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ABSTRACT

As, we know that, every findings in Mathematics are valuable for review and reanalysis. Here, we reviewed some
n-norms defined on [P, and introduced a new n-norms on [”. Which contains some different properties than others.
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1. INTRODUCTION

The theory of 2-normed spaces was initially developed by Gahler [1 ] in the mid of 1960°s. After that, theory of 2-
normed spaces was generalized to n- normed spaces and studied by Misiak [6], A. Malceski [5], H. Gunawan [2],[3],[4]
and so many others.

Let X be a vector space over IK(= R or C) of dimension d > n. A non-negative real valued function ||.,., ...,. |l on X™
satisfying the four conditions:

(N |IxY, x%, ..., x™|| = 0iff x',x2, ..., x™ are linearly dependent ;

(No) |Ixt, x2, ..., x™|| is invarient under permutation of x', x2, ..., x™ ;

(N3) Jlaxt, x2, ..., x™|| = |alllx!, x2, ..., x"|| ;

(N llxr + v, 22, o, x| < lxb x?, x|+ |y, 22, o, x|Vl x?, .., x™,y €XandVa € K

is called an n-norm on X , and the pair (X, |l.,., ...,.|]) is called an n-normed space.

Example 1.1: Taking X = R®, letx! = (x} ,x{, x5, x%,...,x ;) ;i =1,2,...,nif we define
llx*, x2, .., x"|| = |det (x})| then [|lx*, x2, ..., x™|| forms an n-norm on R™.

1.2. Here we shall study the Banach space (7, ]|.]l,), 1 < p < oo; where

o0

leilp <wandx; € K,vi=1{0,1,23,..}
i=0

W=%=@mo

With norm
o 1/p
Il = (lel-w) .
i=0

Again, (17, || . |l.) forms a normed space, where||x||,, =

sup

0<i<w |xi |

Let x1,x2, ..., xhare h-vectors in IP , if we define u = (x!.x%...x") as term wise multiplication of these h-vectors,

thatis u = (u)iZy = (x}.x? ...x?)?}:o s where &/ = (x{)io ;j=12,..,h

Now from simple calculation, we can show that [lul, < [Ix*|I,. X2l . ||xh||p as well as
llaell, < Nlx™ I, 12™2 || ... [[X™R]|., ; Where 724, 7T,, ..., 7Ty, is @ permutation of1,2, ..., h .
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1.3. Let us consider the set {0, 1, 2, 3, 4, 5. ..} of whole no. as a sequence —
=<01234,..> = <Il>f.

Here we shall denote the sequence N = < [ >7 in the form of two consecutive terms notation as —
N =<0,123,..,2L2l+1,.. > = <2[,2l+1>,

We shall express
N=<2[2l+1>", as—
N=<20=0,20+1=1,21=2,21+1=3,22=4%4,22+1=5,
We shall denote N = < 711, , iy >7_, as a rearrangement of the sequence N = < 21,21 +1 >7, .
Similarly, forany x € [P, x = (x;)iZ,, we denote it as- x = (xy; , X5;41)72 and express as-

X = (X20, %2041, X2.1» X2141 » = X201, X214 5 - ) = (X0, X1, X2, X3, ey X2, X2041) -0 )-

1.4. Parallel rearranged sequences: Let x! ,x% € [P ; where
1 _ g1 1 oo 2 _ (2 .2\
= (X321, %3141 0120 and x* = (x5, X511 )% -

Now, related to x!,x% € I? and corresponding to N = < iy, , My 41 >7, We define -

1 .1 1 1 1 a1 1 @
- <xm0 ’xﬁl’xﬁz’xﬁy”"xﬁZk’xTﬁZkH"”) - <xﬁztc’xﬁycu)kf:o
and
=2 _ 2 2 2 2 2 2 _ 2 2
Xt = (xﬁo ’xﬁl’xﬁz’xﬁy”"xTﬁZk’x?ﬁZkH"") - (xTﬁZk’x?ﬁZkH)k:O :

Then we say; X!, Xx? are parallel rearrangements of the sequences x' , x? respectively.

Next, let us define a series, corresponding to parallel rearranged sequences X!, x? as —
® 1 1 p 1 1 p 1 1 p
X X Xz X X X
m m
Z det( ) 2”“) = ( det( 5’ ’2"1> + det( e + )
X= X5 X=X s Xz
k=0 mak Mm2k+1 mo mi/ =0 m2 m3/ =1
Now by Minkowski Inequality, it is clear that;
Xk L P\ 1/
o Mok Mak+1 _ w 2 1 2 Py /P
(Zk:o det (x2= xZ > > = (T |x772k'x772k+1_ xrﬁzkﬂ'xrﬁzk' )
mag m2k+1

- 1/p 1/p
(Zk=0|x71=’lzk m2k+1| ) +(Zk lem2k+1 m2k| ) (1)

1/
(PrOVIded(Zk=0|x7ﬁ2k.x,ﬁZkH|) p,(2k=0|xrﬁ2k+l ,Zﬁ |) exist.)

