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ABSTRACT 
In this paper, we study the growth properties of entire harmonic function ( )φθ ,,rH of ( )thqp, order and 

( )thqp, type and also define cofficient characterization of order and type. 
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1. INTRODUCTION   
 
If ( )φθ ,,rH  is harmonic in a neighborhood of origin in R3, then ( )φθ ,,rH  has the following expansion in spherical 
coordinates 
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where  ( )1
mna    &    ( )2

mna   are two different coefficients. 
 
The series (1.1) converges absolutely and uniformly on compact set of the largest open ball centered at the origin which 
omits singularities of ( )φθ ,,rH . 
 
The associated Legendre function of first kind, nth degree and order m denoted by ( )xP m

n  are defined as 
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For entire function ( )φθ ,,rH , we define 
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Following the usual definitions of order and type of an entire function of a complex variables z, given by Srivastava 
[1], the ( )thqp,  order  p

qρ  and  ( )thqp,  type p
qT  of ( )φθ ,,rH  are defined as    
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For 1== qp , the above definitions coincide with the classical definition of order and type. We define lower 

( )thqp,  order p
qλ  and lower ( )thqp,  type  p

qτ   are defined by [3] as. 
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For 2,3,4,...p =  where [ ] xx =0log and  [ ] [ ]( )xx pp 1logloglog −= , we consider lower ( )thqp,  order and 

lower ( )thqp,  type of an entire harmonic function ( )φθ ,,rH  and obtain their various characterization of in terms of  

( )nα , which is defined by Srivastva [1] as     
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We also write  
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2. AUXILIARY RESULTS  
 
The use the following lemmas to prove our theorems.  
 
Lemma 1[5]: The harmonic function ( )φθ ,,rH  having expansion (1.1) is entire if and only if        
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1
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Lemma 2[5]: If H is an entire harmonic function, then for all 0>r , 
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Lemma 3[5]: If H is entire harmonic function, then f  and g  are also entire functions. Further      

                                   ( ) ( ) ( )frMrMgrm ,2,2 1 ≤≤−  ,                                                                                        (2.3)                  
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For the proof of Lemmas 1, 2 and 3, one can see [5, pp. 27-28]. 
 
Lemma 4: Let ( )zf   and ( )zg  be entire functions. Then the ( )thqp,  order and ( )thqp,  type of ( )zf  are ( )zg  
are the same. 
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n zazf  be any entire function of ( )thqp, order ( )Fp

qρ   and  ( )thqp,  type ( )FT p
q . Then it 

is known from the results of Bajpai et al. [2], we have 
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For the function    

                                    ( )
1
2

0
1 ,n

n
n

f z n zα
∞ −

=

 
= +  

 
∑  

We have      

( )

[ ]

[ ] nn

n

f p

n

n
q

np
q

1

1

2
1

log

1log

inflim1
−

−

−

∞→





















+

=

α

ρ
 

              

[ ]

[ ] nn

n

p

n

n
q

n 1

1

2
1

1

log

1loglog

inflim −

−

−−

∞→





































+

=

α

 

              

[ ] ( )

[ ] nn

nn

p

n
q

n 1

2
1

11

log

1logloglog

inflim −

−−−

∞→




















+−

=

α

 

              

[ ] ( )
[ ]

11

1

log log
lim inf .

log

q
n

pn n n

α −−

−→∞

 
 =  

 
Similarly for             

                                          ( ) ( ) n

n
n znzg 2

1

0
21 −

∞

=

+= ∑α , 

 
we have  

( )

[ ] ( )
[ ] nn

n

g p

n
q

np
q

1

1

2
1

log

21log
inflim1

−

−
−

∞→







 +

=
α

ρ
 

             

[ ] ( )
[ ] nn

n

p

n
q

n 1

1

2
1

1

log

21loglog
inflim −

−
−−

∞→



















 +

=

α
 

            

( )

nn

n

p

n
q

n ]1[

1]1[

log

21log
2
1loglog

inflim −

−−

∞→





 ++

=
α

 

            

[ ] ( )
[ ]

11

1

log log
lim inf

log

q
n

pn n n

α −−

−→∞

 
 =   . 
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Since  f  and  g  are of same order, using (2.4) we get    ( ) ( )gTfT p

q
p

q = . 
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3. MAIN RESULTS  
 
In this paper, we prove the following theorems.  
 
Theorem 1: Let  ( )φθ ,,rH  be an entire harmonic function of ( )thqp, order p

qρ , lower ( )thqp,  order p
qλ , ( )thqp,  

type p
qT  and lower ( )thqp,  type p

qτ . If  f  and g  are entire function as defined in (1.9), then  
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Proof: From Srivastava [1], we have  
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Hence from Lemma 4, we obtain (2.6).  
 
The proof of (2.8) is similar. 
 
Theorem 2:  Let ( )φθ ,,rH   be an entire function of ( )thqp, order p

qρ , lower ( )thqp, order p
qλ  and lower ( )thqp,  
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qτ  . If  
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Theorem 3: Let ( )φθ ,,rH  be an entire harmonic function of lower ( )thqp,  order p
qλ  and let 
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Proof:  For an entire function ( )
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Provided 
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Using the condition on ( )nα , we can easily shows as above theorem. 
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