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ABSTRACT 
This paper introduces a novel computational algorithm for determining the root mean square (RMS) curvature and the 
values of the Hougaard measure of skewness simultaneously as nonlinearity measure in a nonlinear regression model 
(NLR-model) with two parameters. This suggested Bi-algorithm is suited for implementation using Computer Algebra 
Systems (CAS). We apply this algorithm throughout two illustrative examples.  
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1. INTRODUCTION 
 
The more general normal NLR-model is given by the following form: 
 i i iy f (x , ) , i 1,2,...,m= Θ + ε =                 (1.1) 
where, i(x , )Θ  depends on a vector ix  of predictors for the ith of m observations and a P×1vector 

1 2 P( , ,..., )Θ = θ θ θ of unknown parameters. The response function f is a known, scalar-valued function that is twice 

continuously differentiable in Θ  and iy  denotes the ith response. The errors i ,i 1,2,...,mε =  are usually assumed to 

be independent and identically normal distributed random variables with mean zero and constant variance 2σ  [16-18]. 
 
One of the methods used to analyze the nonlinear behavior of a model data set combination is the calculation of the so 
called measures of nonlinearity [1-4, 6-19]. Previously, a number of measures and procedures of studying the 
estimation behavior of NLR-models have been described. These include the curvature measures of intrinsic and 
parameter-effects nonlinearity, the bias measure of Box and the asymmetry measure of bias of Lowry. Moreover, the 
Hougaard measure, which is best to use a direct measure of skewness, was derived by Hougaard. Computer programs 
for calculating these measures of nonlinearity are presented in several literatures. 
 
In this study the RMS curvature and the Hougaard measure of skewness will be considered. We describe these 
measures and show how this measure is used to indicate a degree of nonlinear behavior for each parameter in an     
NLR-model. A new Bi-algorithm with its corresponding procedure for calculating these mentioned measures of a two 
parameters NLR-model will be presented.   
  
2. DESCRIPTION OF RMS CURVATURE MEASURES AND HOUGAARD MEASURE OF SKEWNESS 
 
In this section, we describe the RMS curvature measures and the Hougaard measure of skewness with the used 
notations. 
 
2.1 RMS curvature measures  
 
In this subsection, we give a general description of the RMS curvature measures in an NLR model (1.1).  The nonlinear 
behavior of a model data set combination can be analyzed by calculating the measures of nonlinearity [1-4, 9, 10, 13, 
17-19]. Using concepts from differential geometry, two aspects of curvature as useful measures of nonlinearity were  
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developed and this development is based on the NLR-model (1.1). The first aspect is the intrinsic curvature which has 
relation of the expectation surface, and the other aspect is the parameter-effects curvature which depends on the method 
of parameterization. These measures can be used to compare different models with different parameterizations 
combined with different data sets. Using some algebraic steps, the curvature and its components were converted to 
dimension-less relative curvatures to remove the dependence of the curvature-values on the scaling of the data. The 
curvature measure is the square root of the average over all directions of the squared curvature. The final forms of the 

two components of RMS, the parameter-effects RMS curvature "
PEc " and the intrinsic RMS curvature "

INc ", are 
given in the following two equations respectively: 

 
P P P P

PE 2 2 2
n p q n p p

n 1 p 1 q 1 p 1

1[c ] [2 c [ c ] ]
P(P 2) = = = =

= +
+ ∑ ∑∑ ∑               (2.1) 

and 

 
k P P P

IN 2 2 2
n p q n p p

n P 1 p 1 q 1 p 1

1[c ] [2 c [ c ] ]
P(P 2) = + = = =

= +
+ ∑ ∑∑ ∑              (2.2) 

where n p qc and n p pc denote to the elements in the relative curvature array and moreover k is an integer number which 

at most takes the value P(P 3) / 2+ , see [3, 18]. RMS curvature measures are not very meaningful as they stand, 
because its user does not know what constitutes a "large" value. A convenient scale of reference can be established by 
comparing the RMS curvature with that of the confidence disk at specified level, 100 (1 )%− α . Thus, a RMS 
curvature will be considered small if it is much less than the curvature of the 100 (1 )%− α  confidence disk, that is, if 

(RMS curvature) F 1< , where F F (P, m P; )= − α  is the upper α  quantile for F-distribution  with the usual value 

0.05α = . The results of the suggested algorithm provide two values " PEc F " and " INc F ". For more details, see 
[1, 3, 8, 16-18].  
 
