International Journal of Mathematical Archive-6(5), 2015, 57-62

Fuzzy r-Separation Axioms in Fuzzy Topological Spaces

MANJARI SRIVASTAVA, PARIJAT SINHA*

Department of Mathematics, V. S. S. D. College, Kanpur, India.

(Received On: 21-04-15; Revised & Accepted On: 22-04-15)

ABSTRACT

Here we study the fuzzy regularly open sets [1] and introduce fuzzy δ -open set. Using these sets we define and study the r-separation axioms for topological spaces. Several basic results were introduced and studied for r-separation axioms for topological spaces viz. fuzzy r_i for i = 0, 1, 2, fuzzy r-regular, fuzzy r-normal spaces.

AMS Subject Classification: 54A40.

Key words: Fuzzy r-neighbourhood, Fuzzy regularly open sets, Fuzzy r-separation axioms, Fuzzy almost separation axioms.

1. INTRODUCTION

The concept of Fuzzy set was introduced by Zadeh in 1965 to describe those phenomena which are imprecise, vague or fuzzy in nature. Fuzzy set theory has remarkable array of applications in almost all disciplines. Fuzzy set handle such situation by attributing a degree to which a certain object belongs to a set.

Fuzzy regularly open sets in a fuzzy topological space were introduced by Azad [1] in 1981. Using these concepts Sinhal and Rajvanshi in 1992 introduced almost separation axioms. All undefined fuzzy topological concepts are from [2]. In the present paper we have defined fuzzy r-separation axioms- fuzzy rT_i for i=0, 1, 2 fuzzy r-regularity and fuzzy r-normality in a fts.

2. PRELIMINARIES

We take I= [0, 1]. For a fuzzy set $A \in I^X$, co A denotes its fuzzy complement. For $\alpha \in I$, $\underline{\alpha}$ denotes α valued constant fuzzy set. We denote the characteristic function of $Y \subseteq X$ as Y and regard it as an element of I^X . A fuzzy point x_r in X is a fuzzy set in X taking value $r \in (0, 1)$ at x and 0 elsewhere, x and r are called the support and value of x_r respectively. A fuzzy point x_r is said to belong to $A \in I^X$ if r < A(x). Two fuzzy points are said to be distinct if their support are distinct. Given a fuzzy topological space (in short fts) (X, T), $A \in I^X$ is called regularly open if int cl (A) =A [1], also $A \in I^X$ is called regularly closed if co A is regularly open. Clearly A is regularly closed if and only if A=cl int A.

2.1. Proposition: [1] Intersection of two fuzzy regularly open sets is regularly open.

2.2. Proposition: [1] Closure of a fuzzy open set in a fts (X,T) is fuzzy regularly closed and interior of a fuzzy closed set in X is fuzzy regularly open.

2.3. Definition: [3] Let (X, T) be an fts and x_r be a fuzzy point in X. A fuzzy set A is called a fuzzy r-neighbourhood if there exists a fuzzy regularly open set U such that $x_r \in U \subseteq A$. A fuzzy set A is called quasi r-neighbourhood of a fuzzy singleton x_r in X if there exist a fuzzy regularly open set U such that $x_r \in U \subseteq A$.

2.4. Definition: [3] Let (X,T) be a fts ,then the set of all fuzzy regularly open sets forms a base for some topology on X. This fuzzy topology is called the fuzzy semi regularization topology of T and is denoted by T*, clearly $T^* \subseteq T$. (X, T*) is called the fuzzy semi regularization of (X, T).

Azad[1] defined an fts (X,T) to be fuzzy semi regular if and only if the fuzzy regularly open sets of X form a base for the fuzzy topology T on X. Then according to $above(X, T^*)$ is fuzzy semi regular if and only if $T = T^*$.

Manjari Srivastava, Parijat Sinha* / Fuzzy r-Separation Axioms in Fuzzy Topological Spaces / IJMA- 6(5), May-2015.

