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ABSTRACT
In this paper, we introduce Fuzzy hyper bi -7= ideal in/= hyper near — rings and obtain their properties.

1. INTRODUCTION

The Theory of fuzzy sets proposed by Zadeh[6] has achieved a great success in various fields. W. Liu [2] has studied
fuzzy ideals of a ring, and many researchers are engaged in extending the concepts. Gamma near- rings were defined by
Bh. Sathyanarayana [5] and G. L. Booth. Fuzzy bi-I"- ideals in semi groups were studied by Prince Williams, K. B.
Latha and E. Chandrasekeran [4]. N. Meeakumari and T. Tamizh Chelvam [3] studied about fuzzy bi- ideals in Gamma
near—rings. In this paper, we introduce Fuzzy hyper bi-I"-ideals in I'- hyper near — rings and obtain their properties.

2. PRELIMINARIES

Definition 2.1: By a near— ring we mean a non empty set N with two binary operations ‘+’ and‘.” satisfying the
following axioms:

(i) (N, +) isa group

(ii) (N, .) is a semi group

(iii) x.(y+z) =x.y +x.zforall x,y,z€EN

Precisely speaking, it is a left near — ring and we will use the word near — ring to mean left near — ring.

Definition 2.2 [5]: AT -near- ring is a triple (M, +, I') where

(i) (M, +) is a group.

(ii) T'is a non empty set of binary operators on M such that, for each o €T, (M, +, o) is a near — ring.
(ii)xa(ypBz)=(xay)pzforall x,y,z€EManda, €T

Definition 2.3 [5]: A T'-near —ring M is said to be zero symmetric, if 0 y m =0 for all m € M and for all y €T

Throughout this paper, we assume that M is a Zero symmetric I'- near- ring.
Definition 2.4: A canonical hyper group is an algebraic structure (H, +) satisfying the following conditions:
(i) foreveryx,y,z€H, x+ (y+z)=(x+y)+z
(i) there exists a 0 € H such that O+x = x+0 = x for all x € H
(iii) for every x €H there exists a unique element X’ € H. Such that 0 € (x + X’) N (x” + x), (we call the element x’
the opposite of x).
(iv) zEx+yimpliesy€ -x+zandx€z-y

Definition 2.5: A hyper near-ring is an algebraic structure (R, +,.) satisfying the following axioms:
(i) (R,+)is a canonical hyper group
(ii) With respect to the multiplication, (R, .) is a semi group
(iii) x .(ytz) =x.y +x.z for all x,y,z€R

Definition 2.6 [1]: AT -hypernear —ring is a triple (M, +,I" ) where
(i) Tisanon-empty set of binary operators such that (M, +, o) is a hyper near-ring for eacha € I"
(i) x a(yPz) = (xay)pz forall x,y,z € M and o, p €T
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Definition 2.7[1]: If M and M’ are T'- hypernear — rings then a mapping f: M — M’ such that f(x+ y) = f(x) + f(y) and
f(xay)=1f(x)af(y) forall x, yEM & o € I is called a I'- hypernear—ring homomonphism

Definition 2.8 [6]: A Fuzzy set in a set M is a function p: M —[0, 1].
Definition 2.9 [6]: A level subset of 1 denoted by 1 is defined as {x € M / u(x) >t} where t € [0, 1].

Definition 2.10 [6]: The complement of a fuzzy set u denoted by p' is the fuzzy set in M defined by p' () =1 — u(x)
forallx € M

Definition 2.11 [6]: If p is a fuzzy set in M and f is a function defined on M then the fuzzy set V' inf (M), defined by
V(y) = sup yert wh(x) for all y € f(M) is called the image of p under f.

Definition 2.12 [6]: If V is a fuzzy set in f(M), then the fuzzy set u defined by p (x) =V (f(x) ) for all x € M. That is
U=V of in M and is called the pre image of V" under f [3]

Definition 2.13 [7]: Let A and B be fuzzy subsets of a hyper I'-near ring M. Then the direct product of A and B,
denoted by A x B, is the function defined by (Ax B) (x, y) = min {A(x), B (X)}.