IA

But taklng u= (mek)k —oand v = (mekH)k=0 , We see that u and v are rearrangements of some subsequences of
x! and x* respectively and therefore,|[ull, < [Ix'|l, and |lvll, < llx*|l, .

_ 2 *
Next taking w = u.v = (szk xm2k+1)k - '

We have -
1/p
1 2
Iwll, = (Zkzolxk,,- xﬁz,{+1| )< Ml vlly, < et -l 1l 2
Similarl w0 |1 2 PP o 2 3
imilarly, (Z7olxk,, .- x5, ] )" < Nt -l 1, 3)

Now using (2) and (3) in (1), we get,
1

1 1
P\p ® p p
_ 1 2 1 2
- Z |x772k'x772k+1 xﬁ2k+1'x7ﬁ2k|
k=0
» i 2
1 2 2
= lerﬁn'xﬁnﬂ' lem2k+l Xi, |
|

Nl N+ llxt Il |Ix2 IIp 20lxt M- I 11,

NgE

T
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Thus, for any arbitrary parallel rearranged sequences x', x> of x* and x? respectively, we have —

> x1= x1=

2 m m
det ) 2k ) 2k+1

X= X =

k=0 mok mag+1

o\ 1/p
) < 20l - N2 1l 4)

We will denote,

T

d xL xL P
= m m
X!, x| = (E det( ) 22k+1> ) < 20t I, l1x2 L, (5)
k=0 Mok Mgk

Similarly, we can also show that |¥!, X?| < 2||x™t Ilp- lx™2 || ; where my, 7, is @ permutation of 1, 2.

Example 1.5: Let us take
x' =(1,0,0,0,. ) = (83, 89141) 0
And
x? (0,0,4,0,. ) =(4 521'4 521+1)z =0 = 4(5221'5221+1)?c:o-

Taking N = N, we have ¥ = x and ¥% = x2, then
— - X3 X3 PP
X1, %2 = |« ,x2 Z det( 2 221“)

= X2 X241

Againtaking N' = < 0,2,1,3,4,5,6,7, ... > = < My, , M'2541 >0, then corresponding to N, parallel rearranged
sequences are given by —
= 1(1,0,0,0,...,0,0,...)and * = (0,4,0,0,...,0,0,...)

o\ 1/p
) _ 4

In 1997, A. Malceski [5] studied, I as n-normed spaces and proved the following lemma:

N
I
o

Then we have —

- Xk xk
1 =2 E m' m'
| /’xl| — det( 22k 22k+1>
X= X =
m m

k=0 "2k 2k+1

=l

Lemma 1.6: Any h vectors x/ = (x ) el”,j=1,2,.., h;heN, arelinearly dependent iff :

i=1

1,1 1
2 L2 2
Xy Xpy e X,
For every natural numbers iy, iy, ...,i, € N. (6)
2. [P, as 2-normed space
Let us define a real valued function ||.,. ||, on P x IP as -
llxt, x2]|, = sup{|x!,x?| : X!, x? are parallel rearranged sequences of x!, x? respectively. }
1
xL xL PP
= sup (Zf:o det( o T;”“) ) : %1, %2 are parallel rearranged sequences ;. 7
Xiigr Xt
Theorem 2.2: The function || .,. [, defined by (7) forms a 2-norm on IP.

Proof: First of all from (4) and (5), we see that for every arbitrary parallel rearranged sequence x!, X2

® 1 1 P
X~ X~
=1 =21 _ mak mak+1
0 < |x'x°| = Z det| )
x= X5

k=0 mak Mmok+1

/p
) < 201t - =2 1L,

Therefore,
0< [lxt,x2[l, < 2llx*|l,.lx*Il,, forevery x*,x* € IP. (8)
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Thus|| ., .1l,, is well-defined.

Now to prove, the function | .,.|| . |l defined by (7) forms a 2-norm on [P , we have to show that the function || .,.|[,
satisfies the four properties of the 2 -norm.