2.2 Hougaard measure of skewness 
 
Now, we describe the Hougaard measure of skewness and explain how to use this measure to indicate a degree of the 
nonlinear behavior in NLR-models [1, 3, 7, 12, 13, 16-19]. Consider a NLR-model (1.1) with p parameters. For a 
nonlinear model: 

 
3 2 2

p p p j p l p u jl u l ju u l j
j l u

ˆ ˆ( ) (s ) L L L (W W W ) θ − θ = − + +  ∑∑∑E E                                 (2.3) 

the m×p Jacobian matrix with respect to the parameters is written as ˆ( )ΘJ with typical elements "
i

i p
p

f (x , )J ∂ Θ
=

∂θ " 

evaluated at Θ̂ . Also, the m×P×P  Hessian array of ( , )Θf x with respect to the parameters is written as ˆ( )ΘH with 

typical elements "
2

i
i p q

p q

f (x , )H ∂ Θ
=

∂θ ∂θ " evaluated at Θ̂ . Here, i runs from 1 to m while p and q run from 1 to P. Now, let 

p qL , p, q = 1, 2,..., P denote the elements of 
1T ˆ ˆ( ) ( )
−

 = Θ Θ L J J  where ˆ( )ΘTJ  is the transpose of ˆ( )ΘJ . If  
m

jlu nj nlu
n 1

W J H
=

= ∑ , then an estimate of the third moment of pθ̂  is given by 

 
3 2 2

p p p j p l p u jl u l ju u l j
j l u

ˆ ˆ( ) (s ) L L L (W W W ) θ − θ = − + +  ∑∑∑E E   

with the indices j, l and u each ranging from 1 to P. The estimate of the residual variance is 2 ˆS RSS( ) / (m P)= Θ − , 

which is based on the residual sum of squares "
m 2

i i
i 1

ˆ ˆRSS( ) y f (x , )
=

 Θ = − Θ ∑ " at Θ̂  and the degree of freedom 

(m P)− . The standardized third moment can be given as:  

 
3 2 3 / 2

p p p pp
ˆ ˆSKEWNESS ( ) /(s L )θ
 = θ − θ E E                             (2.4) 

which provides a direct measure of the skewness of pθ̂ . 
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According to [7, 12, 17], the following table indicates a degree of a nonlinear behavior of the estimator pθ̂ of the 

parameter pθ  in an NLR-model (1.1). 
 

Table-1: The standard absolute values of Hougaard measure 
p

SKEWNESSθ  for pθ  

p

p

p

0.00< SKEWNESS < 0.10 : The estimator is very close-to-linear in behavior.

0.10 SKEWNESS < 0.25 : The estimator is reasonably close-to-linear in behavior.

0.25 SKEWNESS < 1.00 : The skewness is very apparen

θ

θ

θ

≤

≤

p

t.

1.00 SKEWNESS < : These values indicate considerable nonlinear behavior.θ≤ ∞

    

 
 
3. BI-ALGORITHM TO COMPUTE THE MEASURES OF NONLINEARITY IN THE NLR-MODEL 
 
Some calculations of each of the measures of nonlinearity are provided separately for some different NLR models with 
two or more parameters [3, 9, 10, 13, 16, 17]. Recently, a formulation of a method for calculating only the two 
components of the RMS curvature is provided in [8]. Moreover, the directed calculation-method of the Hougaard 
measure of skewness is described in [7]. Here, we will concern with the calculations of the considered measures of 
nonlinearity simultaneously especially for the NLR model with two parameters in which there is a conditionally linear 
parameter. To verify this aim we will apply the new suggested algorithm which will be explained with two illustrative 
examples. 
 
Now, we indicate to the model and the data, which will be considered in the calculations with respect to our suggested 
Bi-algorithm and its MAPLE-procedure for determining the mentioned measures of nonlinearity. We consider a model 
with two parameters to explain the application of this proposed algorithm directly by the MAPLE program. We 
consider the Michaelis-Menten model for enzyme kinetics which relates the initial "velocity" of an enzymatic reaction 
to the substrate concentration x  [7, 8, 18]. This model is given by 

   1 2(x, ) x /( x)Θ = θ θ +f                (3.1) 

where f is predicated velocity, 1 2( , )Θ = θ θ  is a vector of parameters (i.e., P 2= ). This is a model in which there is 

conditionally linear parameter 1θ . The Bi-algorithm to calculate the RMS curvature measure and the Hougaard 
measure of skewness for the model (3.1) is explained. The corresponding procedure is formulated using the MAPLE 
program. Moreover, we apply this Bi-algorithm for two different data sets with the same number of observations 
( m 12= , say). 
 