2.5. Definition: [1] A mapping $f : (X, T_1) \rightarrow (Y, T_2)$ is called fuzzy almost continuous if the inverse image of every fuzzy regularly open set in Y is fuzzy open in X.

2.6. Definition: [1] A mapping $f:(X,T_1) \rightarrow (Y,T_2)$ is called fuzzy almost open (closed) if for every fuzzy regularly open (closed) set U in X, f(U) is fuzzy open (closed) in Y.

2.7. Lemma: [3] If f: $X \rightarrow Y$ is a fuzzy almost continuous, fuzzy almost open map, then the inverse image of every fuzzy regularly open (closed) set is fuzzy regularly open (closed).

3. MAIN RESULTS

In this section we have defined fuzzy δ -open set and fuzzy r-separation axioms. Several results related to fuzzy δ -open set and fuzzy r-separation axioms have been established.

3.1. Definition: A fuzzy set A in a fts is said to be a fuzzy δ –open set in X if it can be expressed as a union of fuzzy regularly open sets in X. A fuzzy set A in X is called a fuzzy δ -closed set if it is a complement of a fuzzy δ –open set in X.

For a fuzzy set A in X, the δ -closure of A is defined as the intersection of all fuzzy δ -closed sets in X which contain A.

3.2. Definition: A fuzzy singleton x_r is called a δ -adherent point of a fuzzy set A in X if every quasi r-neighbourhood of x_r is quasi-coincident with A.

3.3. Proposition: Let (X, T) be an fts and (Y, T_Y) be its subspace where Y is fuzzy regularly open in X, then $A \cap Y$ is fuzzy regularly open in Y for any fuzzy regularly open set A in X.

Proof: First we show that if A is a fuzzy set in Y and Y is a fuzzy open in X then $Int_X A=int_Y A$

Consider the two families, $\lambda_1 = \{ U_Y \in T_Y : U_Y \subseteq A \}$ $\lambda_2 = \{ U \in T : U \subseteq A \}$

Take any $U_Y \in \lambda_1$, then $U_Y = U \cap Y$ for some $U \in T$, but $Y \in T$,

Therefore, $U_Y \in T$ and hence $U_Y \in \lambda_2$.

Conversely, let $U \in \lambda_2$ then since $U \subseteq A \subseteq Y$, $U = U \cap Y$, hence $U \in T_Y$, implying that, $U \in \lambda_1$

```
Thus \lambda_1 = \lambda_2. Hence

\cup \{ U_Y : U \in \lambda_1 \} = \cup \{ U_Y : U \in \lambda_2 \}

\Rightarrow int_Y (A) = int_X (A)
```

Now we prove the proposition: $Int_Y cl_Y (A \cap Y) = Int_X cl_Y (A \cap Y) \quad (since Y is fuzzy open in X)$ $= Int_X (Y \cap cl_X (A \cap Y))$ $= Y \cap int_X cl_X (A \cap Y) (since Y is fuzzy open in X)$ $= Y \cap (A \cap Y)$ $= A \cap Y$

Hence $A \cap Y$ is fuzzy regularly open in Y.

3.4. Proposition: In a fts (X, T) a fuzzy set A is fuzzy δ -closed if and only if A= δ -adh A where δ -adh A denots the union of all its δ -adherent points.

Proof: First let us suppose that A is fuzzy δ -closed. To show that A= δ -adhA.

We first show that $A \subseteq \delta$ -adhA.

Take any fuzzy point $x_r \in A$ then r < A(x).

Consider any quasi-r-nbd of x_r , say N. Then there exists a fuzzy regularly open set U such that $x_r q U \subseteq N$. Now $x_r q N$ and hence $r+N(x) > 1 \Rightarrow A(x)+N(x) > 1$ since A(x) > r, so AqN

Manjari Srivastava, Parijat Sinha* / Fuzzy r-Separation Axioms in Fuzzy Topological Spaces / IJMA- 6(5), May-2015.

Implying that x_r is a δ -adherent point of A. hence $x_r \in \delta$ -adh A. Thus $A \subseteq \delta$ -adh A.