(Ny)  [lx®,x2]l, = 0 iff x*, x> are linearly dependent: Let

1
1 1
= X=
m m
det 2k 2k+1
2 2
Xin

P\P
) : X1, X2 are parallel rearranged sequences ; = 0
2k+1

= 0; \ 371,372 and Vv Tﬁzk,'r?lzk_'_l €N

[But N = (i, My, My, ...) isarbitrary rearrangement of N = < 0,1,2,3,... > ]
xi x}
x? xf
< x!,x? are linearly dependent.

o =0;Vv[Il' € N [BylLemma1l.6]

(No) Jlx1, 2|| is invariant under permutation of x',x2: We know that if any two rows (or two columns) of
determinant are interchanged the value of new determinant is multiplied by -1. Therefore

llxt, x2]], = sup{|x!, ¥?| : X', ¥ are parallel rearranged sequences of x!, x? respectively. }
1

1 1 P\p
X X
= 0 ma2k M2k+1 =1 =2
=supy| Xr=o |det| , 9 :X", x° are parallel rearranged sequences
Xiigr  Figrs
1
2 2 P\p
— ZDO _d t xﬁzk xm2k+1 =1 =2 ll 1 d
= sup k=0 et| ; 1 X", x* are parallel rearranged sequences
Yok Fiori
1
2 2 P\p
— Zoc det xﬁZk xﬁ2k+1 =2 =1 el d
= sup k=0 |@€ 1 1 :Xx“,x" are parallel rearranged sequences
Yok Xmaksn
= llx%, xMlp.

(N3) lax®, x2]l, = |alllx', x|l Va € Kand Vx',x* € IP:

Consider
1 _ /1 1 .1 .1 1 .1 _ /1 1 o
X = X, X0, X5, X3, X1 Xop 410+ ) = (X20 X2141 M0

Then ax' = a(xy;, x341)7 O,therefore for every N =< iy, m2k+1 >Kk=% it is obvious that —

_ 1 1 1 1 - 1 =1
ax! = (ax: ,axk  ax: ,axkt ... ax ax ) = alxk xﬁzﬂl)kzo—ax.

mo ’ mq’ mz’ m3’* mak’

Mg’ Moy’ "t

Again, we know that if all the elements of one row (or one column) of a determinant are multiplied by a scalar a then
the value of new determinant is o times the value of the original determinant.

Now by definition,
=2| .

llax®,x2l, = sup{|ax’,X*| : @x"', X* are parallel rearranged sequences of ax', x* respectively. }
1

1 1 P\p
Xz . Xz
_ 0 mak M2k+1 L o=1 =2
= sup <Zk:0 det(xz_ 22 ) ) 10X, x“ are parallel rearranged sequences
mak M2k+1
1
L 4L P\p
m m -1 =
= sup? |a|| Xr-o |det ( 5k 22"“) : X1, %2 are parallel rearranged sequences
Xiigr X
1
xl_ xl_ PN\p
_ © mak M2k+1 =1 =2
= |a| supq | Xr=o ( 2 2 ) :X",x° are parallel rearranged sequences
Xiigr X
— oIl %2
= |alllx*, x|,
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(No) llx+yzll, < llxzll, + lly,zll, vx,y,z € IP:Let x = (xz1,X241)i%0 » ¥ = V21, Yar1dizo » and
z = (Zy,23141)7 thenforany N =<, , Mayi1 >heg, We have
Xty = (xTﬁZk T Vg 1 Xt T yTﬁ2k+1)k=0

= (xﬁZk 'xﬁ2k+1):=0 + (yﬁZk 'Yﬁ2k+1)k=0
=X+y

Again by the property of determinant, we have —

a1 +b a;, +b a a b b .
det( 11 1 12 12) = det( 1 12) + det( 1 12) using these results, we have
az az; a1 Q2 1 Q2

e P 1/p
Z=| — z |det (xfﬁzk T Vi Xigrs +y772k+1)
' Ziftak Zifl k41

x+y
k=0
Xitge  Xigesr\|” Hp Yty  Yitger || Y
= oo (5 S (o e 220
(Zk_o | Ziy  ZMak Zi=o Ziy  ZMak ( ‘ ‘ lty)
By Minkowski inequality).
e |[x+y,z| < |x,2l+ |¥,2| forevery N =< My, Mars1 >to

Therefore, taking supremum over N on both sides; we get —
lx+y,zll, < lxzll, + lly.zll, .

Hence, the function || ., . [|,,defined by (7) forms a 2-norm oni?.
3. IP, as n-normed space:
Let N =< iy, My, oy My m—1) >0 1S @ rearrangement of N, written in the form of n-consecutive terms

notation. Let X!, %2, ..., x"are parallel rearrangements of x!,x?, ..., x™ respectively. As we studied above, in same
manner, we define:

1
1 1 1 P\»p
xﬁlnk xmnk+1 o xﬁlnk+(n—1)
=1=2 = x%:  x% x%
X5LX5 X = | Yieo |det ]| Mink Mpgsr t Milneem-1) 9)
n n n
Xt Xilngesr = xﬁlnk+(n—1)

3.1: Next, let us define a function |[.,.,...,.1l,

1

on [P x IPx ...xIP (n-times) as —

2

R sup{lfl,fz, .., X"| : X¥1,Xx2, ..., X"are parallel rearrangements of x’ s resp.}. (10)

