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ABSTRACT 

A Graph G = (V, E) with p vertices and q edges is said to be a Harmonic mean graph if is possible to label the 
vertices x∈V with distinct labels f(x) from 1,2…..q+1 is such a way that when each edge e=uv is labeled with                             
f(e=uv) = �2𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣)

𝑓𝑓(𝑢𝑢)+𝑓𝑓(𝑣𝑣)
�  (𝑜𝑜𝑜𝑜) �2𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣)

𝑓𝑓(𝑢𝑢)+𝑓𝑓(𝑣𝑣)
�,  then the resulting edge labels are distinct. In this case f is called Harmonic 

mean labeling of G. In this paper we prove that Triple Triangular, Alternate Triple Triangular, Triple Quadrilateral 
and Alternate Triple Quadrilateral snakes are Harmonic mean graphs. 
 
Keywords: Graph, Harmonic mean graph. Triple Triangular snake, Alternate Triple Triangular snake, Triple 
Quadrilateral snake, Alternate Triple Quadrilateral snake graphs. 
 
 
1. INTRODUCTION 
 
Throughout this paper we consider only finite, undirected and simple graphs. Let G= (V, E) be a graph with p vertices 
and q edges. For all terminologies and notations we follow Harary [1]. There are several types of labeling and detailed 
survey can be found in [2]. The concept of mean labeling has been introduced in [3] and the Harmonic mean labeling 
was introduced in [4]. The concept of Double Triangular snake and Double Quadrilateral snake has been proved in [5] 
and [6]. In this paper we prove that the Harmonic mean labeling behaviour of Triple Triangular snake, Triple 
Quadrilateral snake graphs. Also we wish to investigate Alternate Triple Triangular snake and Alternate Triple 
Quadrilateral snake graphs are Harmonic mean graphs. The following definitions are necessary for our present 
investigation. 
 
Definition 1.1: A Graph G= (V, E) with p vertices and q edges is said to be a Harmonic mean graph if it is possible to 
label the vertices x∈V with distinct labels f(x) from 1, 2…q+1 in such way that when each edge e=uv is labeled with 
f(e=uv) = �2𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣)

𝑓𝑓(𝑢𝑢)+𝑓𝑓(𝑣𝑣)
�  (or) �2𝑓𝑓(𝑢𝑢)𝑓𝑓(𝑣𝑣)

𝑓𝑓(𝑢𝑢)+𝑓𝑓(𝑣𝑣)
�,  then the resulting edge labels are distinct. In this case f is called Harmonic mean 

labeling of G. 
 
Definition 1.2: A Triangular snake Tn is obtained from a path u1u2…..un by joining ui and ui+1 to a new vertex vi for 
1≤i≤n-1. That is every edge of a path is replaced by a triangles C3. 
 
Definition 1.3: An Alternate Triangular snake A(Tn) is obtained from a path u1,u2…un by joining ui+1 (Alternatively) to 
new vertex vi. That is, every alternate edge of a path is replaced by C3.  
 
Definition 1.4: A Double Triangular snake D(Tn) consists of two Triangular snakes that have a common path. 
 
Definition 1.5: An Alternate Double Triangular snake A[D(Tn)] consists of two Alternate Triangular snake that have a 
common path.  
 
Definition 1.6: A Triple Triangular snake T(Tn) consists of three Triangular snakes that have a common path. 
 
Definition 1.7: An Alternate Triple Triangular snake A(T(Tn)) consists of three Alternate Triangular snakes that have a 
common path. 
 
Definition 1.8: A Quadrilateral snake Qn is obtained from a path u1u2..un by joining ui and ui+1 to new vertices vi, wi 
respectively and then joining vi and wi, 1≤i≤n-1. That is, every edge of a path is replaced by cycle C4. 
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Definition 1.9: An Alternate Quadrilateral snake A(Qn) is obtained from a path u1u2…….un by joining ui and ui+1 
(Alternatively) to new vertices vi and wi respectively and then joining vi and wi. That is, every alternate edge of path is 
replaced by a cycle C4. 
 
