑡−𝑜𝑜−𝑘𝑘)  ∪ {v5k−2, v5k}, t = r + k + 1, r + k + 2, …, r + k + s (= ℓ); 
          𝐵𝐵k, i = (𝐵𝐵(k -1),i – {v5k−5})  ∪{v5k−4 , v5k−2, v5k}; i = 1, 2, …, k; and 
          𝐵𝐵k, k+1 = (𝐵𝐵(k-1),k – {v5k−5}) ∪{v5k−4 , v5k−1, v5k} and 
          𝐶𝐶k,i = (𝐶𝐶(k-1),i – {v5k−5})  ∪{v5k−4 , v5k−2, v5k}; i = 1, 2, …, m 
          𝐸𝐸k,h = (𝐸𝐸(k-1),h – {v5k−5})  ∪{v5k−4 , v5k−1, v5k}; h = 1, 2, …, k -2 ; 
          Ek,(k – 1) = (𝐸𝐸(k-1),(k-2) – {v5k−5})  ∪{v5k−3 , v5k−1, v5k}; and  
          Ek,k = (𝐸𝐸k,(k -2) – {v5k−1})  ∪{v5k−2} 
 
Also, |𝐴𝐴k,i| = |𝐵𝐵k,j| = |𝐶𝐶k,p| = |𝐸𝐸k,q| =2 �𝑘𝑘

5
� + 1; i = 1, 2, …,ℓ  and j = 1, 2,…, k+1 ; p = 1, 2, …, m and q = 1, 2, …, k  and 

|𝒟𝒟k| = ℓ + k + 1 + m + k = 𝑘𝑘(𝑘𝑘+1)(𝑘𝑘+5)
6

. Therefore, there are 𝑘𝑘(𝑘𝑘+1)(𝑘𝑘+5)
6

 minimum co – isolated locating dominating sets 
of P5k + 1containing v2 and v5k. The Theorem is true for n = k. By induction hypothesis, the theorem is true for all n ≥ 1. 
 
Theorem: 3.6 For any integer n ≥ 1, γ Dcild (P5n+1) = (𝑛𝑛+3)(𝑛𝑛2+9𝑛𝑛+2)

6
. 

 
Proof: γ Dcild (P5n+1) is the sum of the number of minimum co – isolated locating dominating sets of P5n + 1 containing  

(i) v1 and v5n+1 
(ii) v1 and v5n 
(iii) v2 and v5n+1 
(iv) v2 and v5n 
(a) For (i), the number of minimum co-isolated dominating sets of P5n+1 containing v1 and  v5n+1 is (n + 1) by 

Theorem 3.3.  
(b) For (ii), the number of minimum co-isolated dominating sets of P5n+1 containing v1 and v5n is  𝑛𝑛(𝑛𝑛+3)

2
 by 

Theorem 3.4.  
(c) For (iii),  the number of minimum co – isolated locating dominating sets of P5n+1 containing v2 and v5n+1  is 

same as that of minimum co – isolated locating dominating sets containing v1 and v5n and hence it is 𝑛𝑛(𝑛𝑛+3)
2

).  

(d) For (iv), the number of minimum co-isolated dominating sets of P5n+1 containing v2 and v5n is 𝑛𝑛(𝑛𝑛+1)(𝑛𝑛+5)
6

, by 
Theorem 3.5.  
Hence, γ Dcild (P5n+1) = (𝑛𝑛+3)(𝑛𝑛2+9𝑛𝑛+2)

6
.  

 
Remark: 3.7 The Recurrence relation is given by  
γ Dcild (P5n+1) – γ Dcild (P5(n-1)+1) = (𝑛𝑛+3)(𝑛𝑛2+9𝑛𝑛+2)

6
−  (𝑛𝑛+2)(𝑛𝑛2+7𝑛𝑛−6)

6
 . 

                                                  = 7𝑛𝑛
2+21𝑛𝑛+18

6
. 

Therefore, γ Dcild (P5n+1) = γ Dcild (P5n-4) +  7𝑛𝑛
2+21𝑛𝑛+18

6
; n ≥ 2. 

 
In the following, the number of minimum co-isolated locating dominating sets of P5n+2 is found. 
 
Theorem: 3.8 There is  no minimum co – isolated locating dominating set of P5n+2 containing v1 and v5n+2 with the 
labellings v1, v2, v3, …, v5n, v5n+1, v5n+2 , where n ≥ 1. 
 
Proof: On the contrary, let D be a minimum co – isolated locating dominating set of P5n+2 containing v1 and v5n+2 with 
the labellings v1, v2, v3, …., v5n, v5n+1, v5n+2. Then, |D| = 2 �5𝑛𝑛+2

5
� + 1 (By Theorem 2.5.) and D′  = D – {v1, v5n+2} will be 

a minimum co – isolated locating dominating set of P5n with the labellings v3, v4,v5,  …., v5n-1, v5n. |D′ | = 2 �5𝑛𝑛+2
5
� − 1.  

Therefore, γ cild (P5n) ≤ 2 �5𝑛𝑛+2
5
� − 1. But, γ cild (P5n) =  2 �5𝑛𝑛+2

5
� , which is a contradiction. Hence, there is no minimum 

co – isolated locating dominating set of P5n+2 containing v1 and v5n+2.  
 
Theorem: 3.9 There is exactly one minimum co – isolated locating dominating set of P5n+2 containing v2 and v5n+2 with 
the labellings v1, v2, v3, …, v5n, v5n+1, v5n+2 , where  n ≥ 1. 
 
Proof: Clearly, D = {v2, v4, v7, …, v5n – 1, v5n+2} is a minimum co – isolated locating dominating set of P5n+2 containing 
v2 and v5n+2, which proves the existence and |D| = 2 �5𝑛𝑛+2

5
� + 1. To prove the uniqueness, Let 𝐷𝐷′= D – {v5n+2}.  𝐷𝐷′  is a 

minimum co – isolated locating dominating set of P5n with the labellingss v1, v2, v3, …, v5n, since 
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|𝐷𝐷′ | = |D|-1=2 �5𝑛𝑛+2

5
�= γ cild (P5n). But by Theorem 3.2, 𝐷𝐷′  is the unique minimum co – isolated locating dominating set 

of P5n and hence D is unique. 
 
Theorem: 3.10 There are exactly n minimum co – isolated locating dominating sets of P5n+2 containing v2 and v5n+1 
with the labellings v1, v2, v3, …, v5n, v5n+1, v5n+2 , where n ≥ 1. 
 