Next we show that δ -adh A \subseteq A. Take any δ -adherent point of A, say x_r.

Then we show that $x_r \in A$. For, if not, then r > A(x) if and only if r - A(x) > 0 $\Leftrightarrow r + (1 - A(x)) > 1$ $\Leftrightarrow x_r q \text{ co } A$

Now since A is fuzzy δ -closed, A= \cap F_i where each F_i is fuzzy regularly closed set containing A. Then coA= Uco F_i where co F_i, for each i, is a is fuzzy regularly open set contained in A. Now x_r q co A if and only if x_r q (Uco F_i)

i.e r+Uco $F_i(x) > 1$ if and only if Uco $F_i(x) > 1$ -r

```
i.e. 1-r <Uco F_i(x)= sup<sub>i</sub>co F_i(x)
\Rightarrow1-r< co F_i(x) for some i, say i_1
\Rightarrow1<r+ co F_{i1}(x)
```

Thus $x_r q$ co F_{i1} , \Rightarrow co F_{i1} , is a fuzzy regularly open quasi-r nbd of x_r . As x_r is a δ -adherent point of A, we must have co $F_{i1} q$ A which implies \cup coFi q A or (coA) qA which is a contradiction.

Hence $x_r \in A$ implying that $\bigcup \{x_r : x_r \in \delta \text{-adh}A\} \subseteq A$

i.e. δ-adhA⊆A

Hence $A = \delta$ -adh A

Conversely let us assume that $A = \delta$ -adhaA. Then we claim that $A = \bigcap \{F_i: F_i \text{ is a fuzzy regularly closed set containing } A\}$

Obviously $A \subseteq \cap F_i$. Now we show that $\cap Fi \subseteq A$, let x_r be a fuzzy singleton such that $x_r \subseteq \cap \{F_i: Fi \text{ is a fuzzy regularly closed set containing } A\}$ ------(1)

Take any fuzzy regularly open set U such that X_rqU . Then r+ U(x)>1 or r>1-U(x) i.e.r>coU(x) but this implies that $x_r\notin coU\Rightarrow coU$ is a fuzzy regularly closed set which does not contain A ie $A \not\equiv coU(Since in view of (1), x_r \in F_i$ for each fuzzy regularly closed set F_i containing A)i.e. there must exist some $z \in X$ such that co U(z) < A(z) $\Rightarrow 1-U(z) < A(z)$ $\Rightarrow A(z) + U(z) > 1$ $\Rightarrow UqA$

Which further implies that x_r is a δ -adherent point of A and therefore since $A = \delta$ -adh A, we have $x_r \in A$ thus $\cap F_i \subseteq A$ therefore $A = \cap F_i$ and hence A is fuzzy δ -closed.

3.5. Definition: Fuzzy r - separation axioms in a fuzzy topological space. Now we define Fuzzy r - separation Axioms in a fuzzy topological space. A fts (X, T) is called

- (a) Fuzzy r-T₀ if for every x, y in X, $x \neq y$ then there exists a fuzzy regularly open set U such that $U(x) \neq U(y)$.
- (b) Fuzzy r-T₁ if for every x, y in X, $x \neq y$ then there exists a fuzzy regularly open set U such that U(x) =1, U(y) = 0.
- (c) Fuzzy r-T₂ if for every pair of distinct fuzzy points x_r , y_s in X, then there exists fuzzy regularly open sets U and V such that $x_r \in U$, $y_s \in V$ and $U \cap V = \emptyset$.
- (d) Fuzzy r-regular if for every fuzzy point x_r in X and each fuzzy closed set F such that $x_r \in coF$, there exists fuzzy regularly open sets U and V such that $x_r \in U$, $F \subseteq V$ and $U \subseteq coV$.
- (e) Fuzzy r-normal if for every pair of fuzzy closed sets F_1 , and F_2 such that, $F_1 \subseteq coF_2$, there exists fuzzy regularly open sets U and V such that $F_1 \subseteq U$, $F_2 \subseteq V$ and $U \subseteq coV$.