3. Fuzzy hyper bi - I'- ideals
Definition 3.1: A hyper subgroup H of (M, +) is a hyper bi-I'- ideal if and only if HT'M I'H < H.
Definition 3.2: A fuzzy set 1 of M is called a fuzzy hyper bi- I'- ideal of M if

(i) infz e xy W(Z) = min{p(x), 1 ()}

(i) p(xayPz) > min{u(x), n(z)} forall x,y,z €M, a, BET.

Example 3.3: Consider the I — hyper near- ring (M, +, '), Let M = {0, a, b} and T be the non- empty set of binary
operators such that a, Be I" are defined as follows:

+(0 a b

0| {0} | {a} {b}
a | {a} {0,a,b} {a, b}
b|{b} | {a b} |{0,ab}

al0 a b B 0 a b
ofo 0 0 0 0 0 0
alo a b a 0 0 0
b|O0 a b b 0 0 0

Then (M, +, T) is a IT'- hyper near - ring.
We define a fuzzy setpbyp (@ =p(b)=.3, un(0)=7
By routine calculations, we can verify that 1 is a fuzzy hyper bi —I'- ideal of M.

Lemma 3.4: Let H be a non- empty subset of a I'— hyper near- ring M. Then H is a hyper bi-I'-ideal of M if and only if
xn 1S a fuzzy hyper bi-I"- ideal.

Proof: Straight forward.

Proposition 3.5: Let pu be a fuzzy set in a I'-hypernear — ring M. Then W is a fuzzy hyper bi- I'- ideal of M if and only if
each level subset ¢, t € Im(p) is a hyper bi-I'- ideal of M.

Proof: Let p be a fuzzy hyper bi -T"- ideal of M. Let teIm(p).
We claim that y. is a hyper bi - I'- ideal of M.

Letx, yep:. Then p(x) =tand pu(y) 2t
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Hence

infp (z) 2 min {p (x), u(y)} 2 t
ZEX-Y
forallzex - y wehavezeprandsox-y S ;. Hence yis a hyper subgroup.

Letx, zepc.yeM and o, B el. Then p (x ay B z) 2 min { p (x), 1 (z)} = t => xayPz €pc hence i is a hyper bi -I'-ideal
of M.

Conversely, Assume that i is a hyper bi -I'- ideal of M. We claim that p is a fuzzy hyper bi - I'- ideal of M.
Putting to=min {pu(x), u(y)} then x, y € poand so x -y € i, hence for any z € x-y we have u (z) = to which implies,
inf p (z) 2 min{p (x), 1 (y)}
ZEY+X-Y

Suppose it is not true, then for a fixed a, € [, there exist Xo yoZ, €M. such that p(xoa yopzo) < min {u (xo), u (z0)}-

Let wo = {u(Xo0 a yo Bzo) + min {u (o), U (zo)}
2

Then p (Xo o yo BZo)< Wo& [ (X0) >Wo

K (zo)>wWo hence xo & ¥o B Zo ¢ 1L wo

X0 € o, Zo € Hwoa contradition
pxayBz)zmin{p (x),p(z)}

Thus p is a fuzzy hyper bi - I'- ideal of M.

Proposition 3.6: Let p be a fuzzy hyper bi-T'- ideal in hyper gamma near ring M. Then the omplement ' (X) =1-u(x) is
also a fuzzy hyper bi-I'- ideal.