Proof: Let the labellings of vertices of P5n+2 be v1, v2, v3, ..., v5n-1, v5n, v5n+2.  The theorem is proved by the method of 
induction on n. For n = 1, 𝐴𝐴1,1={v2, v4, v6} is the only minimum co – isolated locating dominating set of P7 containing 
v2 and v6, since, |𝐴𝐴1,1| = 3 =2 �5𝑛𝑛+2

5
� + 1. Let 𝒟𝒟1={𝐴𝐴1,1} and |𝒟𝒟1| = 1 = n. Let n = 2. In order to construct the minimum 

co – isolated locating dominating sets of P12 containing v2 and v11, the following sets are defined using 𝒟𝒟1. Let           
𝐴𝐴2,1 = 𝐴𝐴1,1 ∪{v9, v11}; and 𝐵𝐵2,1 = (𝐴𝐴1,1 – {v6})  ∪{ v7, v9, v11}. These are the only minimum co – isolated locating 
dominating sets of P12 containing v2 and v11, since, |𝐴𝐴2,1| = |𝐵𝐵2,1| = 5 =2 �5𝑛𝑛+2

5
� + 1. Let 𝒟𝒟2={𝐴𝐴2,1, 𝐵𝐵2,1} and |𝒟𝒟2| = 2 = n. 

Let n = 3. In order to construct the minimum co – isolated locating dominating sets of P17 containing v2 and v16, the 
following sets are defined using the sets in 𝒟𝒟2.  
 
Let 𝐴𝐴3,1 = 𝐴𝐴2,1 ∪{v14, v16}; 𝐴𝐴3,2 = 𝐵𝐵2,1 ∪{v14, v16}  and  𝐵𝐵3,1 = (𝐵𝐵2,1 – {v11})  ∪{v12, v14, v16}.  
 
These are the only minimum co – isolated locating dominating sets of P17 containing v2 and v16 , since, 
|𝐴𝐴3,i| = |𝐵𝐵31| =7 =2 �5𝑛𝑛+2

5
� + 1; i = 1, 2, where n = 3.  

 
Let 𝒟𝒟3={𝐴𝐴3,1, 𝐴𝐴3,2, 𝐵𝐵3,1} and |𝒟𝒟3| = 3 = n. Therefore, the result is true for n = 1, 2 and 3. Assume that the theorem holds 
for n = k-1. That is,  there are exactly k-1 minimum co – isolated locating dominating sets of P5(k-1)+2 containing v2 and 
v5(k-1)+1 with the labellings v1, v2, v3, …, v5n, v5(k-1)+1, v5(k-1)+2, where k ≥ 4. Let 𝒟𝒟k – 1 be the set of all minimum co – 
isolated locating dominating sets of P5(k – 1)+2 containing v2 and v5(k – 1)+1 .  
 
Also,  𝒟𝒟k – 1 ={𝐴𝐴 (k – 1),1, 𝐴𝐴(k – 1),2, 𝐴𝐴(k – 1),3, …,  𝐴𝐴(k – 1),(k – 2) ,  𝐵𝐵(k – 1),1},   |𝒟𝒟 k – 1| = k – 1 and  
|𝐴𝐴(k – 1),i| = |𝐵𝐵(k – 1),1|  =2 �5(𝑘𝑘−1)+2

5
� + 1; i = 1, 2, …, (k – 1). The result is to be proved, when n = k. In order to construct 

the minimum co – isolated locating dominating sets of P5k + 2 containing v2 and v5k+1 , the following sets are defined 
using the sets in 𝒟𝒟 k – 1. Let 𝒟𝒟 k be the set of all minimum co – isolated locating dominating set of P5k + 1containing         
v2 and v5k+1.  
 
Then, 𝒟𝒟 k = {𝐴𝐴 k,1, 𝐴𝐴k,2, 𝐴𝐴k,3, …,  𝐴𝐴𝑘𝑘 ,(𝑘𝑘−1)  , 𝐵𝐵k,1} and 𝐴𝐴 k,i =𝐴𝐴(𝑘𝑘−1),𝑖𝑖  ∪ {v5k−1, v5k+1}; i = 1, 2, …, (k – 2)  and                 
𝐴𝐴 k,(k – 1) =  𝐵𝐵(𝑘𝑘−1),1  ∪ {v5k−1, v5k+1} and  𝐵𝐵k,1 = (𝐵𝐵(k-1),1 – {v5k−4})  ∪{v5k−3 , v5k−1, v5k+2}.  
 
Also, |𝐴𝐴k,i| = |𝐵𝐵k,1|  =2 �5𝑘𝑘+2

5
� + 1; i = 1, 2, …, (k – 1)  and |𝒟𝒟k| = k. Therefore, there are exactly k minimum co – 

isolated locating dominating sets of P5k+2 containing v2 and v5k+1 with the labellings v1, v2, v3, …, v5k, v5k+1, v5k+2 . By 
induction hypothesis, the theorem is proved for all n ≥ 1. 
 
Theorem: 3.11 For any integer n ≥ 1, γ Dcild (P5n+2) = n + 2. 
 
Proof: γ Dcild (P5n+2) is the sum of the number of minimum co – isolated locating dominating sets of P5n + 2 containing  

(i) v1 and v5n+2 
(ii) v2 and v5n+2 
(iii) v1 and v5n+1 
(iv) v2 and v5n+1 
(a) For (i), there is no minimum co-isolated dominating sets of P5n+2 containing v1 and v5n+2, by Theorem 3.8.  
(b) For (ii), the number of minimum co-isolated dominating sets of P5n+2 containing v2 and v5n+2 is 1, by Theorem 

3.9.  
(c) For (iii),  the number of minimum co – isolated locating dominating sets of P5n+2 containing v1 and v5n+1 is 

same as that of minimum co – isolated locating dominating sets containing v2 and v5n+2  and hence it is 1. 
(d) For (iv), the number of minimum co-isolated dominating sets of P5n+2 containing v2 and v5n+1 is n, By Theorem 

3.10. Hence, γ Dcild (P5n+2) = n + 2. 
 
In the following, the number of minimum co-isolated locating dominating sets of P5n+3 is found. 
 
Theorem: 3.12 There are exactly 𝑛𝑛

2+5𝑛𝑛+2
2

  minimum co – isolated locating dominating sets of P5n+3 containing v1 and 
v5n+3 with the labellings v1, v2, v3, …, v5n+2, v5n+3, where n ≥ 2. 
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Proof: Let the labellings of vertices of P5n+3 be v1, v2, v3, ..., v5n+2, v5n+3. The theorem is proved by the method of 
induction on n. For n = 1, 𝐴𝐴1,1={v1, v3, v5, v8}; 𝐴𝐴1,2={v1, v3, v6, v8}; 𝐴𝐴1,3={v1, v3, v6, v8}; 𝐴𝐴1,4={v1, v4, v6, v8}  are the 
only minimum co – isolated locating dominating sets of P8 containing v1 and v8, since, |𝐴𝐴1,i| = 4 =2 �5𝑛𝑛+3

5
� + 2, i = 1, 2, 

3, 4, by Theorem 2.5. Let 𝒟𝒟1={𝐴𝐴1,1, 𝐴𝐴1,2, 𝐴𝐴1,3} and |𝒟𝒟1| = 4.  Let n = 2. In order to construct the minimum co – isolated 
locating dominating sets of P13 containing v1 and v13, the following sets are defined using the sets in 𝒟𝒟1 .  
 