Now we prove some results related to fuzzy r-separation axioms.

Theorem: 3.6 If (X, T) is fuzzy rT_1 then every fuzzy singleton x_r in X is fuzzy closed.

Proof: We have to show that $\{x_r\}$ is fuzzy closed or X- $\{x_r\}$ is fuzzy open. Now choose any fuzzy point y_r in X- $\{x_r\}$ then $y \neq x$ as (X, T) is rT_1 so \exists regularly open set U such that U(x) = 0, U(y) = 1 so $y_r \in U \subseteq X - x_r$, so X- $\{x_r\}$ is fuzzy open i.e. $\{x_r\}$ is fuzzy closed.

3.7. Theorem: Let (X, T) be an fts, then (X, T) is fuzzy rT_i if and only if its semi-regularization (X, T^*) is fuzzy T_i for i=0, 1, 2.

Proof: Let (X,T) be a fuzzy $r-T_0$ space, then for every x, y in X, $x \neq y$ there exists fuzzy regularly open set U such that $U(x) \neq U(y)$. But every fuzzy regularly open set in (X,T) is fuzzy open in (X,T^*) therefore U is a fuzzy open set in (X, T^*) such that $U(x) \neq U(y)$ and hence (X, T^*) is fuzzy T_0 . Conversely, let (X, T^*) be fuzzy T_0 , then $\forall x, y \in X, x \neq y, \exists U \in T^*$ such that $U(x) \neq U(y)$. Here U is of the form $\bigcup_{i \in A} U_i$ where each U_i is fuzzy regularly open set in X. hence, $\bigcup U_i(x) \neq \bigcup U_i(y)$ which implies that $\exists i \in A$ such that $U_i(x) \neq U_i(y)$ showing that (X, T) is fuzzy $r T_0$.

Next, let (X, T) be fuzzy r T₁, then $\forall x, y \in X, x \neq y, \exists a$ fuzzy regularly open set U such that U(x)=1, U(y)=0. Obviously U \in T* hence (X, T*) is fuzzy T₁. Conversely, if (X, T*) is fuzzy T₁ then $\exists U \in$ T* such that U(x) =1, U(y) =0 and clearly any U is of the form U = U_{i \in A}U_i thus U_{i \in A}U_i (x) = 1 thus sup_{i \in A} U_i(x) = 1, so U_i(x) = 1 for some i And U_{i \in A}U_i (y) = 0 thus sup_{i \in A} U_i(y) = 0 so U_i(y) = 0 so \exists regularly open set U_i such that U_i (x) = 1, U_i(y) = 0 so (X, T) is rT₁.

Again, let (X, T) be fuzzy r T₂. Choose fuzzy points x_r , y_s in X, $x \neq y$ then \exists fuzzy regularly open sets U, V in T such that $x_r \in U$, $y_s \in V$ and $U \cap V = \varphi$. Now since U and V are fuzzy open in (X, T*) therefore (X, T*) be fuzzy T₂.

Conversely let (X, T*) be fuzzy T₂. Choose distinct fuzzy points x_r , y_s in X, then $\exists U, V \in T^*$ such that $x_r \in U$, $y_s \in V$, $U \cap V = \phi$. Here, $U = \bigcup_{i \in A1} U_i$, $V = \bigcup_{j \in A2} V_j$ where U_i 's and V_j 's are fuzzy regularly open in X. thus we have $x_r \in \bigcup_i U_i$, $y_s \in \bigcup_j V_j$ and $(\bigcup_i) \cap (\bigcup_j) = \phi$ which implies that $\exists i \in A_1$ $j \in A_2$ such that $x_r \in U_i$, $y_s \in V_j$ and $\bigcup_i \cap V_j = \emptyset$ showing that (X, T) is fuzzy rT₂.

