International Journal of Mathematical Archive-5(11), 2014, 161-167
@ IMA Available online through www.ijma.info ISSN 2229 - 5046

On the (p, q)th order and Lower (p, q)t order of entire harmonic functions in R3
Arvind kumar and Anupama Rastogi*

Department of Mathematics and Astronomy, University of Lucknow, Lucknow- 226007, India.

(Received On: 11-11-14; Revised & Accepted On: 25-11-14)

ABSTRACT
In this paper, we study the growth properties of entire harmonic function H(r,t9,¢)of (p,q)th order and

(p, q)th type and also define cofficient characterization of order and type.
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1. INTRODUCTION

If H (r, 0, ¢) is harmonic in a neighborhood of origin in R?, then H (r, 0, ¢) has the following expansion in spherical
coordinates

r 0, ¢ =ii{ cosm¢+a 2 sin m¢}r cos@ (1.2)
n=0m

)

where amn(l) & a,, ’ aretwo different coefficients.

The series (1.1) converges absolutely and uniformly on compact set of the largest open ball centered at the origin which
omits singularities of H (r, o, ¢)

The associated Legendre function of first kind, "™ degree and order m denoted by an (x) are defined as

PP ()= -7 £ (B, (). @2

For entire function H (I’, 0, ¢) we define
M(r)sM(r,H)zrr;%xH(r,H,qﬁ), (1.3)

Following the usual definitions of order and type of an entire function of a complex variables z, given by Srivastava
[1], the (p,q)" order P, and (p,q)" type TS of H(r,6,¢) are defined as

[p]
= Ilmsuplog—[l\]/l(r) , (1.4)
r—o logr
[p-1]
Ilmsupw . (1.5)
r—o r q
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For p =0 =1, the above definitions coincide with the classical definition of order and type. We define lower

(p,q)" order Aq and lower (p,q)" type 7y are defined by [3] as.

[r]

72 =2 (H)= Iiminflongl\:l(r), w6)
(p-1]

2= (H)= !L@oinfmTJ\A(r), (L7)

For p=2,3,4,... where log/” x =xand log[" x = |Og(log[”_1] X), we consider lower (p,q)" order and

lower (p, q)th type of an entire harmonic function H (r, 0, ¢) and obtain their various characterization of in terms of
(an ) which is defined by Srivastva [1] as

f(z)=ian[1+n;}nz“, 0(2)=ay (1+2n) 22"

n=0 n=0 (1.9)

mn

U i=12). (18)

We also write

2. AUXILIARY RESULTS

The use the following lemmas to prove our theorems.

Lemma 1[5]: The harmonic function H (I’, 0, ¢) having expansion (1.1) is entire if and only if

Iim(an)% =0, (2.10)

n—oo

Lemma 2[5]: If H is an entire harmonic function, then for all r >0,

(2v2n+1) *(e,r") <M (r) < Zianr”(1+ n;) . 2.2)
n=0

Lemma 3[5]: If H is entire harmonic function, then f and g are also entire functions. Further

27'm(r,g)<M(r)<2M(r, ), (2.3)

f(z) .

where m(r,g):max[an(l+ 2n)’1r”] and  M(r, f)=max

|z|<r
For the proof of Lemmas 1, 2 and 3, one can see [5, pp. 27-28].

Lemma 4: Let f(Z) and g(Z) be entire functions. Then the (p,q)th order and (p,q)th type of f(Z) are g(Z)
are the same.

Proof: Let f(z) = i a,z" be any entire function of (p, q)th order ,oqp (F) and (p, q)th type qu (F) Then it

n=0
is known from the results of Bajpai et al. [2], we have
. nlog*n . log""?n
p — . TP _ :
pl(F)= limsup—=—=" T, (F)=limsup——— (2.4)
log"|a,| e’
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For the function

f(z)= i“n [1+ n;}z”,

n=0
We have
n -1
1
Iog[‘”{an[H n ZJ }
———=Iliminf
pqp(f ) n—o n Iog[pfl] n
_ L
1
logl@ Iog{an[u n 2} }
= liminf =
N nlog'™n
i 1
log“*I| log(e, )" —n Iog[1+ n ZJ]
= liminf -
N nlog!*n
logl"™ [log (@, )_l}
= liminf .
N nlog!"n
Similarly for
o 1
9(z)=>a,(+2n)22",
n=0
we have
1)1
Iog[q]{an(l+ 2n)_2}
= liminf
pqp (g) n—o n Iog[p_l] n
1 -1
Iog[“]{log{an(H 2n)‘z} }
= liminf
n—>e0 nlog**'n
Iog[q”[log a, ; log(1+ 2n)}
= liminf
N nlog®*n
o o)
= liminf . :
n—o n Iog[p_ ] n

Thus we have p¢(f)=pl(g).

since f and g are of same order, using (2.4) we get  T.,”(f)=T,(g).
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3. MAIN RESULTS
In this paper, we prove the following theorems.