Let 𝐴𝐴2,i = 𝐴𝐴1,i ∪{v10, v13}; i = 1, 2, 3, 4 and 𝐴𝐴2,5 = (𝐴𝐴1,4 – {v8})  ∪{ v9, v10, v13}; 
      𝐵𝐵2,1 = 𝐴𝐴1,3 ∪{v11, v13}; 𝐵𝐵2,2 = 𝐴𝐴1,4 ∪{v11, v13} and 𝐵𝐵2,3 = (𝐴𝐴1,4 – {v8})  ∪{v9, v11, v13}. These are the only minimum co 
– isolated locating dominating sets of P13 containing v1 and v13, since |𝐴𝐴2,i| = |𝐵𝐵2,j| = 6 =2 �5𝑛𝑛+3

5
� + 2; i = 1, 2, …, 5 and       

j =1, 2, 3.  
 
Let 𝒟𝒟2={𝐴𝐴2,1, 𝐴𝐴2,2, …, 𝐴𝐴2,5, 𝐵𝐵2,1, 𝐵𝐵2,2, 𝐵𝐵2,3} and |𝒟𝒟2| = 8 =   𝑛𝑛

2+5𝑛𝑛+2
2

 . Let  n = 3. In order to construct the minimum co – 
isolated locating dominating sets of P18 containing v1 and v18, the following sets are defined using the sets in 𝒟𝒟2.  
 
Let A3,i= 𝐴𝐴2,𝑖𝑖  ∪ {v15, v18 }, for i = 1, 2, …, 5, and  
      A3,j = 𝐵𝐵2,(𝑗𝑗−5)  ∪ {v15, v18}, for j = 6, 7, 8  and 𝐴𝐴3,9 = 𝐵𝐵2,3– {v13} ∪{v14, v15, v18}; 
      𝐵𝐵3,i = 𝐵𝐵2,i ∪{v16, v18} ; i = 1, 2, 3; 
      𝐵𝐵3,4 = (𝐵𝐵2,3 – {v13}) ∪{v14, v16, v18}. 
 
These are the only minimum co – isolated locating dominating sets of P18 containing v1 and v18, since,  
|𝐴𝐴3,i| = |𝐵𝐵3,j| = 8 =2 �5𝑛𝑛+3

5
� + 2; i = 1, 2, …, 9 and j = 1, 2, ..., 4.  

 
Let 𝒟𝒟3={𝐴𝐴3,1, 𝐴𝐴3,2, …, 𝐴𝐴3,9, 𝐵𝐵3,1, 𝐵𝐵3,2, 𝐵𝐵3,3, 𝐵𝐵3,4} and |𝒟𝒟3| = 13 =  𝑛𝑛

2+5𝑛𝑛+2
2

, where n = 3. Therefore, the result is true for    

n=1,2 and 3. Assume that the theorem holds for n= k-1. That is, there are exactly (𝑘𝑘−1)2+5(𝑘𝑘−1)+2
2

 = 𝑘𝑘
2+3𝑘𝑘−2

2
 minimum 

co– isolated locating dominating sets of P5(k-1)+3 containing v1 and v5(k-1)+3 with the labellings v1, v2, v3, …, v5(k-1)+2,    
v5(k-1)+3. Let 𝒟𝒟k – 1 be the set of all minimum co – isolated locating dominating sets of P5(k – 1)+3 containing v1 and           
v5(k – 1)+3.  
 
Then,  𝒟𝒟k – 1 ={𝐴𝐴 (k – 1),1, 𝐴𝐴(k – 1),2, 𝐴𝐴(k – 1),3, …,  𝐴𝐴(k – 1),r ,  𝐵𝐵(k – 1),1, 𝐵𝐵(k – 1),2, …, 𝐵𝐵(k – 1),s} where r = (𝑘𝑘−1)(𝑘𝑘+2)

2
; s = k, k ≥ 2.  

 
Also,  |𝒟𝒟 k – 1| =  𝑘𝑘

2+3𝑘𝑘−2
2

    and |𝐴𝐴(k – 1),i| = |𝐵𝐵(k – 1),j|  =2 �5(𝑘𝑘−1)+3
5

� + 2,  i = 1, 2, …, r and j = 1, 2, …, s. The theorem is to 
be proved for n = k. In order to construct the minimum co – isolated locating dominating sets of P5k + 3 containing v1 and 
v5k+3 , the following sets are defined using the sets in 𝒟𝒟 k – 1. Let 𝒟𝒟 k be the set of all minimum co – isolated locating 
dominating sets of P5k + 3 containing v1 and v5k+3.  
 
Then, 𝒟𝒟 k = {𝐴𝐴 k,1, 𝐴𝐴k,2, 𝐴𝐴k,3, …,  𝐴𝐴𝑘𝑘 ,𝑙𝑙 , 𝐵𝐵k,1, 𝐵𝐵k,2, .., 𝐵𝐵k,m}, where 𝑙𝑙 = 𝑘𝑘(𝑘𝑘+3)

2
  and m = k + 1.  

Ak,i = 𝐴𝐴(𝑘𝑘−1),𝑖𝑖  ∪ {v5k , v5k+3}, for i = 1, 2, …, r; 
Ak,j = 𝐵𝐵(𝑘𝑘−1),(𝑗𝑗−𝑜𝑜)  ∪ {v5k, v5k+3}, for j = r+1, r+2, …, r+s (= 𝑙𝑙); 
𝐴𝐴𝑘𝑘 ,(𝑙𝑙+1)= (𝐵𝐵(k-1),k – {v5k−3})  ∪{v5k−2 , v5k, v5k+3}; 
𝐵𝐵k,i = 𝐵𝐵(𝑘𝑘−1),𝑖𝑖  ∪ {v5k+1, v5k+3}; i = 1, 2, …, k; 
𝐵𝐵k,(k+1) = (𝐵𝐵(k-1),k– {v5k−3})  ∪{v5k−2 , v5k+1, v5k+3}.  
 
