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ABSTRACT

Generating relations play a large role in the study of special functions. The present paper deals with the derivation of
some novel generating relations of generalized Zernike or disc polynomials by the application of group-theoretic

method introduced by Louis Weisner .In fact , by suitably interpreting the indices (m) and (n) of the polynomials

under consideration we define six linear partial differential operators and on showing that they generate a Lie algebra
, We obtain a new generating relation ( 2.4) as the main result of our investigation. Furthermore , some generating

relations of Laguerre 2D polynomials L (z,Zz*) Jacobi polynomials Pn(“’ﬂ)(u) and , Fl(a,b;c; X) the hyper
geometric function are obtained as the special cases of our main result.
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1. INTRODUCTION

The generalized Zernike or disc polynomials Pn(”"ﬂ)(z, YA *), (m, n= 0,1,2,...) defined by Wunsche [13,p.137(2.1)] are

orthogonal 2D polynomials in the unit disc 0<+/zz* <1 with weights (1—22 *)a in complex coordinates
Z=X+1y,z*=Xx—1ly, where  >—1 is a real free parameter which are defined as the following (agrees with
Dunkle and Xu [5] and up to standardization with Koornwinder [8])

Pe.(z,2%)= (nn!a! e P (222 *-1)
+a)
_ (mm!a! )' 7 n-m Prga,n—m)(ZZz *_1)
+a)

LIS Fl(_ m,—n;a +1;l—%j ,(mn=0212,..) (1.1)

where P(“"B)(u) denotes the Jacobi polynomials and , Fl(a,b;c; X) the hyper geometric function(e.g., [1,2,6,9,10]).

n

And it is related to Laguerre 2D polynomials Lm’n (z,z*) by the following relation [13, p.140 (2.14)]
. z r*
L, (z,2%) = lim («/a)"”" Pnffn(—,—j (1.2)
|ar| >0 /a /a

These polynomials defined by (1.1) satisfy the following simultaneous partial differential equations

2 2 2 2
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and
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More recent representations of the Zernike polynomials with application to the optical aberrations and with graphical
representations are given in [7, 14, 15] . This is carefully summarized in Weisstein’s Encyclopedia [12].

The generalized Zernike or disc polynomials may find multiple applications in cases when one has to do with given
functions over a circular disc and when one wants to make expansions into an orthonormalized set of functions over
this disc , in particular , in geometrical and wave optics for systems with circular apertures [3,4,7,15], for example , in
Kirchoff’s diffraction integrals where one has to insert the field and its first derivative within the aperture.

The aim at presenting the article is to apply L.Weisner’s group theoretic method [11] with suitable interpretations of
the indices (m) and (n) in the study of generalized Zernike or disc polynomials. The principal interest in the given

results lies in the fact that a number of special cases listed in section 3 would yield many new results of the theory of
special functions.

2. GROUP-THEORETIC METHOD

0 0
Replacing m by 88_ and n by ta in (1.3) and (1.4) respectively, we get
S
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We see that U(z,z*,s,t) = P (z,2*)s™t" is a solution of (2.1) and (2.2), since P, (z,7*) is a solution of (1.3)
and (1.4).

+(1+a)z*{z +@+(1—zz*) 2 }W—tﬁ[tgﬂij:O

We first consider the following first order linear differential operators

.0 (a +1)
Ai_saer 2
A = E+M
2ot 2
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such that

Alf(z,2%5.t)]

(m +@jﬂ§fn(z, 2*)s"t"

A[f(z,2%5,1)]= (n +@JP§,“(Z, z*)s"t"

Al f(z,z%s,t)]=mPy,, (z,2*)s™ "

Alf(z,z551t)]=(M+1+ )P

m-+1,n

(Z, 7 *)S m+1tn
A[f(z,2%,s,t)]=nPg, (z,2*)s"t""
Aff(z,z%,s1)]=(n+1+ )Py, (2,2 %)™t

where the operators {A. ti :l,2,3,4,5,6} satisfy the following commutation relations
[ALAT=0 [ALA]=-Ay [ALAT=2A [ALA]=0 [A,A]=2A,
[A11A3]:_A3 [A21A4]:A4 [Aa’Aﬁ]:O [A41A6]:O

[ALAd=A [ALAl=-A [AA]=0

[ALAl=-A  [ALA]=A

[A A= A

where[ A, B] = AB — BA.