Proof: Forx,y €EM
We have (X -y) = 1- p(x - y)
2 1-min {u (x), 1 (y)}
=min {1-p (x), 1- p (y)}
=min {px), w ()}
Further for x,y,ze M and «, 8 €T,
Wehave w(xaypz)y=1-p(xaypz)
> 1-min {u (x), n (2)}
= min{l-p (), 1- p (2)}
=min {w (x), w (2)}
Hence ' is also a fuzzy hyper bi-I"- ideal.
Proposition 3.7: I'-hypernear- ring homomorphic pre image of a fuzzy hyper bi -I'- ideal is a fuzzy hyper bi-I"- ideal.
Proof: Lety: M —>N be a I'-hyper near- ring homomorphism.
Let v be a fuzzy hyper bi ideal of M and p be the pre image of V" under .
Then
p(x-y)=Viy ) - V(v (y)

>min {(V(v ), V (v (y)}
=min{p (x), u(y)}
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Further

pHxayBz)=V(y(xaypz)
=V(y(X¥)ay(y)Bv(z)
= min {V(y (x)), V (v (2))}
=min {p (x), u(2)}, a, p e’ forall X, y, zeM

Hence p is a fuzzy hyper bi —I'-ideal of M.

Proposition 3.8: Let V' and o be two fuzzy hyper bi-I'-ideals of M. The (v o)(x) = min{V(x),6(x)} is also a fuzzy
hyper bi-T"-ideal.

Proof:

(V' No)(x-y) = min{V'(x-y),o(x-y)}
>min{min{V(x),V (y)},min {c(x),0(y)}}
= min{min{V'(x),6(x)}, min{V(y),o(y)} }
=min{(VNo)(x), (VNo)(y)}

Further (VNo)(xaypz) = min{V(xaypz),c(x0ypz)}
>min {min{ v (x), v (2)}, min{o (X), o (2)}}
= min{min{V(x),6(x)},min{V(z),06(z)} }
=min{(vHh a)(X), vh c)(2)}

Hence V' No is fuzzy hyper bi — I'-ideal

Proposition 3.9: Let V and o be two fuzzy hyper bi-I'- ideals in T-hyper near-rings. Then the direct product VXo is
also a fuzzy hyper bi-I'- ideal.

Proof:

Now (VXo)[(x1, Y1)-(X2,Y2)] = (VX0)(X1-X2,Y1-Y2)
= min{V(x1-X2), o(y1-Y2)}
> min{min{V(x1),V(x2)}, min{c(y1),0(y2)}
= min{min{V(x1),6(y1)}, min{V(x,),o(y2)}}
=min {(VXo)(x1,y1), (VX0)((x2Y2)}

Further,

(VXo)[(x1,y1) o (X2,Y2)B(x3,Y3)] = (VXo) {(X10 X2BX3, Y10ty2Py3)}
= min{V'(xiax; Bxs),0(y10y2Bys) }
>min{min{V" (x1),V(xs)}, min{c(y1), o(ys) }}
= min{min{V(x1),6(y1)}, min{V(xa),o(ys)}}
=min {(Vxo) (X1, Y1), (VXo)(x3, Y3)}

Vx o is also a fuzzy hyper bi — " — ideal.

Proposition 3.10: An onto I' hyper near—ring homomorphic image of a fuzzy bi-I'-ideal of M is a Fuzzy hyper bi —T" -
ideal of M’

Proof: Let x,and y, be such that
1 (Xo) = SUPzef 6o M (2) & K (Yo) = SUP; ) K (2)
p(x=y)=sup i (z)
z efY(x-y)

=sup p(z)

ze F1(x) - 1 (y)

Zp (Xo—Yo)

> min {u (%), 1 (%o)}

= min {sup U (z) sup K(z)}

ze f_l(X)ZE f_l(y)

=min{V (x) ,V (¥)}

Let

Xo = SUP U(z) & Yo = sup [ (z)
zef(x) zef(y)
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Zo=sup [ (s)
sefY(z)

Further,

Vi(xayBz) = sup W(t)

te f(x ayfz )
= sup p(t)

tef'(x)a fi(y)p'(2)
> W(XoYoZo )
= min{|t (Xo), M (2o)}
=min{sup W(z ), sup H(s)}

ze fi(x) sefl(z)

=min {V (x), V(2)}

V' is a fuzzy hyper bi -I'- ideal of M.
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