Also, |𝐴𝐴k,i| = |𝐵𝐵k,j|  =2 �5𝑘𝑘+3

5
� + 2; i = 1, 2, …, 𝑙𝑙; j = 1, 2, …, m and |𝒟𝒟k| = 𝑙𝑙+ m =  𝑘𝑘

2+5𝑘𝑘+2
2

 . The theorem is proved for     

n = k. By induction hypothesis, there are exactly  𝑛𝑛
2+5𝑛𝑛+2

2
  minimum co – isolated locating dominating sets of P5n+3 

containing v1 and v5n+3 with the labellings v1, v2, v3, …., v5n+2, v5n+3, for all n ≥ 2. 
 
Theorem: 3.13 There are exactly 𝑛𝑛

2+21𝑛𝑛−24
2

  minimum co – isolated locating dominating sets of P5n+3 containing v1 and 
v5n+2 with the labellings v1, v2, v3, …, v5n+2, v5n+3 , where n ≥ 3. 
 
Proof: Let the labellings of vertices of P5n+3 be v1, v2, v3, ..., v5n+2, v5n+3. The theorem is proved by the method of 
induction on n.  
 
For n = 1, 𝐴𝐴1,1={v1, v2, v5, v7}; 𝐴𝐴1,2={v1, v3, v5, v7}; 𝐴𝐴1,3={v1, v3, v6, v7}  are the only minimum co – isolated locating 
dominating sets of P8 containing v1 and v7, since |𝐴𝐴1,i| = 4 =2 �5𝑛𝑛+3

5
� + 2, by Theorem 2.5.  
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Let 𝒟𝒟1= {𝐴𝐴1,1, 𝐴𝐴1,2, 𝐴𝐴1,3} and |𝒟𝒟1| = 3.  Let n = 2. In order to construct the minimum co – isolated locating dominating 
sets of P13 containing v1 and v12, the following sets are defined using 𝒟𝒟1 .  
 
Let 𝐴𝐴2,i = 𝐴𝐴1,i ∪{v10, v12}; i = 1, 2, 3 and 
      𝐵𝐵2,1 = (𝐴𝐴1,2 – {v7})  ∪{ v8, v10, v12}; 𝐵𝐵2,2 = (𝐴𝐴1,3 – {v7})  ∪{ v8, v10, v12}; 
      𝐵𝐵2,3 = (𝐴𝐴1,1 – { v2, v7})  ∪{ v4, v8, v10, v12} ; 𝐵𝐵2,4 = (𝐴𝐴1,1 – { v2, v5, v7})  ∪{ v4, v6, v8, v10, v12}; 
      𝐵𝐵2,5 = (𝐴𝐴1,2 – { v2, v5, v7})  ∪{ v4, v6, v9, v10, v12}; 𝐵𝐵2,6 = (𝐴𝐴13 – { v7})  ∪{ v6, v8, v11, v12}; 
      𝐵𝐵2,7 = (𝐵𝐵2,4 – {v10})  ∪{v11, v12} and 𝐵𝐵2,8 = (𝐵𝐵2,5 – {v10})  ∪{v11, v12}; 
 
These are the only minimum co – isolated locating dominating sets of P13 containing v1 and v12, since   
|𝐴𝐴2,i| = |𝐵𝐵2,j| = 6 = 2 �5𝑛𝑛+3

5
� + 2; i = 1, 2, 3 and j =1, 2, …, 8.  

 
Let 𝒟𝒟2={𝐴𝐴2,1, 𝐴𝐴2,2, 𝐴𝐴2,3, 𝐵𝐵2,1, 𝐵𝐵2,2, …, 𝐵𝐵2,8} and |𝒟𝒟2| = 11 = 𝑛𝑛

2+21𝑛𝑛−24
2

, where n = 2. 
 
Let n = 3. In order to construct the minimum co – isolated locating dominating set of P18 containing v1 and v17, the 
following sets are defined using the sets in 𝒟𝒟2.  
𝐴𝐴3,i = 𝐴𝐴2,𝑖𝑖  ∪ {v15 , v17}, for i = 1, 2, 3; 
𝐴𝐴3,j = 𝐵𝐵2,(𝑗𝑗−3)  ∪ {v15, v17}, for j = 4, 5, …, 11; 
𝐵𝐵3,i = 𝐵𝐵2,i– {v12} ∪{v13, v15, v17}; i = 1, 2, …, 8; 
𝐵𝐵3,j = 𝐵𝐵2,(j-3)– {v12} ∪{v13, v16, v17} ; j = 9, 10, 11; and 𝐵𝐵3,12 = (𝐵𝐵2,8 – {v12})  ∪{v14, v15, v17}; 
𝐵𝐵3,13 = (𝐵𝐵2,8 – {v12})  ∪{v14, v16, v17}.  
 
These are the only minimum co – isolated locating dominating set of P18 containing v1 and v18,   since 
|𝐴𝐴3,i| = |𝐵𝐵3,j| =8 = 2 �5𝑛𝑛+3

5
� + 2; i = 1, 2, …, 11 and j = 1, 2, ..., 13.  

 
Let 𝒟𝒟3={𝐴𝐴3,1, 𝐴𝐴3,2, …,  𝐴𝐴3,11, 𝐵𝐵3,1, 𝐵𝐵3,2,  …, 𝐵𝐵3,13} and |𝒟𝒟3| = 24=  𝑛𝑛

2+21𝑛𝑛−24
2

 , where n = 3.    
 
Let n = 4. In order to construct the minimum co – isolated locating dominating sets of P21 containing v1 and v20, the 
following sets are defined using the sets in 𝒟𝒟3.  
 
Let 𝐴𝐴4,i = 𝐴𝐴3,𝑖𝑖  ∪ {v20, v22}, for i = 1, 2, …,11; 
𝐴𝐴4,j = 𝐵𝐵3,(𝑗𝑗−11)  ∪ {v20, v22}, for j = 12, 13, …, 24; 
𝐵𝐵4,i = 𝐵𝐵3,i– {v17} ∪{v18, v20, v22}, for i = 1, 2, …, 13;  
𝐵𝐵4,14 = 𝐵𝐵3,13– {v18} ∪{v19, v20, v22}.  
 
These are the only minimum co – isolated locating dominating set of P21 containing v1 and v20, since 
|𝐴𝐴3,i| = |𝐵𝐵3,j| =8 =2 �5𝑛𝑛+3

5
� + 2; i = 1, 2, …, 24 and j = 1, 2, ..., 14.  