The above commutation relations show that the set of operators {AI = 1,2,3,4,5,6} generate a Lie-algebra A and

the sets of operators {Al,AS,A4 } and {A2 A A } form a sub algebras of A . It is clear that the differential

operators
2
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which can be expressed as:
L =AA -mm+a)and L, = AA, —n(n+a)

Commutes with {A, = 1,2,3,4,5,6} that is
{[Ll, A1=0,i=123456

2.3
[L, A]=0,i=123456 =
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The extended form of the groups generated by {AI = 1,2,3,4,5,6} are as follows:

e* f(z,27,5,t)= exp[[aTHjal}f(z, 2", se t)
e f(z,27,5,t)= epragljaz}.f(z, z*,s,teaZ)
g%’ f (z, z, s,t)= f(i(l_s(l——zz)J 7,5+ agz*,tJ

z S+a,z
wht (2 5) = -agse) @ f| 2, 21222 | S
M 107 st)=(-as) (Z z\” 1-a,5z)1-a,sz
e** f(z2,2°,5,t)= f(z,l(l—t(l_—zz)}s,uasz]

z t+a,z
A £z 2 s 1) = (L " T ¢ 1 . 1-22" s t
ez st)=-at) et )t et

where f (Z, Z*,s, t) is an arbitrary function.

Then we have
eaﬁAﬁeaSASeaAMeaSASeazAQealAl f (Z, Z*, S,t)

e R
t

(1-y'z*) (2.4)
I Al A S
}/ S ! t , ﬂ ﬂl

— * _ *
whereﬁ=1—a45z,y=5(1—1 z J,ﬂ':i—a6tz*,y'=i[1 ij
Z

3. GENERATING FUNCTIONS

From the above discussion, we see that U(z,z*,s,t) = Py, (z,z*)s™t" is a solution of the following systems

Lu=0 L,u=0
(AA, -mm+a)u=0 |(AA, —n(n+a)u=0
From (2.3), we easily see that
SLl(Pnffn(z, z*)smt”)z Lls(Pr;fn(z, z*)smt")
and
SL, (Pnjfn(z, z*)smt”): LZS(Pnffn(z, z*)smt“),
whereS = g*vg™hetfighghigtih

Therefore, the transformation S(Pnfn (z, Z*)Smt”) is also annulled by L; and L,.

By setting {ai =0:1=1234;a,=¢,a, = b} and writing f(z,z*,s,t) = Py, (z,2%)s™t" in (2.4), we get
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1 (1 7/2) s m
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where =1-bsz , 7/=%[1—]i_ ;Zs:j |b|<ooand |C|<oo.

If we put b =0,s =1 in equation (3.3), we get
|

1+ cz*)m.Pnﬁfn(i(l—l_ZZ:j,z*J:iilﬁ P n(2,2%), where |c] < oo. (3.4)

z* l+cz = 10

Ifwe put ¢ =0,S =1 inequation (3.3), we get

1+a+m a 1 1 ZZ - bk L
(1-bz) P ’Z b ;FH (m+a+k)P: “ en(Z,2%) where |b|<oo. (35)

k=1

Again putting {ai =0:1=1234;a, =c’,a, = b'} and writing f(z,z*,s,t) = Py, (z,2*)s™t" in (2.4), we get

- (1+2) 1. B (1-72%) t '
ebAﬁe”‘S(Pnffn(z,z*)smt) (1-btz*) "R | v = - sm[—,+c’y'] (3.6)
Y —+c'y B
But
o kK Al o
e” e (Py, (z,2%)s™" ):Zzb—'T—H(n+a+k)H( —(I-D))Ps i (z,2%) Mt (3.7)
1=1 k=1 = k=1 1=1
Combining the above two relations (3.6) and (3.7), we get
t
" L (1=7'7%)
(1-b'tz*) (1) (L’+C'7/'j P ;/’,i' 1—ﬂ
ﬂ V4 7+Cl7/1

=ifﬁ?§ﬁ@+wﬂ[ﬂ (=) (2,2 @9)

= k=l 1=1

@_1‘U*j¢m<wmﬂq<w.
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If we put b =0,t =1 in equation (3.8), we get

(1+C'Z)n.Pnffn(Z,1(1—1_ZZ,*D ii—ﬁ mn “ (z,2*) where |C’|<oo. (3.9)

Z 1+c'z 2

If we put ¢ = 0,t =1 in equation (3.8), we get

(1—p'z*) treen) P“ 1 1—ﬂ =i£ﬁ N+a+KkPs (2, 2%)where o] <oo.  (3.10)
Z* = mn+k ! . .

1-b'z* kiid
4, CONCLUSION

We have seen that Weisner's group theoretic method is a power full tool in getting generating functions. It is also
interesting to define a new function which forms generalization for the generalized Zernike or disc polynomials under
consideration and then by using Lie theoretic technique, we can obtain generating functions. We will deal with this
aspect in the subsequent communication.
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