Definition 1.10: A Double Quadrilateral snake D(Qn) consists of two Quadrilateral snakes that have a common path. 
 
Definition 1.11: An Alternate Double Quadrilateral snake A[D(Qn)] consists of two Alternate Quadrilateral snakes that 
have a common path. 
 
Definition 1.12: An Triple Quadrilateral snakes T(Qn) consists of three Quadrilateral snakes that have a common path. 
 
Definition 1.13: An Alternate Triple Quadrilateral snake A[T(Qn) consists of three Alternate Quadrilateral snakes that 
have a common path. 
 
2. MAIN RESULTS 
 
Theorem 2.1: Triple Triangular snakes are Harmonic mean graphs. 
 
Proof: Let G be the graph obtained from a path u1u2…..un by joining ui and ui+1 to three new vertices vi, wi and ti,         
1 ≤ i ≤ n-1. 
 
Define a function f:V(G)→{1,2…..q+1} by 
f(u1)=3 
f(ui)=7i-6,   1≤i≤n 
f(v1)=1 
f(vi)=7i-5,   1≤i≤n-1 
f(wi)=7i-3,  1≤i≤n-1 
f(ti) = 7i,     1≤i≤n-1. 
 
From the above labeling pattern, we get distinct edge labels. 
 
Thus f provides a Harmonic mean labeling for G. 
 
Example 2.2: The labeling pattern of Triple Triangular snake obtained from six vertices is given below 

 
Figure: 1 

 
Theorem 2.3: Alternate Triple Triangular snakes are Harmonic mean graphs. 
 
Proof: Let G = A[T(Tn)] be the Alternate Triple Triangular snake graph and its vertices be vi, wi and ti, 1 ≤ i ≤ n-1. 
Here we consider two cases. 
 
Case (i): If the triangle starts from u1 then  
 
We need to considered two subcases. 
 
Subcase (i) (a): If n is odd then 
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Define a function f: V(G) → {1,2…q+1} by 
f(u1) = 3 
 
f(ui) =  4i-3,    ∀ i = 3,5,7……n 
            4i,       ∀ i = 2,4,6….n-1. 
 
f(v1)=1 
f(vi) = 8i-6,     ∀ i =2,3,4,…..𝑛𝑛−1

2
 

f(wi) = 8i-4,    ∀ i =1,2,3,…..𝑛𝑛−1
2

 

f(ti) = 8i-2,      ∀ i =1,2,3,…..𝑛𝑛−1
2

 
 
From the above labeling pattern, we get the edge labels are all distinct. 
 
Thus f provide a Harmonic mean labeling for G. Harmonic mean labeling of G obtained from seven vertices is given 
below. 

 
Figure: 2 

 
Subcase (i) (b): If n is even then 
 
Define a function f: V(G)→{1,2….q+1}by  
f(u1) = 3 
 
f(ui) =  4i,  ∀ i =2,4,6…….n 
            4i-3 ∀ i =3, 5, 7…….n-1 
 
f(vi) = 8i-6,  ∀ i = 2,3,4….𝑛𝑛

2
 

f(wi) = 8i-4,  ∀ i = 1,2,3….𝑛𝑛
2
 

f(ti) = 8i-2, ∀ i = 1,2,3….𝑛𝑛
2
 

 
From the above labeling pattern, we get the edges labels are all distinct. 
 
Thus f provide a Harmonic mean labeling for G the labeling pattern is shown in the following figure. 

 
Figure: 3 
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Case (ii): If the triangular starts from u2 then also we consider two subcases 
 
Subcase (ii) (a): If n is odd then 
 
Define a function f:V(G)→{1,2…..q+1} by 
f(u1) = 1 
f(u2) = 4 
 
f(ui) =   4i-3,  ∀  i=3,5…….n. 
             4i-6,  ∀ i =4, 6…….n-1. 
 
f(v1) = 2 
f(vi) = 8i-5, ∀ i= 2,3…….𝑛𝑛−1

2
 

f(wi) = 8i-3, ∀ i=1,2,3,……. 𝑛𝑛−1
2

. 

f(ti) = 8i, ∀ i=2,4,6,……. 𝑛𝑛−1
2

. 
 