 
Let 𝒟𝒟4={𝐴𝐴4,1, 𝐴𝐴4,2, …, 𝐴𝐴4,24, 𝐵𝐵4,1, 𝐵𝐵4,2, …, 𝐵𝐵4,14} and |𝒟𝒟4| = 38 = 𝑛𝑛

2+21𝑛𝑛−24
2

  , where n = 4. Therefore, the result is true for 

n = 2, 3 and 4. Assume that the theorem holds for n = k-1. That is, there are exactly (𝑘𝑘−1)2+21(𝑘𝑘−1)−24
2

  minimum co – 
isolated locating dominating sets of P5(k-1)+3 containing v1 and v5(k-1)+2 with the labellings v1, v2, v3, …., v5(k-1)+2, v5(k-1)+3, 
where k ≥ 4. 
 
Let 𝒟𝒟k – 1 be the set of all minimum co – isolated locating dominating sets of P5(k – 1)+3 containing v1 and v5(k – 1)+2 .  
 
Then,  𝒟𝒟k – 1 ={𝐴𝐴 (k – 1),1, 𝐴𝐴(k – 1),2, 𝐴𝐴(k – 1),3,…, 𝐴𝐴(k – 1),r , 𝐵𝐵(k – 1),1,𝐵𝐵(k – 1),2,, 𝐵𝐵(k – 1),s} and r = 𝑘𝑘

2+17𝑘𝑘−62
2

; s = (k–1)+10 = k + 9, 

k ≥ 4. Also, |𝒟𝒟 k – 1| =𝑘𝑘−1)2+21(𝑘𝑘−1)−24
2

  =𝑘𝑘
2+19𝑘𝑘−44

2
; and |𝐴𝐴(k – 1),i| = |𝐵𝐵(k – 1),j|  =2 �5(𝑘𝑘−1)+3

5
� + 2; i = 1, 2, …, r and              

j=1, 2, …, s. The theorem is to be proved for n = k. In order to construct the minimum co – isolated locating 
dominating set of P5k + 3 containing v1 and v5k+2 , the following sets are defined using the sets in 𝒟𝒟 k – 1. Let 𝒟𝒟 k be the set 
of all minimum co – isolated locating dominating sets of P5k + 3 containing v1 and v5k+2.  
 
Then, 𝒟𝒟 k = {𝐴𝐴 k,1, 𝐴𝐴k,2, 𝐴𝐴k,3, …,  𝐴𝐴𝑘𝑘 ,𝑙𝑙 , 𝐵𝐵k,1, 𝐵𝐵k,2, …, 𝐵𝐵k,m}, where 𝑙𝑙 = 𝑛𝑛

2+19𝑛𝑛−44
2

 and m = k + 10.  
𝐴𝐴 k,i = 𝐴𝐴(𝑘𝑘−1),𝑖𝑖  ∪ {v5k, v5k+2}, i = 1, 2, …, r; 
𝐴𝐴 k,j = 𝐵𝐵(𝑘𝑘−1),(𝑗𝑗−𝑜𝑜)  ∪ {v5k, v5k+2}, j = r+1, r+2, …, r+s (= 𝑙𝑙); 
𝐵𝐵k,i = (𝐵𝐵(𝑘𝑘−1),𝑖𝑖 − {v5k−3})  ∪ {v5k−2, v5k , v5k+2}; i = 1, 2, …, s;  
𝐵𝐵k,(s+1) = (𝐵𝐵(k-1),s– {v5k−2})  ∪{v5k−1 , v5k , v5k+2}.  
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Also, |𝐴𝐴k,i| = |𝐵𝐵k,j|  =2 �5𝑘𝑘+3

5
� + 2; i = 1, 2, …, 𝑙𝑙;  j = 1, 2, …, m and |𝒟𝒟k| = 𝑙𝑙+ m = 𝑘𝑘

2+21𝑘𝑘−24
2

.   The result is true for        

n = k. By induction hypothesis, there are exactly 𝑛𝑛
2+21𝑛𝑛−24

2
  minimum co – isolated locating dominating sets of P5n+3 

containing v1 and v5n+2 with the labellings v1, v2, v3, …., v5n+2, v5n+3 , where n ≥ 3. 
 
Theorem: 3.14 There are exactly (n + 1)2 minimum co – isolated locating dominating sets of P5n+3 containing v2 and 
v5n+2 with the labellings v1, v2, v3, …., v5n+2, v5n+3 , where n ≥ 3. 
 
Proof: Let the labellings of vertices of P5n+3 be v1, v2, v3, ..., v5n+2, v5n+3.  
 
For n = 2, 𝐴𝐴2,1={v2, v4, v7, v9, v10, v12}; 𝐴𝐴2,2={v2, v4, v7, v9, v11, v12};𝐴𝐴2,3={v2, v4, v7, v8, v10, v12} and 𝐴𝐴2,4={v2, v4, v7, v8, 
v11, v12} are the only minimum co – isolated locating dominating sets of P13 containing v2 and v12, since                    
|𝐴𝐴2,i| = 6 =2 �5𝑛𝑛+3

5
� + 2 (By Theorem 2.5.). Let 𝒟𝒟2= {𝐴𝐴2,1, 𝐴𝐴2,2, 𝐴𝐴2,3, 𝐴𝐴2,4} and |𝒟𝒟2| = 4.  

 
Let n = 3. In order to construct the minimum co – isolated locating dominating sets of P18 containing v2 and v17, the 
following sets are defined using 𝒟𝒟2.  
 
Let 𝐴𝐴3,i = 𝐴𝐴2,i ∪{v15, v17}; and 𝐵𝐵3,i = (𝐴𝐴2,i – {v12})  ∪{ v13, v15, v17};  i = 1, 2, 3, 4;  
𝐵𝐵3,5 = (𝐴𝐴2,2 – {v12})  ∪{ v13, v16, v17} ; 𝐵𝐵3,6 = (𝐴𝐴2,4 – {v12})  ∪{ v13, v16, v17};  
𝐵𝐵3,7 = (𝐴𝐴2,2 – {v12})  ∪{ v14, v15, v17}; 𝐵𝐵3,8 = (𝐴𝐴2,2 – {v12})  ∪{ v14, v16, v17}.  
 
Let D = {v2, v4, v7, v9}. 
𝐵𝐵3,9 = D ∪{ v12, v13, v15, v17}; 𝐵𝐵3,10 = D ∪{ v12, v13, v16, v17}; 𝐵𝐵3,11 = D ∪{ v12, v14, v15, v17}; 𝐵𝐵3,12 = D ∪{ v12, v14, v16, v17};  
 
These are the only minimum co – isolated locating dominating sets of P18 containing v2 and v17, since  
|𝐴𝐴2,i| = |𝐵𝐵2,j| = 6 =2 �5𝑛𝑛+3

5
� + 2; i = 1, 2, .., 4 and j =1, 2, …, 12. Let 𝒟𝒟3 = {𝐴𝐴3,1, …,  𝐴𝐴3,4, 𝐵𝐵3,1, 𝐵𝐵3,2, …, 𝐵𝐵3,12} and          

|𝒟𝒟3| = 16 = (n + 1)2.  
 
