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ABSRTACT 
A new class of closed sets called α𝑏𝑏𝑔𝑔�- closed sets in topological spaces is introduced. This class contains the class of 
all α-closed sets and is contained in the class of all α𝑔𝑔 �  and  𝑏𝑏α𝑔𝑔 �  closed sets. The inclusion relationships of this new 
class with other known classes of closed sets are investigated.  Also new classes of spaces, based on the class of α𝑏𝑏𝑔𝑔�-
closed sets are introduced and their properties are analyzed.  
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1. INTRODUCTION 
 
Njastad [13] introduced α-closed sets and analyzed their properties. The class of b-open sets and 𝑔𝑔�-open sets are 
initiated by Andrijevic [3] and Veera Kumar [17] in 1996 and 2003 respectively. Recently Subasree and Maria Singam 
[16] introduced b𝑔𝑔�-closed sets and studied their properties. Followed by these developments, Stella Irene Mary and 
NagaJothi [15] introduced  𝑏𝑏α𝑔𝑔 �  -closed sets and analyzed their properties. In this article another new class of closed 
sets namely αb𝑔𝑔�-closed sets is introduced that satisfies the inclusion relation given below. 
 
{α− closed sets}⊂  {αb𝑔𝑔� − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}⊂ {𝑏𝑏α𝑔𝑔 �– closed sets} and  

 
{α− closed sets}⊂  {αb𝑔𝑔� − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}⊂ {α𝑔𝑔 � − closed sets} 
 
Note that the class of 𝑏𝑏α𝑔𝑔 � -closed sets and the class of α𝑔𝑔 � -closed sets are independent of each other [15].  As an 
application of αb𝑔𝑔� - closed sets new spaces such as  Tαb𝑔𝑔�

𝑐𝑐  - space,   Tαb𝑔𝑔�
𝑔𝑔𝑔𝑔  - space, and  T αb𝑔𝑔� 

bα𝑔𝑔�  – space are defined and 
their relationship with other known topological spaces are characterized. 
 
2. PRELIMINARIES 

 
Throughout this paper, (X, τ) denote a topological space with topology τ. For a subset A of X the interior of A and 
closure of A are denoted by int(A) and cl(A) respectively. 
 
Definition 2.1.1: A subset A of a topological space (X, τ) is called 

1. a semi open set [8] if A ⊆ cl(int(A)) and a semi closed set if int(cl(A)) ⊆ A. 

2. a pre-open set [12] if A ⊆ int(cl(A)) and a pre-closed set if cl(int(A)) ⊆ A. 

3. an α-open set [13] if A ⊆ int(cl(int(A))  and  an α- closed set if  cl(int(cl(A)) ⊆ A.  

4. a b-open set [3] if A ⊆ cl (int(A)) ∪ int(cl(A)) and a b-closed set if  int(cl(A)) ∩ cl(int(A)) ⊆ A. 
 
The intersection of all semi-closed (resp α-closed, b-closed) sets of X containing A is called the semi-closure (resp.    
α-closure, b-closure) of A and is denoted by scl(A) (resp. αcl(A), bcl(A)). 
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Definition 2.1.2: A subset A of a topological space (X, τ) is called, 

(1) a generalized closed set (briefly g-closed) [7] if cl(A) ⊆ U whenever A ⊆ U and  U is open in (X, τ). The 
complement of a g-closed set is called a g-open set.     

(2) generalized semi-closed set (briefly gs-closed) [4] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 

(3) an α- generalized closed set (briefly αg-closed) [11] if αcl(A) ⊆ U whenever  A ⊆ U and U is  open in      
(X, τ). 

(4) a generalized semi-pre closed set (briefly gsp-closed) [6] if spcl(A) ⊆ U whenever A ⊆ U and U is  open  
in(X, τ). 

(5) a generalized pre-closed set (briefly gp-closed) [9] if pcl(A) ⊆ U whenever A ⊆ U and U is  open in(X, τ). 

(6) a strongly g-closed set [14] if cl(intA) ⊆ U  whenever A ⊆ U  and U is open in (X, τ). 

(7) a 𝑔𝑔� -closed set [17] if cl(A) ⊆ U whenever A ⊆ U  and U is a semi-open set in  (X, τ). 

(8) a gb-closed set [2] if bcl (A) ⊆ U whenever A ⊆ U and U is open set in (X, τ).  