3.1 A Bi-algorithm Explanation 
 
In this subsection we give an explanation of our suggested algorithm to calculate the considered measures of 
nonlinearity for the two parameters in the model (3.1) through the following steps:  
 
Step-1: Describe the parameter space as two dimensional spaces. 
Step-2: Define the considering P-parameter model as model equation (P=2). 
Step-3: Define the expectation surface as a (1, m)-vector through calculation of the model function for each mass-point   
             (m=12). 

Step-4: Define the Jacobian-matrix "JAC" (i.e., ˆ( )ΘJ ) of the model function with respect to the parameter-vector and     
             calculate this matrix for the estimated parameters. 

Step-5: Define "L" as the inverse matrix of the multiplication [ ˆ ˆ( ) ( )Θ ΘTJ J ]. 

Step-6: Define a (m, P, P)-tensor "HES" (i.e., ˆ( )ΘH ) and calculate this matrix for the same estimated parameters. 

Step-7: Formulate the terms "W [j, l, u]"(i.e., jl uW ) as a multiplication form of JAC and HES. 

Step-8: Formulate the third moment "TM[i]" (i.e., 
3

i i
ˆ ˆ( ) θ − θ E E ) of iθ . 

Step-9:   Formulate the Hougaard measure "SK[i]" (i.e., 
i

SKEWNESSθ ) of the parameter iθ . 
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Step-10: Define the velocity (tangent) vectors (columns I the velocity matrix "Vdot", i.e V
.

). 

Step-11: Define the acceleration vectors in a matrix "Vddot", i.e V
..

. 

Step-12: Define a matrix "Wddot" ( i.e W
..

) through columns-arrangement of " P(P 1) / 2+ " non-redundant 
acceleration vectors such that these columns (in the order) are linear independent on the tangent vectors. 

Step-13: Construct "Dmatrix" through V
.

 and W
..

 
Step-14: Perform a QR decomposition "Q" on the matrix "Dmatrix". 
Step-15: Determine the (12, 3)-submatrix "Q1" of the matrix "Q" and its transpose matrix "Q1transp" (i.e. TQ1  ). 

Step-16: Calculate the (3, 2, 2)-acceleration-tensor "ACCddot" (i.e A
..

) through the multi-plication of " V
..

" from the 

left with the transpose matrix "
TQ1 ". 

Step-17: Define the (2, 2)-submatrix "R11" which consists of the first two rows of the QR decomposition matrix of the 
matrix "Dmatrix" and calculate the inverse matrix "IR11" of "R11". 

Step-18: Define the faces "C[j]" of the (3, 2, 2) tensors for the relative curvature, where the first two faces describe the 
parameter-effects relative curvature tensor and the rest face gives the intrinsic relative curvature tensor. The 

calculation was carried out through the multiplication of " A
..

" from the left and the right by the transpose 
matrix of "IR11" and the matrix "IR11" respectively, and the result is multiplied with "Roh" (i.e. ρ ) which is 
the square root of the multiplication of the residual mean square (the variance estimate) "ssq" and "P". 

Step-19: Using the (2.1) and (2.2) to calculate the square of the parameter-effects RMS curvature  "csPE" and the 
square of the intrinsic RMS curvature "csIN", respectively.     

Step-20: Find PEc  and INc  by calculating the root square of  csPE and csIN respectively.  
Step-21: Determine "FD" as the upper α  quantile for F-distribution F F(P,m P; )= − α . 

Step-22: Define the two components of the RMS curvature measure PEc F and INc F  with the symbols 
"PEmeasure and INmeasure" respectively and also define the Hougaard measure for the two parameters 

1θ and 2θ  with the symbols "
1

SKEWNESSθ and 
2

SKEWNESSθ " respectively. 

Step-23: Give the using variables in the procedure " MESNLR(X,par,ssq,alpha,N, P, PD)" (say  the mass-points x , the 

initial values of the model-parameters Θ̂ (i.e., "Par"), the variance estimate 2s (i.e., "ssq"), the usual value of 
α  and so on) to proceed the calculation for each element in the previous steps with respect to the considering 
model. 