The theorem is proved by the method of induction on n, where n ≥ 4.  
 
Let n = 4. In order to construct the minimum co – isolated locating dominating sets of P23 containing v2 and v22, the 
following sets are defined using the sets in 𝒟𝒟3.  
 
Let 𝐴𝐴4,i = 𝐴𝐴3,𝑖𝑖  ∪ {v20, v22},  i = 1, 2, 3, 4; 
𝐴𝐴4,j = 𝐵𝐵3,(𝑗𝑗−4)  ∪ {v20, v22},  j = 5, 6, …, 16; 
 
Let   S = {v17} ∪{v20, v22};  
𝐵𝐵4,1 = S∪ 𝐵𝐵3,1; 𝐵𝐵4,2 = S∪ 𝐵𝐵3,3; 𝐵𝐵4,3  = S∪ 𝐵𝐵3,4;  
𝐵𝐵4,4  =S∪ 𝐵𝐵39;  𝐵𝐵4,5  = S∪ 𝐵𝐵3,10; 𝐵𝐵4,6 = S∪ 𝐵𝐵3,11; 𝐵𝐵47 = S∪ 𝐵𝐵3,12;  
𝐵𝐵4,8 = {v2, v4, v7 v8, v11, v14, v16, v19, v20, v22}; and   
𝐵𝐵4,9 = { v2, v4, v7 v8, v11, v14, v16, v19, v21, v22}. These are the only minimum co – isolated locating dominating sets of P23 

containing v2 and v22, since |𝐴𝐴4,i| = |𝐵𝐵4,j| =10 =2 �5𝑛𝑛+3
5
� + 2; i = 1, 2, …, 16 and j = 1, 2, ..., 9.  

 
Let 𝒟𝒟4={𝐴𝐴4,1, 𝐴𝐴4,2, …, 𝐴𝐴4,16, 𝐵𝐵4,1, 𝐵𝐵4,2, …, 𝐵𝐵4,9} and |𝒟𝒟4| = 25 = (n + 1)2. Therefore, the result is true for n = 4. Assume 
that the theorem holds for n = k - 1. Let 𝒟𝒟k– 1 be the set of all minimum co – isolated locating dominating set of          
P5(k – 1)+3 containing v2 and v5(k – 1)+2 , then  𝒟𝒟k – 1 ={𝐴𝐴 (k – 1),1, 𝐴𝐴(k – 1),2, 𝐴𝐴(k – 1),3, …,  𝐴𝐴(k – 1),r ,  𝐵𝐵(k – 1),1, 𝐵𝐵(k – 1),2, …, 𝐵𝐵(k – 1),s}, 
where  
r = (k – 1)2; s = 2(k-1)+1 = 2k - 1, k ≥ 5 . Also,  |𝒟𝒟 k – 1| = k2 and |𝐴𝐴(k– 1),i| = |𝐵𝐵(k – 1),j|  =2 �5(𝑘𝑘−1)+3

5
� + 2; i = 1, 2, …, r 

and j = 1, 2, …, s. The theorem is to be proved for n = k. In order to construct the minimum co – isolated locating 
dominating set of P5k + 3 containing v2 and v5k+2, the following sets are defined using the sets in 𝒟𝒟 k – 1. Let 𝒟𝒟 k be the set 
of all minimum co – isolated locating dominating sets of P5k + 3 containing v2 and v5k+2. Then,  
𝒟𝒟 k = {𝐴𝐴 k,1, 𝐴𝐴k,2, 𝐴𝐴k,3, …,  𝐴𝐴𝑘𝑘 ,𝑙𝑙 , 𝐵𝐵k,1, 𝐵𝐵k,2, …, 𝐵𝐵k,m}, where 𝑙𝑙 = k2 and m = 2k + 1.  
𝐴𝐴k,i =  𝐴𝐴(k – 1),i  ∪{v5k, v5k+2}; i = 1, 2, …, k2;  
𝐵𝐵k,j = (𝐵𝐵(𝑘𝑘−1),𝑗𝑗– {v5k−3}) ∪ {v5k, v5k+2}; j = 1, 2, …, 2k – 1;  
 
The sets 𝐵𝐵k,2k and 𝐵𝐵k,2k+1 are defined as follows. 
If n is odd, 𝐵𝐵k,2k = {v2, v4, v7 v9, v12, v14, v15, v17, …, v5k, v5k+2};  
𝐵𝐵k,2k+1 = {v2, v4, v7 v9, v12, v14, v15, v17, …, v5k+1, v5k+2}.  
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If n is even, 𝐵𝐵k,2k = {v2, v4, v7 v8, v11, v14, v16, v19, …, v5k, v5k+2};  
𝐵𝐵k,2k+1 = {v2, v4, v7 v8, v11, v14, v16, v19, …,  v5k+1, v5k+2}.  
 
Also, |𝐴𝐴k,i| = |𝐵𝐵k,j|  =2 �5𝑘𝑘+3

5
� + 2; i = 1, 2, …, 𝑙𝑙; j = 1, 2, …, m and |𝒟𝒟k| = 𝑙𝑙+ m = (k + 1)2.   Therefore, there are exactly 

(k + 1)2 minimum co – isolated locating dominating sets of P5k+3 containing v2 and v5k+2 with the labellings v1, v2, v3, 
…, v5k+2, v5k+3 , where k ≥ 4. By induction hypothesis, the result is true for n ≥ 4. Also, for n = 3, the number of 
minimum co-isolated locating dominating sets of P18 is 16. 
 
Theorem: 3.15 For any integer n ≥ 4, γ Dcild (P5n+3) =  5𝑛𝑛

2+51𝑛𝑛−44
2

. 
 
Proof: γ Dcild (P5n+3) is the sum of the number of minimum co – isolated locating dominating sets of P5n + 3 containing  

(i) v1 and v5n+3 
(ii) v1 and v5n+2 
(iii) v2 and v5n+3 
(iv) v2 and v5n+2 
(a) For (i), the number number of minimum co – isolated locating dominating sets of P5n + 3 containing v1 and v5n+3 

is 𝑛𝑛
2+5𝑛𝑛+2

2
, by Theorem 3.12. 

(b) For (ii), the number of minimum co – isolated locating dominating sets of P5n + 3 containing v1 and v5n+2 is 
𝑛𝑛2+21𝑛𝑛−24

2
 , by Theorem 3.13. 

(c) For (iii), the number of minimum co – isolated locating dominating sets of P5n + 3 containing v2 and v5n+3 is the 
same as the number 𝑛𝑛

2+21𝑛𝑛−24
2

 . 
(d) For (iv), the number of minimum co – isolated locating dominating sets of P5n + 3 containing v2 and v5n+2 is     

(n + 1)2, by Theorem 3.14. 
 