(9) a b𝑔𝑔� - closed set [16] if bcl(A) ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open set in (X, τ).  

(10) a subset A of a topological space (X, τ) is said to be bα𝑔𝑔�- closed set [15 ] if bcl(A) ⊆ U, whenever A ⊆ U  

and U is a α𝑔𝑔�- open set in (X, τ). 
 
Definition 2.1.3: A function f: (X, τ)→  (Y, σ) is called 

(1) gb- continuous [2] if f-1(V) is gb-closed in (X, τ) for every closed set V of (Y, σ).  

(2) α-generalized continuous (briefly αg-continuous) [10] if f-1(V) is αg -closed in (X, τ) for every closed set V 

of (Y, σ).  
(3) generalized semi continuous (briefly gs-continuous) [5] if f-1(V) is gs-closed in (X, τ) for every closed set V of 

(Y, σ). 
(4) generalized semi-pre continuous (briefly gsp -continuous) [6] if f-1(V) is gsp -closed in (X, τ) for every closed 

set V of (Y, σ). 
(5) generalized pre continuous (briefly gp -continuous) [9] if   f-1(V) is gp- closed in (X, τ) for every closed set V 

of (Y, σ). 

(6) gb- open map [2] if f (U) is gb-open in (Y,σ), for every open set U of (X, τ). 

(7) αg- open map [10] if f (U) is αg -open in (Y,σ), for every open set U of (X, τ). 

(8) gs- open map [5] if f (U) is gs-open in (Y,σ), for every open set U of (X, τ). 

(9) gp- open map [9] if f (U) is gp-open in (Y,σ), for every open set U of (X, τ). 

(10) gsp- open map [6] if f (U) is gsp-open in (Y,σ), for every open set U of (X, τ). 
(11) bα𝑔𝑔� - open map [15] if f (U) is bα𝑔𝑔� open in (Y, σ) for every open set U of (X, τ). 

 
Definition 2.1.4: A space (X, τ) is called 

(1) a T 2/1 - space [7] if every g-closed set in it is closed. 
(2) a Tb – space [5] if every gs-closed set in it is closed. 

(3) an αTb – space [5] if every αg-closed set in it is closed. 
(4) a  Tbα𝑔𝑔�

c   - space [15] if every bα𝑔𝑔� - closed set is closed. 
 
3. αb𝑔𝑔�- CLOSED SETS 

 
In this section we introduce a new class of closed sets called αb𝑔𝑔�- closed sets which lie between the class of α-closed 
sets and the class of αb𝑔𝑔� -closed sets. 
 
Definition 3.1.1: A subset A of a topological space (X, τ) is said to be α𝐛𝐛𝒈𝒈� closed if αcl(A) ⊆ U, whenever A ⊆ U, 
and U is b𝑔𝑔�- open set in (X, τ). 
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3.1 Relationship of αb𝑔𝑔�- closed sets with other classes of closed sets: 
 
Theorem 3.1.1: Let A be a αb𝑔𝑔�- closed set in a topological space (X, τ). Then A is 
(i) αg-closed (ii) gs –closed (iii) gp –closed (iv) gsp-closed (v) gb-closed (vi) bα𝑔𝑔� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
 
Proof:   

(i) Let A be αb𝑔𝑔� -closed and U be an open set such that A ⊆U, since every open set is b𝑔𝑔�-open, A⊆U implies 
αcl(A) ⊆  U. Hence A is αg-closed set.      

(ii) Let A be αb𝑔𝑔� closed set and U be an open set such that A⊆U. Since every open set is b𝑔𝑔�-open, A⊆U 
implies scl(A) ⊆ cl (A)⊆U. Hence A is gs-closed set.   

(iii) Let A be αb𝑔𝑔� closed set and U be an open set such that A⊆U. Since every open set is b𝑔𝑔�- open, A⊆U 
implies pcl(A)⊆ αcl (A)⊆U. Hence A is gp-closed set. 

(iv) Let A be αb𝑔𝑔�- closed set and U be an open set such that A⊆U, since every open set is b𝑔𝑔�-open, A⊆U 
implies spcl(A)⊆  αcl(A)⊆U. Hence A is gsp-closed set. 

(v) Let A be αb𝑔𝑔� closed set and U be an open set such that A⊆U. Since every open set is b𝑔𝑔�-open, A⊆U 
implies bcl(A) ⊆ αcl (A)⊆U. Hence A is gb-closed set. 