Step-24: Evaluate PEmeasure, INmeasure, 
1

SKEWNESSθ and 
2

SKEWNESSθ simultaneously. 

 
3.2 Applications 
 
We consider the model (3.1) to apply our Bi-algorithm for calculating the values of the measures of nonlinearity. We 
will use two different working data-sets with response space of 12-dimentional. 
 
Application-1 
 
The model (3.1) is selected to apply the suggested computational Bi-algorithm through its proposed procedure for 
calculating the values of the RMS curvature measures and the Hougaard measure of skewness simultaneously. The 
corresponding used procedure is formulated by using the MAPLE program and it is given in Appendix. As a Maple 
programming guide, see [5].  
 
Here, we consider the following Puromycin-data on the velocity of an enzymatic reaction [3, 8]. This data is shown in 
Table - 2. 
 
Table-2: The used data set (Observations) 
x   0.02  0.02 0.06 0.06 0.11 0.11          0.22 0.22   0.56   0.56   1.10    1.10 
y     76    47   97  107  123  139           159 152     191    201    207    200 
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Here, y  is the treated reaction velocity for Puromycin-experiment. This data is considered with the initial values of the 
parameters 0 0 0

1 2( , ) (205, 0.08)Θ = θ θ =  to verify the aim of the calculation for the measure of nonlinearity for (3.1). 
Convergence for the Puromycin data set in Table 2 was declared at the estimation-values of parameters 

1 2
ˆ ˆˆ ( , ) (212.683, 0.06412)Θ = θ θ = with the residual sum of squares ˆRSS( ) 1195.45Θ =  (i.e. with the residual 

mean square or variance estimate 2 ˆs RSS( ) / (m P) 119.545= Θ − = ).  The program produced the values of PEc F  

and INc F  as in Table - 3: 
 
Table-3: The computed RMS curvature measures for the model (3.1) and the used data-set  

RMS curvature measure  PEc F     INc F  
Values     0.2121     0.092 
Moreover, we obtain on the following computed values of the Hougaard measure of skewness:    
 
Table-4: The computed Hougaard measure of skewness for the parameter in the model (3.1) and the used data-set 

Parameter                                1θ                             2θ  

p
SKEWNESSθ                                            0.09601173417                              0.320596099 

These results are identical with the previous results obtained in literatures. Moreover, the MAPLE- procedure is 
equivalent to the other procedures with other programs, which are presented in literature, for calculating the RMS 
curvature measures. 
 
Application-2 
 
Here, we consider the same model (3.1) again to apply the Bi-algorithm through its formulated MAPLE-procedure, 
which is given in Appendix, for repeating the calculation of the values of the measures of nonlinearity. To verify the 
aim of the calculation, we consider the data in Table-5 with all corresponding possible used values of 
ˆ (0.1056427059222,1.702689979095)Θ =  with 2s 0.00002010567= , see [1, 17]. 

 
Table-5: The used data set (Observations) 
x 2.0000  2.0000  0.6670 0.6670 0.4000 0.4000 0.2860  0.2860 0.2220 0.2220 0.2000  0.2000 
y  0.0615  0.0527  0.0334  0.0258  0.0138  0.0258 0.0129 0.0183  0.0083  0.0169  0.0129  0.0087 
 
 
By using our suggested computational Bi-algorithm with its corresponding MAPLE-procedure, the values of PEc F  

and INc F  are obtained as in the following table: 
 
Table-6: The computed RMS curvature measures for the model (3.1) and the used data-set 

RMS curvature measure  PEc F                              INc F  
Values     0.7841                               0.08055 
Moreover, we obtain also on the values of the Hougaard measure of skewness for the parameters in the used model and 
for the considered data. The results are tabulated in the following table: 
 
Table-7: The computed Hougaard measure of skewness for the parameter in the model (3.1) and the used data-set 

Parameter                             1θ                             2θ  

p
SKEWNESSθ              0.9887703882                      1.180088401 

 
These results are identical to the previous values obtained by using a listing of a FORTRAN-subroutine for computing 

the Hougaard measure SKEWNESSθr for p ,p 1,2θ =  in the same model (3.1) and for the same data. With regard to 

Ratkowsky's results in Table - 7, the skewness for the estimator of 1θ  is very apparent and the value of the skewness 

for the estimator of 2θ  indicates considerable nonlinear behavior. This means that the estimators of the parameters in 
this example are far-from-linear in their estimation behavior. 
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4. CONCLUSION 
 