From above labeling pattern, we get distinct edge labels. 
 
Thus f is Harmonic mean labeling of G and its labeling pattern of seven vertices is shown below. 
  

 
Figure: 4 

 
Sub case (ii) (b): If n is even then 
 
Define a function f: V(G) → {1,2….q+1} by 
f(u1) = 1 
f(u2) = 4 
 
f(ui) =  4i-3,  ∀  i=3,5…….n. 
            4i-6,  ∀ i =4,6…….n-1. 
 
f(v1) = 2 
f(vi) = 8i-5, ∀ i= 2,3…….𝑛𝑛−2

2
 

f(wi) = 8i-3, ∀ i=1,2,3,……. 𝑛𝑛−2
2

. 

f(ti) = 8i, ∀ i=2,4,6,……. 𝑛𝑛−2
2

. 
 
Then we get distinct edge labels. 
 
Thus f provide a Harmonic mean labeling of G and its labeling pattern of G is obtained eight vertices is shown below. 
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Figure: 5 

 
From above all the cases, we conclude that Alternate Triple Triangular snakes are Harmonic mean graphs. 
 
Theorem 2.4: Triple Quadrilateral snakes are Harmonic mean graphs. 
 
Proof: Let G be the graph obtained from a path u1u2…..un by joining ui and ui+1 (alternatively) to new vertices vi, wi xi, 
yi, zi and ti respectively and then joining vi wi,  xiyi and zi, ti 1≤i≤n-1 and its labeling pattern is shown below 

 
Figure: 6 

 
 
Define a function f:V(G)→{1,2…….q+1} by 
f(u1) = 4 
f(ui) = 10i-9,     2≤i≤n. 
f(v1)=1 
f(vi) = 10i-8,     1≤i≤n-1 
f(wi) = 10i-3,    1≤i≤n-1. 
f(xi) = 10i-7,     1≤i≤n-1. 
f(yi) = 10i-1      1≤i≤n-1. 
f(zi) = 10i-5,     1≤i≤n-1. 
f(ti) = 10i          1≤i≤n-1. 
 
From above labeling pattern, we get the edge labels are all distinct. 
 
Thus f provide a Harmonic mean labeling for G. 
 
Example 2.5: Harmonic mean labeling of G is obtained from five vertices is given below. 
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Figure: 7 

 
Theorem 2.6:  Alternate Triple Quadrilateral snakes are Harmonic mean graphs  
 
Proof: Let G be an Alternate Triple Quadrilateral snake and its vertices be vi, wi, xi, yi, zi and ti (1≤i≤n-1). 
 
Case (i): If the Quadrilateral starts from u1 then 
 
We have two cases. 
  
Sub case (i)(a): If n is odd then 
 
Define a function f: V(G)→{1,2…..q+1} by 
 
Define a function f: V(G)→{1,2…..q+1} by 
f(u1) = 3 
 
f(ui) =   11 𝑖𝑖

2
,    ∀ i = 2,4,6…n.  

            11(𝑖𝑖−1)
2

+1,   ∀ i = 3, 5, 7….n-1. 
 
f(v1) = 1 
f(vi) = 11i-9,  ∀ i = 2,3,4….𝑛𝑛−1

2
 

f(wi) =11i-5,  ∀ i = 1,2,3….𝑛𝑛−1
2

 

f(xi) = 11i-7,  ∀ i = 1,2,3….𝑛𝑛−1
2

 
f(y1) = 10 
f(yi) = 11i-2,  ∀ i = 2,3,4….𝑛𝑛−1

2
 

f(z1) = 6 
f(zi) = 11i-5,  ∀ i = 1,2,3….𝑛𝑛−1

2
 

f(t1) = 8 
f(ti) = 11i-2,  ∀ i = 2,3,4….𝑛𝑛−1

2
 

 
From the above labeling pattern we get the edge labels are all distinct. G is a Harmonic mean graph. 
 