Therefore, γ Dcild (P5n+3) = (5𝑛𝑛2+51𝑛𝑛−44)

2
. 

 
Remark: 3.16 The Recurrence relation is given by  
γ Dcild (P5n+3) – γ Dcild (P5(n-1)+3) = (5𝑛𝑛2+51𝑛𝑛−44)

2
−  (5𝑛𝑛2+41𝑛𝑛−90)

2
 . 

                                                  = 5n + 23. 
 
Therefore, γ Dcild (P5n+3) = γ Dcild (P5n-2) + 5n + 23; n ≥ 4.  
 
In the following, the number of minimum co-isolated locating dominating sets of P5n+4 is found. 
 
Theorem: 3.17 There is exactly one minimum co – isolated locating dominating set of P5n+4 containing v1 and v5n+4 
with the labellings v1, v2, v3, …., v5n+2, v5n+3, v5n+4, where n ≥ 1. 
 
Proof: Clearly, D = {v1, v4, v6, v9, …, v5n + 1, v5n+4} is a minimum co – isolated locating dominating set of P5n+4 
containing v1 and v5n+4,which proves the existence. To prove the uniqueness, let 𝐷𝐷′= D – {v5n+4}. 𝐷𝐷′  is a minimum co – 
isolated locating dominating set of P5n+1 with the labellings v1, v2, v3, …., v5n+1, v5n+2 containing v1 and v5n+1 , since, |𝐷𝐷′ | 
= 2n + 1 = γ cild (P5n+2). But by Theorem 3.9, 𝐷𝐷′  is the unique minimum co – isolated locating dominating set of P5n+2 
and hence D is unique. 
 
Theorem: 3.18 There are exactly n+1 minimum co – isolated locating dominating sets of P5n+4 containing v2 and v5n+4 
with the labellings v1, v2, v3, …., v5n+2, v5n+3, v5n+4 and n ≥ 0. 
 
Proof: Let the labellings of vertices of P5n+4 be v1, v2, v3, ..., v5n+2, v5n+3, v5n+4. The theorem is proved by the method of 
induction on n. For n = 0, {v2, v4} is the only minimum co – isolated locating dominating set of P4 containing v2 and v4.  
 
For n = 1, {v2, v4,v6, v9} and {v2, v4,v7, v9} are the only minimum co – isolated locating dominating sets of P9 
containing v2 and v9.  
 
Assume that the theorem holds for n = k-1.  That is, there are exactly k minimum co – isolated locating dominating sets 
of P5(k-1)+4 containing v2 and v5(k-1)+4 with the labellings v1, v2, v3, …., v5(k-1)+2, v5(k-1)+3, v5(k-1)+4 . Let the k sets be   Di,      
i = 1,2, …, k and |Di|  = 2 �5(𝑘𝑘−1)+4

5
� + 2, by Theorem 2.5.  

 
Assume n = k.  Let Di′ = Di ∪{v5i+1, v5i+4}; i = 1, 2, 3… k.  
 



S. Muthammai, N. Meenal* / The Number Of Minimum Co – Isolated Locating Dominating Sets Of Paths / IJMA- 6(5), May-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                         73   

 
Since,  | Di′| = |Di| + 2 =  2 �5(𝑘𝑘−1)+4

5
� + 2 + 2 = 2 �5𝑘𝑘+4

5
� + 2 ;  Di′ are the minimum co – isolated locating dominating 

set of P5k+4, i = 1, 2, …, k. 
 
In addition, D = {v2, v4,v7, v9, …, v5k+2, v5k+4} is also a minimum co – isolated locating dominating set of P5k+4 since, 
|D| = 2 �5𝑘𝑘+4

5
� + 2 , which is different from Di′ for each i. Therefore, there are k + 1 minimum co – isolated locating 

dominating sets of P5k+4 containing v2 and v5k+4. Therefore, the theorem is proved for n = k. By induction hypothesis, 
there are exactly n+1 minimum co – isolated locating dominating sets of P5n+4 containing v2 and v5n+4 with the 
labellings v1, v2, v3, …., v5n+2, v5n+3, v5n+4 and n ≥ 0. 
 
Theorem: 3.19 There are exactly (𝑛𝑛+1)(𝑛𝑛+2)

2
 minimum co – isolated locating dominating sets of P5n+4 containing v2 and 

v5n+3 with the labellings v1, v2, v3, …, v5n+2, v5n+3, v5n+4, where n ≥ 1. 
 
Proof: Let the labellings of vertices of P5n+4 be v1, v2, v3, ..., v5n+2, v5n+3, v5n+4. The theorem is proved by the method of 
induction on n. For n = 1, 𝐴𝐴1,1={v2, v3, v6, v8}; 𝐴𝐴1,2={v2, v4, v6, v8}; 𝐴𝐴1,3={v2, v4, v7, v8}  are the only minimum co – 
isolated locating dominating sets of P9 containing v2 and v8, since, |𝐴𝐴1,i| = 4 =2 �5𝑛𝑛+4

5
� + 2. Let 𝒟𝒟1={𝐴𝐴1,1, 𝐴𝐴1,2, 𝐴𝐴1,3} and 

|𝒟𝒟1| = 3 = (𝑛𝑛+1)(𝑛𝑛+2)
2

.  
 
Let n = 2. In order to construct the minimum co – isolated locating dominating sets of P14 containing v2 and v13, the 
following sets are defined using 𝒟𝒟1  .  
 
Let 𝐴𝐴2,i = 𝐴𝐴1,i ∪{v11, v13}; i = 1, 2, 3 and  
𝐵𝐵2,1 = (𝐴𝐴1,2 – {v8})  ∪{ v9, v11, v13}; 𝐵𝐵2,2 = (𝐴𝐴1,3 – {v8})  ∪{ v9, v11, v13} and  
𝐵𝐵2,3 = (𝐴𝐴1,3 – {v8})  ∪{ v9, v12, v13}.  
 
These are the only minimum co – isolated locating dominating sets of P14 containing v2 and v13, since,  
|𝐴𝐴2,i| = |𝐵𝐵2,i| = 6 =2 �5𝑛𝑛+4

5
� + 2.  

 
Let 𝒟𝒟2 = {𝐴𝐴2,1, 𝐴𝐴2,2, 𝐴𝐴2,3, 𝐵𝐵2,1, 𝐵𝐵2,2, 𝐵𝐵2,3} and |𝒟𝒟2| = 6 = (𝑛𝑛+1)(𝑛𝑛+2)

2
.  

