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ABSTRACT 
We consider generalized iteration of two entire functions of (p, q)-order and study some growth properties of 
generalized iterated entire functions to improve some earlier results. 
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1. INTRODUCTION AND DEFINITION 

It is well known that for any two transcendental entire functions )(zf  and ),(zg   .
),(

),(lim ∞=
∞→ frM

gfrM
r



 In a 

paper [5] Clunie proved that the same is also true when maximum modulus functions are replaced by their 
characteristic functions. Singh [9] proved some results dealing with the ratios of ),(log gfrT  and ),( frT under 
some restrictions on the orders of f  and .g  In a recent paper [2] Banerjee and Mondal generalize the results of A. P. 
Singh [9] for iterated entire functions imposing some restrictions on (p, q)-orders and lower (p, q)-orders of f  and .g  
In the present paper we extend the results of Banerjee and Mondal for generalized iterated entire functions under some 
restrictions on (p, q)-orders and lower (p, q)-orders of f  and .g  Following Sato [8], we write 
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n zaf(z) be an entire function. Then the (p, q)-order and lower (p, q)-order of )(zf are denoted by 

(f)ρ(p,q)  and (f)(p,q)λ  respectively and defined by [4] 
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According to Lahiri and Banerjee [7] if )(zf and )(zg  be entire functions then the iteration of f  with respect to g  
is defined as follows: 

)()(1 zfzf =  

))(())(()( 12 zgfzgfzf ==  

))(()))((()( 23 zgfzfgfzf ==  

))(())))(((()( 34 zgfzgfgfzf ==  
.........             ........           ........      

)))),evenor  odd is  as according  )(or  )((...(((()( nzgzfgfgfzf n = ).(g are so and zn  
 
Clearly all )(zfn  and )(zgn are entire functions. 
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In paper [1] Banerjee and Mondal introduced a more general type of iteration, called generalized iteration as follows: 
 
Let f  and g  be two non-constant entire functions and α  be any real number satisfying 1  0 ≤<α . Then the 
generalized iteration of f  with respect to g  is defined as follows: 

αf(z))z((z)f ,g +−= α11  

(z))gαf(z)gα((z)f ,f,f,g 112 ()1 +−=  

(z))gαf(z)gα((z)f ,f,fg 22,3 ()1 +−=  
.......            .......             ......  

(z))gαf(z))g((z)f ,fn,fnn,g 11 (1 −− +−= α  
 
and so are 

1g , f (z) = ( )1 zα− + αg(z)  

2g , f (z) = ( )1 α− 1,gf (z) 1( ,gαg f (z))+  

(z))fαg(z)fα((z) ,g,g,f 223 ()1g +−=  
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.()1g 11 (z))fαg(z)fα((z) ,gn,gnn,f −− +−=
 

 
Note-1: For 1=α , generalized iteration reduces to relative iteration. 
 
Definition 1[1]: We say a real valued function )(rφ is said to have the property P if 

(i) )(rφ  is non-negative and continuous for ,0rr ≥  say; 

(ii) )(rφ is strictly increasing and ∞→)(rφ as ;∞→r  and 

(iii) 
λφδ

φ
)]

2
([

)(
r

er <  
hold for all 0, >δλ and for all sufficiently large values of .r  
 
The purpose of this paper is to compare the characteristic function of generalized iterated entire functions with that of 
the generating functions. Throughout we assume f and g  are non constant entire functions having finite (p, q)-orders. 
 
2. LEMMAS 
 
Following two lemmas will be needed during the proof of our theorems. 
 
Lemma 1[6]: If )(zf be regular in  ,Rz ≤ then for Rr <≤0  
 

          
 f).T(R

rR
rRf)M(rf)T(r ,,log,

−
+

≤≤ +  

 
In particular if f be entire, then for all large values of r  
 

         f).rT(f)M(rf)T(r ,23,log, ≤≤  
 
Lemma 2[3]: If f  is meromorphic and g  is entire then for all large values of r  
 

( ) ,      , 1 (1) , ,
log ,

T(r  g)T(r  f g) o T(M(r g) f).
M(r  g)
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Since g  is entire so using Lemma 1, we have 
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3. MAIN RESULTS 
 
Theorem 1: Let )(zf  and )(zg  be two entire functions with )) ,, (f(g q)(pq)(p λρ < . Then for even n  
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Proof: We have 
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On the other hand 
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Note-2: From the hypothesis it is clear that f  must be transcendental. 
 
Theorem 2: Let f  and g  be two entire functions with )) ,, (g(f q)(pq)(p λρ < . Then for odd n  
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The proof of the theorem is on the same line as that of Theorem 1. 
 
Theorem 3: Let )(zf and )(zg  be two transcendental entire functions such that .0), >(gq)(pλ  Then for even n  
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Theorem 4: Let )(zf and )(zg  be two transcendental entire functions with 0), >(fq)(pλ . Then for odd n  
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The proof is omitted. 
 
Note-3: If )) ,, (f(g q)(pq)(p ρρ >  holds in Theorem 1 we shall show that the limit superior will tend to infinity.  
 
Now we prove the following four theorems where we assume that the maximum modulus functions of f, g and all of 
their generalized functions satisfy property P. 
  
Theorem 5: Let )(zf and )(zg  be two entire functions of positive lower (p, q)-orders with 
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This proves the theorem.

 

 
An immediate consequence of Theorem 5 for odd n  is the following theorem. 
 
Theorem 6: Let )(zf and )(zg  be two entire functions of positive lower (p, q)-orders with 
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Theorem 7: Let )(zf and )(zg  be two entire functions of positive lower (p, q)-orders. Then for even n  
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Theorem 8: Let )(zf and )(zg  be two entire functions of positive lower (p, q)-orders. Then for odd n  
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The proof is omitted. 
 
Note-4: If we put 1=α  in the above Theorems we get the results of Banerjee and Mondal [2]. 
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