(vi) Let A be αb𝑔𝑔� closed set and U is α𝑔𝑔 �  - open, since every α𝑔𝑔 �  open set is b𝑔𝑔� - open, and A is αb𝑔𝑔�- closed,  
(vii) αcl(A) ⊆ U and  bcl(A) ⊆ αcl(A) ⊆ U,  implies A is 𝑏𝑏α𝑔𝑔 � - closed.  

 
The converse part of the above Theorem need not true. This is proved in the following examples: 
 
Example 3.1.1: Let X = {a, b, c}, τ ={X, φ, {a}, {b, c}} A= {a, b} is αg-closed, but not αb𝑔𝑔�-closed. 
 
Example 3.1.2:  Let X = {a, b, c}, τ ={X, φ, {a}, {b}, {a, b}}. A = {b} is gs-closed, but not αb𝑔𝑔�-closed. 
 
Example 3.1.3: Let X = {a, b, c}, τ ={X, φ, {a}, {b, c}}. A= {c} is gp-closed, but not αb𝑔𝑔�-closed.  
 
Example 3.1.4: Let X = {a, b, c}, τ ={X, φ, {a}, {b, c}}. A= {a, c} is gsp-closed, but not αb𝑔𝑔� -closed. 
 
Example 3.1.5: Let X = {a, b, c}, τ ={X, φ, {a, c}}. A= {c} is gb-closed, but not αb𝑔𝑔� -closed. 
 
Example 3.1.6: Let X = {a, b, c}, τ ={X, φ, {a}, {b}, {a, b}}. A= {a} is 𝑏𝑏α𝑔𝑔 � - closed but not  αb𝑔𝑔� -closed. 
 
Remark: The following examples reveal that αb𝑔𝑔�-closed sets are independent from g-closed sets, 𝑔𝑔�-closed sets and 
strongly g-closed sets. 
 
Example 3.1.7: i) X = {a, b, c}, τ = {X,φ, {a}, {b, c}}. A 1  = {c} is g-closed but not αb𝑔𝑔� - closed.  X = {a. b, c},           

τ = {X,φ, {a}, {a, b}}. A 2  = {b} is αb𝑔𝑔�- closed but not g-closed. 
 
Example 3.1.8: ii) X = {a. b, c}, τ = {X, φ, {a, c}}. A 1 = {b} is αb𝑔𝑔�-closed but not 𝑔𝑔�- closed. A 2 = {a, b} is 𝑔𝑔�- closed 
but not αb𝑔𝑔�-closed. 
 
Example 3.1.9: iii) X = {a. b, c}, τ = {X, φ, {a}, {a, c}}. A 1  = {c} is αb𝑔𝑔�- closed but not strongly g-closed.                

A 2  = {a, b} is strongly g- closed but not αb𝑔𝑔�-closed. 
 
Theorem 3.1.2: Every α- closed set is αb𝑔𝑔�- closed. 
 
Proof:  Let A be α- closed set and U be an b𝑔𝑔� -open set such that A⊆U, since αcl(A) = A, and αcl(A)⊆U, implies A 
is αb𝑔𝑔�- closed.  
 
Corollary 3.1.3: Every closed set is αb𝑔𝑔�- closed set, but not conversely. 
 
Proof: Let A be closed, then A is α-closed and αcl(A) = A. By Theorem 3.1.2, A is αb𝑔𝑔�- closed set. 
 
Example 3.1.10: X = {a, b, c}, τ = {X, φ, {a}, {a, b}}. A= {b} is αb𝑔𝑔� closed but not closed. 
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Relationships of αb𝑔𝑔�-closed sets with other closed sets are represented by the following diagram. 

 
 
In the above diagram, A→B denotes A implies B, A                 B represents, A and B are independent.    
A              B denotes B implies A, but A does not imply B.   A                 B means A implies B but B does not imply A. 
. 
3.2 α𝐛𝐛𝒈𝒈�  - Continuous functions:  
 
We introduce the following definition. 
 
Definition: A function f: (X, τ) →  (Y, σ) is called αb𝑔𝑔�- continuous if  f-1(V) is a αb𝑔𝑔�- closed set of (X, τ) for every 
closed set V of (Y,σ). 
 
Theorem 3.2.1: Every continuous map f: (X, τ) →  (Y, σ) is αb𝑔𝑔� -continuous but not conversely. 
 