In this study, we presented a Bi-algorithm for calculating the RMS curvature measures and the Hougaard measure of 
skewness simultaneously. This algorithm was applied using the MAPLE program. The corresponding presented 
procedure is very effective by using optimal accuracy. We provided a method for calculating the mentioned measures 
in a two parameter NLR-model, in which there is a conditionally linear parameter. The results indicated a degree of a 
nonlinear behavior in the model-data-set and in the estimator of the parameter in the studied model. The proposed 
calculations method is competitive to other methods appeared in previous literature in which the calculation is 
processed for each measure separately. The suggested algorithm is available for other NLR-models with two 
parameters when the corresponding used procedure is changed in some suitable functions. The results of the considered 
applications are identical to the corresponding previous results which are obtained separately in literature. 
 
In the future, we intend to modify the presented algorithms and their procedures to be suitable for multi-parameters 
models. Moreover, we plan to provide a Multi-algorithm with its procedure for calculating more than two measures of 
nonlinearity simultaneously.  
 
APPENDIX: 
 
The used MAPLE-procedure corresponding to the suggested Bi-algorithm is formulated for the considered model (3.1) 
and also for the two given data sets as follows:  
 
A MAPLE Bi-procedure for calculating the RMS curvature measures and the Hougaard measure of skewness 
>   restart: Digits:=15: with(linalg) :with(stats): 
MESNLR:=proc(X::vector,par::vector,ssq::float,alpha::float,N::nonnegint,P::nonnegint, PD::nonnegint) 
local i,j,k,p,s,u,c,l,r,x,J,H,JAC,HES,HESS,TM,L,z,Wddot,U,W,q,Q1,g1,g2,g3,IR11,csIN; 
global Theta,m,a,f,F,SK,C,Dmatrix,cPE,csPE,cIN,R11 ,Vdot,Vddot,Q,RANK,ACCddot,R,PE,FD,Addot,Roh,Q1t; 
m:=vectdim(X):a:=2:Theta:=array(1..a): 
f:=(x,Theta)->Theta[1]*x/(Theta[2]+x); 
F:=array(1..m): J:=array(1..m):H:=array(1..m): 
for i from 1 to m do 
    F[i]:=f(X[i],Theta); 
od: 
for c from 1 to m do 
    J[c]:=jacobian(vector([F[c]]),[Theta[1],Theta[2]]);  H[c]:=hessian(F[c],[Theta[1],Theta[2]]); 
od: 
JAC:=subs(Theta[1]=par[1],Theta[2]=par[2], stackmatrix(J[1],J[2],J[3],J[4],J[5],J[6],J[7],J[8],J[9],J[10],J[11], J[12])); 
L:=inverse(evalm(transpose(JAC)&*JAC)): 
HES:=subs(Theta[1]=par[1],Theta[2]=par[2],stackmatrix (H[1],H[2],H[3],H[4],H[5],H[6],H[7], H[8],H[9], H[10], 
H[11],H[12])); 
for s from a by a to a*m do 
    HESS[s/2]:=submatrix(HES,s-1..s,1..a); 
od: 
for l from 1 to a do 
    W[1,1,l]:=sum(JAC[r,1]*HESS[r][1,l],r=1..m);  W[1,2,l]:=sum(JAC[r,1]*HESS[r][2,l],r=1..m); 
    W[2,1,l]:=sum(JAC[r,2]*HESS[r][1,l],r=1..m);  W[2,2,l]:=sum(JAC[r,2]*HESS[r][2,l],r=1..m); 
od: 
i:='i': j:='j': 
for i from 1 to a do 
    TM[i]:=-((ssq)^2)*sum(sum(sum(L[i,j]*L[i,u]* L[i,p]*(W[j,u,p]+W[u,j,p]+W[p,u,j]), j=1..a), u=1..a), p=1..a); 