3.8. Theorem: Let $f:(X, T) \rightarrow (Y, S)$ be an injective, fuzzy almost continuous and fuzzy almost open mapping then (X, T) is fuzzy rT_i if (Y, s) is fuzzy rT_i for i=0,1,2.

Proof: Let f: (X, T)→(Y, S) be an injective, fuzzy almost continuous and fuzzy almost open map. First we show that (X, T) is fuzzy rT₀ if (Y, S) is fuzzy rT₀. To show this let x, y∈ X, x ≠ y, since f is injective f(x), f(y) ∈ Y, and f(x)≠f(y). Again since Y is fuzzy rT₀,∃ a fuzzy regularly open set U such that U (f(x))≠ U (f(y)) ⇒ f¹(U) (x) ≠ f¹(U) (y)

Since f is fuzzy almost continuous and fuzzy almost open map by using Lemma (2.7), $f^{1}(U)$ is fuzzy regularly open in X. Hence \exists a fuzzy regularly open set $f^{1}(U)$ in X such that $f^{1}(U)(x) \neq f^{1}(U)(y)$ which implies that X is fuzzy rT_{0}

Next let x, $y \in X$, where $x \neq y$ then f(x), $f(y) \in Y$, $f(x) \neq f(y)$. If (Y, S) is fuzzy $rT_1 \exists a$ fuzzy regularly open set U in Y such that U (f(x)) = 1, U (f(y)) = 0 $\Rightarrow f^1(U(x)) = 1$, $f^1(U(y)) = 0$

 \Rightarrow f⁻¹(U) is fuzzy regularly open set in X such that f⁻¹(U(x)) =1, f⁻¹(U(y)) =0

Thus (X, T) is fuzzy rT_1 .

Now we show that (X, T) is fuzzy rT_2 if (Y, S) is fuzzy rT_2 . Let $x_r, y_s \in X, x \neq y$.

Since f is injective $f(x_r)$, $f(y_s) \in Y$, $f(x_r) \neq f(y_s)$

Since Y is $rT_2 \exists$ fuzzy regularly open sets U and V such that $f(x_r) \in U$, $f(y_s) \in V$ and $U \cap V = \emptyset$

This implies that $x_r \in f^1(U)$, $y_s \in f^1(V)$

Since f is fuzzy almost continuous and fuzzy almost open mapping by using Lemma $f^{1}(U)$ and $f^{1}(V)$ are fuzzy regularly open sets in X. Again $f^{1}(U) \cap f^{1}(V) = f^{1}(U \cap V) = f^{1}\emptyset = \emptyset$

Thus (X, T) is fuzzy rT_{2} .

- 3.9. Theorem: Every fuzzy regularly open subspace of
 - (i) A fuzzy rT_i space is fuzzy rT_i for i=0, 1, 2.
 - (ii) A fuzzy r-regular space is fuzzy r-regular

Proof: (i) first we show that every fuzzy regularly open subspace of a fuzzy rT_0 space is fuzzy rT_0 . Let (X, T) be fuzzy rT_0 space and let (Y, T_Y) be its subspace where Y is fuzzy regularly open. Let $x, y \in Y \subseteq X, x \neq y$. Since X is fuzzy $rT_0 \exists a$ fuzzy regularly open set U such that U $(x) \neq U(y)$.

Manjari Srivastava, Parijat Sinha* / Fuzzy r-Separation Axioms in Fuzzy Topological Spaces / IJMA- 6(5), May-2015.

Now $U_Y = U \cap Y$ being intersection of two fuzzy regularly sets is again fuzzy regularly open. Also it can be easily seen that $U_Y(x) \neq U_Y(y)$ implying that (Y, T_Y) is fuzzy rT_{0} .

Next Let Y be fuzzy regularly open subspace of X and let x, $y \in Y \subseteq X$, where $x \neq y$, and Y is a subspace of X.