Proof: Let V be a closed set in (Y, σ), then f-1 (V) is closed set in (X, τ). By Corollary 3.1.3, f-1(V) is αb𝑔𝑔� -closed and 
hence f is αb𝑔𝑔� −ccontinuous. The converse of the above Theorem is not true. 
  
Example 3.2.1: Let X = {a, b, c} = Y, τ = {X, φ, {a}, {a, b}},  σ = {Y, φ, {a, c}} 
Let f: (X, τ) →  (Y, σ) be the identity map, then f is αb𝑔𝑔�- continuous but not continuous. For the closed set {b} in     
(Y, σ),  f-1{b} is αb𝑔𝑔�- closed in (X, τ), but not closed  in (X, τ). 
 
Theorem 3.2.2: Every αb𝑔𝑔�-continuous map is αg- continuous but not conversely. 
 
Proof: Let V be a closed set in (Y, σ) then f-1(V) is αb𝑔𝑔�- closed in (X, τ), By Theorem 3.1.1,  f-1(V) is αg- closed set in 
(X, τ). Hence f is g-continuous. The converse of the above Theorem is not true. 
 
Example 3.2.2: Let X = {a, b, c} = Y, τ = {X, φ, {a}, {b, c}}, σ = { Y, φ, {a, c}} 
 
Let f: (X, τ) →  (Y, σ) be the identity map. Then f is αg-continuous. For the closed set {b} in (Y, σ),  f-1(b) = {b} is   
αg - closed in (X, τ), but notαb𝑔𝑔� -closed in (X, τ). Hence f is not αb𝑔𝑔�-continuous. 
 
Theorem 3.2.3: Every αb𝑔𝑔� - continuous map is gs- continuous but not conversely. 
 
Proof: Let V be a closed set in (Y, σ), then f-1(V) is αb𝑔𝑔�-closed set in (X, τ).By Theorem 3.1.1,  f-1(V) is gs-closed set  
in  (X, τ). Therefore, every αb𝑔𝑔�-continuous map is gs-continuous. The converse of the above Theorem is not true. 
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Example 3.2.3: Let X = {a, b, c} = Y, τ = {X, φ, {a},{b}, {a, b}}, σ = { Y, φ, {a}, {a, b},{b, c},{b}}. 
Let f: (X, τ) →  (Y, σ) be the identity map. Then f is gs-continuous. For the closed set {a} in (Y, σ),  f-1(a) = {a} is not 
αb𝑔𝑔� - closed in (X, τ). Hence f is not αb𝑔𝑔�-continuous. 
 
Theorem 3.2.4: Every αb𝑔𝑔�- continuous map is gp continuous but not conversely. 
  
Proof: Let V be a closed set in (Y, σ), then f-1(V) is αb𝑔𝑔� -closed set in (X, τ).By Theorem 3.1.1, f-1(V) is gp-closed set 
in (X, τ) and hence f is gp-continuous. The converse of the above Theorem is not true. 
 
Example 3.2.4: Let X = {a, b, c} = Y, τ = {X, φ, {a}, {a, c}}, σ = { Y, φ, {a}} 
 
Define f: (X, τ) →  (Y, σ) by  f (a) = c, f (b) = b, f (c) = a, f-1(c) = a, f-1 (b) = b, f-1(a) = c. Then f is gp-continuous. For 
the closed set {b, c} in (Y, σ),  f-1 (b, c) = {a, b} is gp-closed in (X, τ), but not αb𝑔𝑔� -closed in (X, τ). Hence f is not 
αb𝑔𝑔�-continuous. 
 
Theorem 3.2.5: Every αb𝑔𝑔�- continuous map is gsp-continuous, but not conversely. 
 
Proof: Let V be a closed set in (Y, σ), then f-1 (V) is αb𝑔𝑔�-closed set in (X, τ). By Theorem 3.1.1, f-1(V) is gsp-closed 
set in (X, τ) and hence f is gsp-continuous. The converse of the above Theorem is not true. 
  
Example 3.2.5: Let X = {a, b, c} = Y, τ = {X, φ, {a}, {b},{a, b}}, σ = {Y , φ, {a}, {b, c}}   
 
Let f: (X, τ) →  (Y, σ) be the identity map. Then f is gsp-continuous. For the closed set {a} in (Y, σ), f-1(a)  ={a} is 
gsp- closed in (X, τ), but not αb𝑔𝑔� - closed  in (X, τ). Hence f is not αb𝑔𝑔�-continuous.  
 