Theorem 1: Let H (I’, 0,¢) be an entire harmonic function of (p, q)th order pqp, lower (p, q)th order/'tg, (p, q)th

type qu and lower (p, q)th type qu. If f and g are entire function as defined in (1.9), then

pi(f)=pi ()= p{ (25)
T2(f)=T/(g)=T7 (2.6)
2(f)=25(g)=2 @7
tP(g)<7d <o l(f ) (2.8)

Proof: From Srivastava [1], we have
27m(r,g)<M(r)<2M(r, f).
Also from [6],

[p] [p] [p]
limsup(inf )Iog—m(rg) < limsup(inf )Iog—l\/l(r) < limsup(inf )—Iog M(r. f)
r—ow |Og[q] r r—ow |Og[q] r r—ow |0g[q] r

log" M(r, f)=~log™™ m(r,f) a r—o
Hence from the above inequalities, we get

pl(9)< p? < pP(f)and A2(g)< A2 <A2(f). (2.9)
Since P, (g ) =Py (f ) we obtain (2.5) and (2.7) from (2.9).

[p-1] [p-1]
Iimsuplog—r:q(r’g)g Iimsuplog—pM(r)_

r—o P, r—o P, r—o P
r q r q r q

Hence from Lemma 4, we obtain (2.6).

The proof of (2.8) is similar.

Theorem 2: Let H (r, 9,¢) be an entire function of (p, q)th order pqp, lower (p, q)th order /Ig and lower (p, q)th

a
type 7, . If [a—”J is non decreasing sequence for N > N, then
n+1

. nlogt™ n
AP =liminf Y

- 2.10
L s |Og[q71]l|og(an)—1j (2.10)

Proof: For the entire function F(Z) = Z a,z", if ——| forms a non decreasing sequence for N > n,, then we have
n=0 a'n+1
nlog™ n

AP =liminf

q (2.11)

n—o0 |Og[Q]|an|7l

o
If [ b J be a non decreasing sequence for N > N, , we obtain
an+l
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nlogt™ n

Aq(f)=liminf :
1
log™ an[1+ n 2]

. nlog!® n
= liminf _ g

n—oo 1 n
[a-1] 2
log log a{1+n 2}

-1

— liminf nlog®n .
== oglMlog(e, )" —n Iog(1+ n’ )J
_Jiminf —_nlog™”ln

n—x |ogld [Iog (e, )_1} |

Similarly for
o 1
g(z):Za{HZn 2}2”
n=0
We have
A . nlog™ n
Aq(g)zamlnf —
log™ {an[u 2n 2 J}
[p]
= liminf cnlogn
o |Og[q_1][|0g{an<1+ Zn%)} J
[p]
= liminf _ nlog .
"% Jogled Iog(an)_1+2Iog(1+ 2n)}
oql?]
= fiminf — Mg
n—o Iog[q_l] Iog(an) :|

From (2.5), we have

. nlog® n
AP =liminf - .
q n—o Iog[q_l] [Iog(an )71J

o,

a

Theorem 3: Let H (r,9,¢) be an entire harmonic function of lower (p, q)th order /13 and let ( j forms a non

n+1

decreasing sequence for N >N, . Then

[p]
AP = liminf log™™ n

q n—o '
an+l
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n

Proof: For an entire function F (z) = Z az",

n

n=0
. log"'n
Ap(f)=liminf —9 1 (2.13)
n—o0 Iog[q] an
an+l
Provided |——| is non decreasing sequence for N > n, .
a

n+l

Using the condition on (an ) we can easily shows as above theorem.

. log'™ n
ﬂg(f)zlmmf —
o (1+n}/2)
|0g[q] n —
X él+(n +1)‘}/2) '
[r]
~ liminf log ' -
o (1+n_%)
log*™| logly—" —
s fio (1) |
[p]
= lim inf log__n .
nN—o0 — —
Iog[q‘”{logan+nlog(l+n %j—(n +1)Iog(1+(n +1) %)}
n+1

Since nlog(1+ n_%j—(n +1)|Og(1+(n +1)7%)—>0 as N —> 0 we have

. log'™ n
ﬂg(f):LLr[lolnf 7
Iog[q”{log[”ﬂ
an+l

Also for g(z) = e, (1+ 2n)’}/2 2", we have
|Og[p] n

og) % (Lr2n)’2 |
U (L+2(n+1))7

()= limint

. log'™ n
= liminf _ 9

n—o _}/ -1

U (L+2(n+1)) 72

. log'™ n
= liminf _ 9

o |Og[q’1] Iog( a, ]+;Iog(1+ 2(n +1)}:|

lo 1+2n
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. logtP n
= liminf g
n—o0 » a
logt®™ Iog(n j
Onn
Thus by using (2.3), we get
. log!P!n
AP =liminf g
q N—o0 1 o
log!®™| log| ="
an+1
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