So \exists a fuzzy regularly open set U in X such that U(x)=1, U(y)=0 (as X is rT₁)

Now take $U_Y=U\cap Y$ then $U_Y(x)=U\cap Y(x)=\inf\{U(x),Y(x)\}=1$ and $U_Y(y)=U\cap Y(y)=\inf\{U(y),Y(y)\}=0$

This U_Y is regularly open such that $U_Y(x) = 1$, Uy(y) = 0

Thus, (Y, T_Y) is fuzzy rT_1

Next, let (X, T) be fuzzy rT_2 and let (Y, T_Y) be its fuzzy regularly open subspace. Since X is fuzzy $rT_2 \forall x_r, y_s \in Y \subseteq X$, $x \neq y$. \exists fuzzy regularly open sets U and V such that $x_r \in U$, $Y_s \in V$ and $U \cap V = \emptyset$. Now $U_Y = U \cap Y$ and $V_Y = V \cap Y$ being intersections of fuzzy regularly open sets is itself fuzzy regularly open. Thus we have $\forall x_r, y_s \in Y, \exists$ fuzzy regularly open sets U_Y, V_Y such that $x_r \in U_y, Y_s \in V_Y$ and $U_Y \cap V_Y = \emptyset$

Hence (Y, T_y) is fuzzy rT_{2} .

(ii): Let x_r be a fuzzy point in Y, where Y is a subspace of X and F is a fuzzy closed set in Y such that $x_r \in co F$ so \exists fuzzy regularly open sets U and V such that $x_r \in U, F \subseteq V$ and $U \subseteq co V$.

As X is fuzzy r regular and Y is fuzzy regularly open subspace of X, therefore \exists fuzzy regularly open sets $U_Y = U \cap Y$, $V_Y = V \cap Y$ such that $x_r \in U \cap Y$, $F \subseteq V \cap Y$ and $U \cap Y \subseteq co(V \cap Y)$. Thus (Y, Ty) is fuzzy r regular

3.10. Theorem: Every fuzzy open subspace of

- (i) a fuzzy rT_i space is fuzzy T_i for i=0, 1, 2.
- (ii) a fuzzy r-regular space is fuzzy regular open

Proof: The Proof is on similar lines as in previous theorem.

3.11. Theorem: An fts (X, T) is fuzzy rT_2 if and only if the diagonal set Δ_x is fuzzy closed in (X × X, T*×T*).

Proof: Let (X, T) be fuzzy rT_2 . Consider $X \times X$ - Δ_x . Let $(x,y)_r$ be a fuzzy point in $X \times X$ - Δ_x . then x_r , y_r are distinct fuzzy points in X. therefore \exists fuzzy regularly open sets U and V such that $x_r \in U$, $y_r \in V$ and $U \cap V = \emptyset$ Consider now $U \times V$, then $U \times V$ is a basic fuzzy open set in $(X \times X, T^* \times T^*)$ and is such that $(x, y)_r \in U \times V \subseteq X \times X$ - Δ_x and hence $X \times X$ - Δ_x is fuzzy open i.e. Δ_x is fuzzy closed in $(X \times X, T^* \times T^*)$.

Conversely, let Δ_x be fuzzy closed in T*×T*, then X × X- Δ_x is fuzzy open in (X × X, T*×T*).

Now choose distinct fuzzy points x_r , y_s in X. let $s \le r$. then $(x, y)_r$ is a fuzzy point in $X \times X$ - Δ_x therefore \exists a basic fuzzy open set $U \times V$ in $(X \times X, T^* \times T^*)$ such that $(x, y)_r \in U \times V \subseteq X \times X$ - Δ_x here $U = \bigcup_{i \in A1} U_i$, $V = \bigcup_{j \in A2} V_j$ where each U_i and each V_j are fuzzy regularly open in X. so, $(x, y)_r \in \bigcup_i \times \bigcup_j \subseteq X \times X$ - Δ_x which implies that \exists iand j such that $(x, y)_r \in \bigcup_i \times \bigcup_j \subseteq X \times X$ - Δ_x which implies that \exists iand j such that $(x, y)_r \in \bigcup_i \times \bigcup_j \subseteq X \times X$ - Δ_x and hence we have found fuzzy regularly open sets U_i and V_j such that $x_r \in U_i$, $y_r \in V_j$ and $U_i \cap V_i = \phi$ showing that (X, T^*) is fuzzy rT_2 .