Theorem 3.2.6: Every αb𝑔𝑔� -continuous map is gb continuous but not conversely. 
 
Proof: Let V be a closed set in (Y, σ), then f-1(V) is αb𝑔𝑔� -closed set in (X, τ). By Theorem 3.1.1, f-1(V) is gb- closed 
set in (X, τ). Thus, f is gb- continuous. The converse of the above Theorem is not true. 
 
Example 3.2.6: Let X = {a, b, c} = Y, τ = {X, φ, {a}, {a, b}}, σ = {Y, φ, {a}, {b}, {a, b}, {b, c}}. Define f: (X, τ) →  
(Y, σ) by f(a) = b, f(b) = a, f(c)= c, f-1 (b) = a,f-1 (a) = b, f-1 (c) = c. Then f is gb-continuous. But not αb𝑔𝑔�-continuous, 
for the closed set {b, c} in (Y, σ),  f-1 (b, c) = {a, c} is gb- closed in (X, τ), but not  αb𝑔𝑔� - closed  in (X, τ). 
 
3.3 αb𝑔𝑔�-open maps 
 
We introduce the following definition. 
 
Definition 3.3.1: A map f: (X, τ)→ (Y, σ) is called an αb𝑔𝑔�- open map if f(U) is αb𝑔𝑔�- open  in (Y, σ) for every open 
set U in (X, τ). 
 
Theorem 3.3.1: Every open map is αb𝑔𝑔�- open map but not conversely.  
 
Proof: Let f: (X, τ)→ (Y, σ) be an αb𝑔𝑔�- open map. Let U be an open set in (X, τ), then f(U) is an open set in (Y, σ). 
By Corollary 3.1.3, every open set is αb𝑔𝑔�-open set. Therefore, f is an αb𝑔𝑔�-open map. The converse of the above 
Theorem is not true. 
  
Example 3.3.1: Let X = {a, b, c} = Y, τ ={X, φ, {a}, {a, c}}, σ = {Y, φ, {a}, {a, b}} 
 
Let f: (X, τ) → (Y, σ) be the identity map. Then f is αb𝑔𝑔�-open map. For the open set {a, c} in (X, τ), then f {a, c} =   
{a, c} is αb𝑔𝑔� open in (Y, σ), but f{a, c}={a, c} is not open in (Y, σ). Therefore, f is not an open map. 
 
Theorem 3.3.2: Every αb𝑔𝑔�-open map is αg- open map, but not conversely. 
 
Proof: Let f: (X, τ)→ (Y, σ) be an αb𝑔𝑔�- open map. Let U be an open set in (X, τ), then f (U) is αb𝑔𝑔�-open in (Y, σ). By 
Theorem 3.1.1,  f (U) is αg-open. Hence, every αb𝑔𝑔�-open map is an αg open map. The converse of the above Theorem 
is not true. 
 
Example 3.3.2: Let X = {a, b, c} = Y,  τ = {X, φ, {a}, {b}, {a, b}}, σ = {Y, φ, {a}, {a, c}}. Let f: (X, τ) →  (Y, σ) be 
the identity map. Then f is αg-open map. For the open set {b} in (X, τ), f {b} = {b} is not αb𝑔𝑔�- open in (Y, σ). 
Therefore f is not an αb𝑔𝑔�- open map. 
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Theorem 3.3.3: Every αb𝑔𝑔�-open map is gs-open map. Converse need not true. 
 
Proof: Let f: (X, τ)→ (Y, σ) be an αb𝑔𝑔�- open map. Let U be an open set in (X, τ), then f (U) is αb𝑔𝑔�-open in (Y, σ). By 
theorem 3.1.1,  f (U) is gs-open. Hence, every αb𝑔𝑔�-open map is gs-open map. The converse of the above Theorem is 
not true. 
 
Example 3.3.3: Let X= {a, b, c} = Y, τ = {X, φ, {a}, {b}, {a, b}}, σ = {Y, φ, {a}, {b, c}}. Let f: (X, τ)→ (Y, σ) be the 
identity map. Then f is gs-open. For the open set {b} in  (X, τ),  f{b}={b} is not αb𝑔𝑔�- open in (Y, σ). Therefore f is not 
an αb𝑔𝑔�- open map. 
 
Theorem 3.3.4: Every αb𝑔𝑔�-open map is gp-open map, but not conversely. 
 