Now, in same manner, as discussed above, we show that ||.,., ...,. ||, forms an n-norm on [?. Next, as we know that
expansion of a determinant of order ‘n” consists of sum of |n terms, among which each term is again a product of n
terms; therefore from (9) and using Minkowski inequality, we obtain following results:

llxt, %2, 2, < Il e el ol s
llxt, %2, x Ml < Inllx™ e ™2 o, oo 1 {]o;
llxt, 22, ™Ml < Il . ™2 oo oo 1™ 11 o (11)

Where; 14,15, ..., T, is @ permutation of1,2,...,n; and |[x™||,,,, means either p-norm or supremum norm of x™ is
taken.

3.2: Convergence in n-normed space: Let (X,|l.,.,...,.|]) is an n-normed space. Then a sequence (x!)7, in X is
called a Cauchy sequence in X iff ||x! — x',a',a?,...,a" " !|| >0 asll'> wandval,a?..,a"! € X.

And the sequence (x!)7, in X is said to be convergentat x € X iff -
llx! —x,at,a?,...,a" || > 0asl - woandval,a? ..,a" ! € X.

The space(X,|l.,.,...,.]|) is called an n-Banach space (or complete n-normed space) iff every Cauchy sequence
converge X.
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Theorem 3.3:
(I) 1f (x)7, is a Cauchy sequence in (17, ]| . ||p) then (x!)7, is a Cauchy sequence in n-normed space
(tr, || ser sl also.
() If x* > x asl— woin (l?’ Il ) then x! — x asl—>oo|n(l?’ || ey eeesell )

Proof: From (11), we have 0 < [lal,a?, ...,a™[l, < [n [la*ll,. la?|l, ... lla™|l,, for every a® ,a?, ..., a™ €l?; Therefore,
convergence and Cauchy criterion of a sequence in(l?’, . ||p) to n-normed space (l?’, ..., ... ||p) preserved.

In [4], H. Gunawan defined a natural n-norm on [Pand found that convergence and Cauchy criterion of a sequence
in(lp,ll .||p) to Gunawan’s natural n-normed space preserved and vice-versa. Here a question arises that, “is the
converse of theorem 3.3 True? “.

Theorem 3.4: Converse of Theorem3.3 need not be true, That is —

(I) If (x7)7~, is a Cauchy sequence in(i?, I .., ...,.Il,) then, (x")7_, need not be a Cauchy sequence in (17, ]| . |l,) ;
(1) If (x7)Z_, is a convergent sequence, such that x™ — x m(lp,mp) then, (x™)*_, need not be convergent
sequence in (17, 1] . I,).

We shall prove above theorem by giving a counter example.

Counter examples3. 5 let us take a sequence (x")y—, inl?, where —
={0,0,...Yand x* = (0,0, ...) forr = 2 ; x" |s defmed as -

1
. — fori<m-—1
"= (X0 X115 o Xnirn—1)) s Where if 7 = 2m, then x| = {m(l)/” }; o
ori=m

-1
—_ P < -1
Next for, r = 2m + 1, then x] = {ml/” forism (12)
0 forizm
Let a?, ..., a™are arbitrary elements ofl?, suppose £ > 0 is given, then 3N € N, such that
&
vir < (1+la2llp . lla™ I, (13)
. 2
Now,vr,s = 2N we have|x] — x| < — Nl/p’ Vi € N; therefore||x™ — x%||, < 7 (14)
Hence from (11), (13) and (14), ¥r,s = 2N we have:
I = x%,a%, @, < [nllx” = 20|l a2l ... lla™ll, < & (15)
That is, (x 7_ois Cauchy sequence m(lp .., ...,.||p). In similar manner, we can show that x™ — 0

in(?, T, - 1lp)-

While, taking e = 1; then for each N € N; 32N,2N +1 > N such that||x?" — x2V*1|| =2 > . Which exhibits
that,(x™)¥_, is not Cauchy sequence in (lp, . ||p) hence, not convergent also.

Theorem 3.6: The n-normed spaces, (lp, l.,.,..,. ||p), is an incomplete space.

Proof: let us take a sequence (x");—, inl? such that,

1 fori =0,1
= (Xni Xni4+10 o Xni4m—1)) 3 Where, x; = 1—/17 forl<i<r (16)
Oforizr+1
S = 0—L 1 .
Here, we obtain x™ —x° = (0, .. (r+1)1/7” , ...,(S)l/p,O,O, ..}, for r <s. Now, as we studied in above counter

example, we can easily find that above sequence is Cauchy sequence in(lp, [ ||p), but not convergent inl?.

(The convergent point = (1,1, — zl/P 311/p,. o 1/,]'- D EIP)
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