od: 
i:='i': 
for i from 1 to a do 
    SK[i]:=TM[i]/((ssq*L[i,i])^(3/2)): 
od; 
Vdot:=subs(Theta[1]=par[1],Theta[2]=par[2],JAC):  Vddot:=array(1..m,1..P,1..P): 
for i from 1 to m do 
    for j from 1 to P  do 
        for k from 1 to P  do 
Vddot[i,j,u]:=subs(Theta[1]=par[1],Theta[2]=par[2], diff(F[i],Theta[j],Theta[u])): 
end do:end do:end do: 
Wddot:=array(1..m,1..P*(P+1)/2): 
for i from 1 to m do 
Wddot[i,1]:=subs(Theta[1]=par[1],Theta[2]=par[2], diff(F[i],Theta[1],Theta[1])): 
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end do: 
for i from 1 to m do 
Wddot[i,2]:=subs(Theta[1]=par[1],Theta[2]=par[2], diff(F[i],Theta[2],Theta[1])): 
end do: 
for i from 1 to m do 
Wddot[i,3]:=subs(Theta[1]=par[1],Theta[2]=par[2], diff(F[i],Theta[2],Theta[2])): 
end do: 
for s from 1 to P*(P+1)/2 do 
    U[s] := L -> Wddot[L,s]:W[s]:=vector(m,U[s]): 
end do: 
for s from 1 to P*(P+1)/2 do 
    U[s] := L -> Wddot[L,s]:W[s]:=vector(m,U[s]): 
end do: 
for i from 1 to m do 
if W[1,i,1]<>0 then z:=1; break; else 
z:=0; 
fi 
end do; 
if z=0 then 
Dmatrix:=augment(Vdot,W[1],W[2],W[3]); 
else 
Dmatrix:=augment(Vdot,W[3],W[2],W[1]); 
fi; 
R:=QRdecomp(Dmatrix,Q='q',rank='r',fullspan=true): Q:=evalm(q): 
Q1:=submatrix(Q, 1..m,1..P+PD):Q1t:=transpose(%): 
i:='i':j:='j':k:='k': 
for g1 from 1 to P+PD do 
for g2 from 1 to P do 
        for g3 from 1 to P do    ACCddot[g1,g2,g3]:=sum(Q1t[g1,i]*Vddot[i,g2,g3], i=1..m); 
od: od: od: 
for k from 1 to P+PD do 
ACCddot[k]:=matrix(P,P,[ACCddot[k,1,1], ACCddot[k,1,2],ACCddot[k,2,1],ACCddot[k,2,2]]); 
end do: 
Addot:=augment(ACCddot[1],ACCddot[2], ACCddot[3]): 
R11:=submatrix(R, 1..P, 1..P):IR11:=inverse(%):Roh:=evalf(sqrt(ssq*P)): 
for j from 1 to P+PD do 
C[j]:=simplify(evalm(transpose(IR11)&*ACCddot[j]&*IR11*Roh)): 
end do: 
Digits:=4: 
csPE:=(1/(P*(P+2)))*sum(2*(sum(sum((C[n][p,q])^2, q=1..P),p=1..P))+(sum(C[n][p,p],p=1..P))^2,n=1..P): 
csIN:=(1/(P*(P+2)))*sum(2*(sum(sum((C[n][p,q])^2, q=1..P),p=1..P))+(sum(C[n][p,p],p=1..2))^2, n=P+1..P+PD): 
cPE:=sqrt(csPE);cIN:=sqrt(csIN); 
FD:=statevalf[icdf,fratio[P,m-P]](1-alpha); 1/sqrt(FD);sqrt(FD): 
print(PEmeasure=cPE*sqrt(FD));       print(INmeasure=cIN*sqrt(FD)); 
print(SKEWNESS[theta[1]]=SK[1]);  print(SKEWNESS[theta[2]]=SK[2]); 
end: 
>  X:=vector([0.02,0.02,0.06,0.06,0.11,0.11,0.22,0.22, 0.56,0.56,1.10,1.10] ): 
par:=vector([212.7,0.0641]):ssq:=119.5:alpha:=0.05: N:=6:P:=2:PD:=1: MESNLR(X,par,ssq,alpha,N,P,PD); 
PEmeasure=0.2121 ,  INmeasure=0.9200 
SKEWNESSθ1 =0.096011734165989  ,  SKEWNESSθ2 =0.320596098871428 
>  X:=vector([2,2,0.667,0.667,0.4,0.4,0.286,0.286,0.222,0.222,0.2,0.2]): 
par:=vector([0.1056427059222,1.702689979095]):ssq:=0.00002010567: alpha:=0.05: N:=6:P:=2:PD:=1: 
MESNLR(X,par,ssq,alpha,N,P,PD); 
PEmeasure=0.7841,   INmeasure=0.08055,   
SKEWNESSθ1=0.988770300786167,   SKEWNESSθ2 =1.18008828310710 
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