Proof: Let f: (X, τ)→ (Y, σ) be an αb𝑔𝑔� open map. Let U be an open set in (X, τ), then f (U) is αb𝑔𝑔�-open in (Y, σ). By 
Theorem 3.1.1, f (U) is gp-open. Hence, every αb𝑔𝑔�-open map is gp-open map. The converse of the above Theorem is 
not true. 
 
Example 3.3.4: Let X= {a, b, c} = Y, τ = {X, φ, {a}, {a, c}}, σ = {Y, φ, {a}, {a, b}} 
Define f: (X, τ)→ (Y, σ) by  f(a) = b  f(b) = c  f(c) = a. Then f is gp-open. For the open set {a} in (X, τ), f{a}={b} is 
not αb𝑔𝑔�- open in (Y, σ). Therefore f is not an αb𝑔𝑔�- open map. 
 
Theorem 3.3.5: Every αb𝑔𝑔�-open map is gsp-open map. The converse part is not true. 
 
Proof: Let f: (X, τ)→ (Y, σ) be an αb𝑔𝑔�-open map. Let U be an open set in (X, τ), then f (U) is αb𝑔𝑔�-open in (Y, σ). By 
Theorem 3.1.1, f (U) is gsp-open. Hence, every αb𝑔𝑔�-open map is a gsp-open map. The converse of the above Theorem 
is not true. 
 
Example 3.3.5: Let X= {a, b, c} = Y, τ = {X, φ, {a}, {a, c}}, σ={Y, φ, {a}, {b}, {a, b}}. Define f: (X, τ)→ (Y, σ) by 
f(a)=b  f(b)=a  f(c)=c. Then f is gsp-open. For the open set {a, c} in (X, τ), f{a, c}={b, c} is not αb𝑔𝑔�- open in (Y, σ). 
Therefore f is not an  αb𝑔𝑔�- open map. 
 
Theorem 3.3.6: Every αb𝑔𝑔�-open map is gb-open map, but not conversely. 
 
Proof: Let f: (X, τ)→ (Y, σ) be an αb𝑔𝑔�- open map. Let U be an open set in (X, τ), then f (U) is αb𝑔𝑔�-open in (Y, σ). By 
Theorem 3.1.1, f(U) is gb-open. Hence, every αb𝑔𝑔�-open map is gb-open map. The converse of the above Theorem is 
not true. 
 
Example 3.3.6: Let X = {a, b, c} = Y, τ = {X, φ, {a}, {b, c}}, σ = {Y, φ, {a}, {a, b}} 
Define f: (X, τ)→ (Y, σ) by f(a) = b  f(b) = c  f(c) = a. Then f is gb-open. For the open set {a} in (X, τ),  f{a} = {b} is 
not αb𝑔𝑔�- open in (Y, σ). Therefore f is not an  αb𝑔𝑔�- open map. 
 
Theorem 3.3.7: Every αb𝑔𝑔�-open map is bα𝑔𝑔�-open map. The reverse relation does not hold. 
 
Proof: Let f: (X, τ)→ (Y, σ) be an αb𝑔𝑔�- open map. Let U be an open set in (X, τ), then f (U) is αb𝑔𝑔�-open in (Y, σ). By 
Theorem 3.1.1, f (U) is bα𝑔𝑔�-open. Hence, every αb𝑔𝑔�-open map is bα𝑔𝑔�-open map. The converse of the above Theorem 
is not true. 
 
Example 3.3.7: Let X = {a, b, c} = Y, τ = {X, φ, {a}, {b, c}}, σ = {Y, φ, {a, c}} 
Let f: (X, τ)→ (Y, σ) be the identity map. Then f is bα𝑔𝑔�-open map. For the open set {b, c} in (X, τ),  f{b, c}={b, c} is 
not an αb𝑔𝑔�- open in (Y, σ). Therefore f is not an αb𝑔𝑔�- open map. 
 
3.4 Applications of  αb𝑔𝑔� - closed sets: 
 
As an application of αb𝑔𝑔� - closed sets we introduce new spaces namely 
 Tαb𝑔𝑔�

𝑐𝑐  - space,   Tαb𝑔𝑔�
𝑔𝑔𝑔𝑔    - space,  and    T αb𝑔𝑔� 

bα𝑔𝑔�  - space. 
 
Definition 3.4.1: A topological space (X, τ ) is called, 

1. a  Tαb𝑔𝑔�
𝑐𝑐  - space if every αb𝑔𝑔� - closed set is closed. 