Labeling pattern of G is obtained from seven vertices is shown in the following figure. 
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Figure: 8 

 
Subcase (i) (b): If n is even then 
 
Define a function f: V(G)→{1,2…..q+1} by 
f(u1) = 3 
 
f(ui) =  11 𝑖𝑖

2
,    ∀ i = 2,4,6…n.  

            11(𝑖𝑖−1)
2

+1,   ∀ i = 3, 5, 7….n-1. 
 
f(v1) = 1 
f(vi) = 11i-9,    ∀ i = 2,3,4….𝑛𝑛

2
 

f(wi) =11i-5,    ∀ i = 1,2,3….𝑛𝑛
2
 

f(xi) = 11i-7,    ∀ i = 1,2,3….𝑛𝑛
2
 

f(y1) = 10 
f(yi) = 11i-2,    ∀ i = 2,3,4….𝑛𝑛

2
 

f(z1) = 6 
f(zi) = 11i-5,    ∀ i = 1,2,3….𝑛𝑛

2
 

f(t1) = 8 
f(ti) = 11i-2,    ∀ i = 2,3,4….𝑛𝑛

2
 

 
From the above labeling pattern we get the edge labels are all distinct. G is a Harmonic mean graph. 
 
Labeling pattern of G is obtained from seven vertices is shown in the following figure. 

 
Figure: 9 

 
Case (ii): If the Quadrilateral starts from u2. 
 
Here we consider two subcases 
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Subcase(ii)(a): If n is odd then 
 
Define a function f: V(G)→{1,2…,q+1} by 
f(u2) = 4 
f(ui) =  11(𝑖𝑖−1)

2
+1,  ∀i=1,3,5….n. 

f(ui) = 11𝑖𝑖
2

-9 ∀ i =4,6…n-1. 
f(v1) = 2   
f(vi) = 11i-8,  ∀i =2,3,4….𝑛𝑛−1

2
 

f(wi) =11i-3, ∀i =1,2,3….𝑛𝑛−1
2

 

f(xi) = 11i-6,  ∀ i =1,2,3….𝑛𝑛−1
2

 

f(yi) = 11i-1,  ∀i = 1,2,3….𝑛𝑛−1
2

 

f(zi) = 11i-4,  ∀i =1,2,3….𝑛𝑛−1
2

 

f(ti) = 11i,  ∀i =1,2,3….𝑛𝑛−1
2

 
 
From the above labeling pattern we get distinct edge labels. 
 
Thus f provides a Harmonic mean labeling for G and it’s labeling pattern obtained from seven vertices is given below. 
 

 
Figure: 10 

 
Subcase (ii) (b): If n is even then 
 
Define a function f: V(G)→{1,2…..q+1} by 
 
f(u2) = 4 
f(ui) =  11(𝑖𝑖−1)

2
+1,  ∀i=1,3,5….n. 

f(ui) = 11𝑖𝑖
2

-9 ∀ i =4,6…n-1. 
f(v1) = 2   
f(vi) = 11i-8,  ∀i =2,3,4….𝑛𝑛−2

2
 

f(wi) =11i-3, ∀i =1,2,3….𝑛𝑛−2
2

 

f(xi) = 11i-6,  ∀ i =1,2,3….𝑛𝑛−2
2

 

f(yi) = 11i-1,  ∀i = 1,2,3….𝑛𝑛−2
2

 

f(zi) = 11i-4,  ∀i =1,2,3….𝑛𝑛−2
2

 

f(ti) = 11i,  ∀i =1,2,3….𝑛𝑛−2
2

 
 
From the above labeling pattern we get distinct edge labels. 
 
Hence G is a Harmonic mean graph. 
 
The labeling pattern of G is obtained from eight vertices is shown in the following figure 
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Figure: 11 

 
From all the above cases it is clear that Alternate Triple Quadrilateral snake graphs are Harmonic mean graph.  
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