 
Let n = 3.  To construct the minimum co – isolated locating dominating sets of P16 containing v2 and v16 the following 
sets are defined using the sets in 𝒟𝒟2.  
𝐴𝐴 3,i = 𝐴𝐴2,𝑖𝑖  ∪ {v16, v18},  i = 1, 2, 3; 
𝐴𝐴 3,j  = 𝐵𝐵2,(𝑗𝑗−3)  ∪ {v16, v18 }, j =  4, 5, 6; 
𝐵𝐵3,i = (𝐵𝐵2,i – {v13})  ∪{v14, v16, v18}; i = 1, 2, 3; and  
𝐵𝐵3,4 = (𝐵𝐵2,3 – {v13})  ∪{v14, v17, v18}.  
 
These are the only minimum co – isolated locating dominating set of P19 containing v2 and v18, since 
|𝐴𝐴3,i| = |𝐵𝐵3,j| = 8 =2 �5𝑛𝑛+4

5
� + 2; i = 1, 2, …, 6 and j = 1, 2, 3, 4.  

 
Let 𝒟𝒟3={𝐴𝐴3,1, 𝐴𝐴3,2, …, 𝐴𝐴3,6, 𝐵𝐵3,1, 𝐵𝐵3,2, 𝐵𝐵3,3, 𝐵𝐵3,4} and |𝒟𝒟3| = 10 = (𝑛𝑛+1)(𝑛𝑛+2)

2
, when n = 3. Therefore, the result is true for   

n = 1, 2 and 3.  
 
Assume that the theorem holds for n = k-1. That is, for  all paths having 5(k – 1)+4  vertices. Let 𝒟𝒟k – 1 be the set of all 
minimum co – isolated locating dominating sets of P5(k – 1)+2 containing v2 and v5(k – 1)+1.  
Then,  𝒟𝒟k – 1 ={𝐴𝐴 (k – 1),1, 𝐴𝐴(k – 1),2,  𝐴𝐴(k – 1),3, …,  𝐴𝐴(k – 1),r ,  𝐵𝐵(k – 1),1, 𝐵𝐵(k– 1),2, …, 𝐵𝐵(k– 1),s}, where r = (𝑛𝑛−1)𝑛𝑛

2
; s = k, k ≥ 3. Also  

|𝒟𝒟 k – 1| = 𝑘𝑘(𝑘𝑘+1)
2

 and |𝐴𝐴(k – 1),i| = |𝐵𝐵(k – 1),j|  =2 �5(𝑘𝑘−1)+4
5

� + 2; i = 1, 2, …, r and j = 1, 2, …, s. Let n = k. In order to 
construct the minimum co – isolated locating dominating sets of P5k + 4 containing v2 and v5k+3, the following sets are 
defined using the sets in 𝒟𝒟 k – 1. Let 𝒟𝒟 k be the set of all minimum co – isolated locating dominating set of P5k + 4 
containing v2 and v5k+3.  
 
Then, 𝒟𝒟 k = {𝐴𝐴 k,1, 𝐴𝐴k,2, 𝐴𝐴k,3, …,  𝐴𝐴𝑘𝑘 ,𝑙𝑙 , 𝐵𝐵k,1, 𝐵𝐵k,2, …, 𝐵𝐵k,m},  where 𝑙𝑙 = 𝑘𝑘(𝑘𝑘+1)

2
 and m = k + 1.  

𝐴𝐴 k,i = 𝐴𝐴(𝑘𝑘−1),𝑖𝑖  ∪ {v5k+1, v5k+3}, ; for i = 1, 2, …, r; 
𝐴𝐴 k,j = 𝐵𝐵(𝑘𝑘−1),(𝑗𝑗−𝑜𝑜)  ∪ {v5k+1, v5k+3}, for j = r+1, r+2, …, r+s (= 𝑙𝑙); 
𝐵𝐵k,i = (𝐵𝐵(k-1),i – {v5k−2})  ∪{v5k−1 , v5k+1, v5k+3},  i = 1, 2, …, s; and  
𝐵𝐵k,(k+1) = (𝐵𝐵(k-1),k – {v5k−2})  ∪{v5k−1 , v5k+2, v5k+3}.  
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Also, |𝐴𝐴k,i| = |𝐵𝐵k,j|  =2 �5𝑘𝑘+4

5
� + 2; i = 1, 2, …, 𝑙𝑙; j = 1, 2, …, m and |𝒟𝒟k| = 𝑙𝑙+ m = (𝑘𝑘+1)(𝑘𝑘+2)

2
.   Hence, the Theorem is 

proved for n = k. By induction hypothesis, there are exactly (𝑛𝑛+1)(𝑛𝑛+2)
2

 minimum co – isolated locating dominating sets 
of P5n+4 containing v2 and v5n+3 with the labellings v1, v2, v3, …, v5n+2, v5n+3, v5n+4, for all n ≥ 1. 
 
Theorem: 3.20 For any integer n ≥ 1, γ Dcild (P5n+4) = (𝑛𝑛

2+7𝑛𝑛+8)
2

. 
 
Proof: γ Dcild (P5n+4) is the sum of the number of minimum co – isolated locating dominating sets of P5n + 4 containing  

(i) v1 and v5n+4 
(ii) v1 and v5n+3 
(iii) v2 and v5n+4 
(iv) v2 and v5n+3 
(a). For (i), the number number of minimum co – isolated locating dominating sets of P5n + 4 containing  v1 and 

v5n+4  is 1 , by Theorem 3.17. 
(b). For (ii), the number of minimum co – isolated locating dominating sets of P5n + 4 containing  v1 and v5n+3  is 

(n+1), by Theorem 3.18. 
(c). For (iii), the number of minimum co – isolated locating dominating sets of P5n + 4 containing  v2 and v5n+4  is the 

same as the number (n + 1) 
(d). For (iv), the number of minimum co – isolated locating dominating sets of P5n + 4 containing  v2 and v5n+3  is 

(𝑛𝑛+1)(𝑛𝑛+2)
2

,  by Theorem 3.19. 
 
Hence, γ Dcild (P5n+4) = (𝑛𝑛

2+7𝑛𝑛+8)
2

. 
 
Remark 3.21: The Recurrence relation is given by  
γ Dcild (P5n+4) – γ Dcild (P5(n-1)+4) = (𝑛𝑛

2+7𝑛𝑛+8)
2

−  (𝑛𝑛2+5𝑛𝑛+2)
2

 . 
                                                  = n + 3. 
 
Therefore, γ Dcild (P5n+4) = γ Dcild (P5n-1) + n + 3. 
 
4. CONCLUSION 
 
In this paper, the number γDcild is obtained for paths Pn, n ≥ 4 are studied. 
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