3.12. Theorem: In an fts (X, T) the following are equivalent:

- (i) (X, T) is fuzzy r-regular
- (ii) For each fuzzy point x_r and each fuzzy open set V such that $x_r \in V$, \exists a fuzzy regularly open set U such that $x_r \in U \subseteq cl U \subseteq V$.

Proof:

$(i) \Rightarrow (ii)$

Let x_r be a fuzzy point and let V be a fuzzy open set such that $x_r \in V$. then co V is a fuzzy closed set such that $x_r \in co$ (co V). Now since (X, T) is fuzzy r- regular, \exists fuzzy regularly open sets U and W such that $x_r \in U$, co V \subseteq W and U \subseteq co W, thus $x_r \in U \subseteq coW \subseteq V$ but co W is a fuzzy closed set containing U, therefore $x_r \in U \subseteq cl U \subseteq V$

(ii)⇒ (i):

Let x_r be a fuzzy point and let F be a closed set such that $x_r \in co F$. Then co F is a fuzzy open set such that $x_r \in co F$, therefore \exists a fuzzy regularly open set U such that $x_r \in U \subseteq cl U \subseteq co F$ consider now the fuzzy regularly open sets U and U_1 where $U_1=1$ -cl U, here U_1 is fuzzy regularly open . then $x_r \in U$, $F \subseteq U_1$ and $U \subseteq co U_1$ since for any $z \in X$, $U(z) + U_1(z) = U(z) + 1$ - cl U(z) which is ≤ 1 . Therefore (X, T) is fuzzy r-regular.

© 2015, IJMA. All Rights Reserved

3.13. Theorem: in an fts (X, T) the following statements are equivalent:

- (i) (X, T) is fuzzy r-normal.
- (ii) ∀ Fuzzy closed set F and fuzzy open set V such that F⊆V ∃ fuzzy regularly open set U such that F⊆ U⊆cl U⊆V.

Proof:

$(\mathbf{i}) \Rightarrow (\mathbf{ii})$

Let (X, T) be normal space. Let F be any fuzzy closed set and V be a fuzzy open set such that $F \subseteq V$, therefore \exists fuzzy regularly open sets U and U₁ such that $F \subseteq U$, co $V \subseteq U_1$, and $U \subseteq co U_1$, thus $F \subseteq U \subseteq co U \subseteq V$. since co U₁ is a fuzzy regularly closed set and hence a fuzzy closed set containing U, we have $F \subseteq U \subseteq cl U \subseteq V$.

(ii)⇒ (i)

Let F_1 and F_2 be any two fuzzy closed sets such that $F_1 \subseteq \text{ co } F_2$, then \exists a fuzzy regularly open set U such that $F_1 \subseteq U \subseteq \text{ cl } U \subseteq \text{ co } F_2$. Consider now the fuzzy regularly open sets U and U_1 where $U_1 = 1$ -cl U here U_1 is fuzzy regularly open. Then we have $F_1 \subseteq U$, $F_2 \subseteq U_1$ and $U \subseteq \text{ co } U_1$ since for any $z \in X$, U (z) + U_1 (z) = U (z) +1-cl U (z) which is ≤ 1 . Hence (X, T) is fuzzy r normal.

REFERENCES

- 1. Azad, K. K., on fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981)14-32.
- 2. Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56(1976) 621-633.
- 3. Mukharjee, M. N. and Ghosh B., Fuzzy semi regularization topologies and fuzzy submaximal spaces, Fuzzy sets and systems 44(1991) 283-294.
- 4. Singhal H.K. and Rajvanshi N., Regularly open sets in fuzzy topological spaces, Fuzzy sets and systems 50 (1992) 343-353.
- 5. Zadeh, L. A., Fuzzy sets, Information and control 8 (1965) 338-353.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]