2. a  Tαb𝑔𝑔�
𝑔𝑔𝑔𝑔  - space if every gs- closed set is closed αb𝑔𝑔� - closed. 

3. a  Tαb𝑔𝑔�
𝑏𝑏α𝑔𝑔  - space if every bα𝑔𝑔� - closed set is αb𝑔𝑔� - closed. 
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Theorem 3.4.1: Every T b - space is Tαb𝑔𝑔�

𝑐𝑐 - space, converse is not true. 
 
Proof: Let A be αb𝑔𝑔� - closed. By Theorem 3.1.1, A is gs- closed and in a T b - space, A is closed. So, A is in Tαb𝑔𝑔�

𝑐𝑐 - 
space. 
 
Example 3.4.1: Let X = {a, b, c}, τ = {X, φ, {a}, {b, c}} 
 
In (X, τ) every  αb𝑔𝑔� - closed set is closed.  Hence X is a Tαb𝑔𝑔�

𝑐𝑐  - space but not a Tb  - Space, since {b} is gs closed, but 
not closed. 
 
Theorem 3.4.2: Every Tb - space is Tαb𝑔𝑔�

𝑔𝑔𝑔𝑔 - space. 
 
Proof: Let A be gs- closed. In a T b  - space, A is closed and hence αb𝑔𝑔�- closed. 
 
Theorem 3.4.3: Every αTb - space is Tαb𝑔𝑔�

α𝑔𝑔 - space. 
 
Proof: Let A be αg- closed. In αTb - space, A is closed and hence αb𝑔𝑔�- closed. 
So, A is in Tαb𝑔𝑔�

α𝑔𝑔 - space. 
 
Theorem 3.4.4: Every Tbα𝑔𝑔�

𝑐𝑐  - space is Tαb𝑔𝑔�
bα𝑔𝑔 - space, but converse does not hold. 

 
Proof: Let A be bα𝑔𝑔� - closed. In a Tbα𝑔𝑔�

c - space, A is closed and hence αb𝑔𝑔�- closed. 
So, A is in Tαb𝑔𝑔�

bα𝑔𝑔 - space. 
  
Example 3.4.2: Let X = {a, b, c}, τ = {X, φ, {a}}. 
 
In (X, τ), every αb𝑔𝑔� -closed set is bα𝑔𝑔�   -closed, hence X is Tαb𝑔𝑔�

bα𝑔𝑔  - space, but not a  Tbα𝑔𝑔�
𝑐𝑐  - space, since {c} is bα𝑔𝑔� - 

closed, but not closed.  
 
Theorem 3.4.5: Every Tbα𝑔𝑔�

𝑐𝑐  - space is Tαb𝑔𝑔�
𝑐𝑐  - space, but converse is not true. 

 
Proof: The Theorem follows, since every αb𝑔𝑔�- closed set is bα𝑔𝑔� - closed set. 
 
Example 3.4.3: Let X = {a, b, c}, τ = {X, φ, {a}, {b}, {a, b}}. 
The αb𝑔𝑔�-closed sets are {X, φ, {c}, {a, c}, {b, c}}. In (X, τ) every αb𝑔𝑔�- closed set is closed, hence X is a Tαb𝑔𝑔�

𝑐𝑐  - space, 
but not a Tbα𝑔𝑔�

𝑐𝑐   - space, since {b} is bα𝑔𝑔� - closed, but not closed. 
 
Theorem 3.4.6: Let (X, τ) be Tαb𝑔𝑔�

𝑔𝑔𝑔𝑔  - space and a Tαb𝑔𝑔�
𝑐𝑐  - space then it is a T½ - space. The converse part is not true. 

  

Proof: Let A be g- closed and hence gs- closed. In Tαb𝑔𝑔�
𝑔𝑔𝑔𝑔 - space, A is αb𝑔𝑔�-closed and in Tαb𝑔𝑔�

𝑐𝑐  - space, A is closed. 

Hence (X, τ ) is T½  - space. 
 
Example 3.4.4: Let X = {a, b, c}, τ = {X, φ, {a}, {b}, {a, b}}. The g-closed sets are {X, φ, {c}, {b, c}, {a, c}}. Every 
g-closed set is closed. Hence X is a T½ -space, but not Tαb𝑔𝑔�

𝑔𝑔𝑔𝑔 -space, since {a} is gs-closed, not αb𝑔𝑔�-closed. 
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