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ABSRTACT 
In this paper a new class of closed sets namely bα𝑔𝑔�-closed sets in topological spaces is introduced. Some properties 
and applications of bα𝑔𝑔�-closed sets are characterized. Also new classes of spaces, based on the class of bα𝑔𝑔�-closed 
sets are introduced and their properties are analyzed. 
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1. INTRODUCTION 
 
Norman Levine introduced and studied generalized closed (briefly g-closed) sets[6] and semi-open sets[7] in 1963 and 
1970 respectively. M.K.R.S.Veera Kumar [15] introduced  𝑔𝑔� -closed sets in topological spaces in 2003. M.E.Abd El-
Monsef, S.Rose Mary and M.L. Thivagar [1] introduced α𝑔𝑔� -closed sets in topological spaces in 2007. Followed by 
these, we have introduced a new class of closed sets namely, bα𝑔𝑔� -closed sets and characterized their properties. 
 
2. PRELIMINARIES 
 
Throughout this paper, (X, τ) denote a topological space with topology τ. For a subset A of X the interior of A and 
closure of A are denoted by int(A) and cl(A) respectively. 
 
Definition 2.1.1: A subset A of a topological space (X, τ) is called 

1. a semi open set [7] if A ⊆ cl(int(A)) and a semi closed set if int(cl(A)) ⊆ A. 
2. a pre-open set [11] if A ⊆ int(cl(A)) and a pre-closed set if cl(int(A)) ⊆ A. 
3. an α-open set [12] if A ⊆ int(cl(int(A))  and an α- closed set if  cl(int(cl(A)) ⊆ A.  
4. a b-open set [3] if A ⊆ cl (int(A)) ∪ int(cl(A)) and  a b -closed set if  int(cl(A)) ∩ cl(int(A)) ⊆ A. 

 
The intersection of all semi-closed (resp α-closed, b-closed) sets of X containing A is called the semi-closure (resp.    
α-closure, b-closure) of A and is denoted by scl(A) (resp. αcl(A), bcl(A)). 
 
Definition 2.1.2: A subset A of a topological space (X, τ) is called, 

1. a generalized closed set (briefly g-closed) [6] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). The 
complement of a g-closed set is called a g-open set.     

2. a generalized semi-closed set (briefly gs-closed) [4] if scl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ). 
3. an α- generalized closed set (briefly αg-closed) [10] if αcl(A) ⊆ U whenever  A ⊆ U and U is  open in (X, τ). 
4. a generalized pre-closed set (briefly gp-closed) [8] if pcl(A) ⊆ U  whenever A ⊆ U and U is  open in (X, τ). 
5. a strongly g-closed set [13] if cl(intA) ⊆ U  whenever A ⊆ U  and U is open in (X, τ). 
6. a 𝑔𝑔� -closed set [15] if cl(A) ⊆ U whenever A ⊆ U  and U is a semi-open  set in  (X, τ). 
7. an α𝑔𝑔� -closed set [1] if αcl(A) ⊆ U whenever A ⊆ U  and U is 𝑔𝑔�-open set in (X, τ). 
8. a gb-closed set [2] if bcl (A) ⊆ U whenever A ⊆ U and U is open set  in (X, τ). 
9. a b𝑔𝑔� - closed set [14] if bcl(A) ⊆ U whenever A ⊆ U and U is 𝑔𝑔�-open set  in (X, τ). 
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Definition 2.1.3: A function f: (X, τ)→  (Y, σ) is called 

1 α-continuous [9] if f-1 (V) is α-closed in (X, τ) for every closed set V of (Y, σ). 
2 b-continuous [2] if f-1 (V) is b-closed in (X, τ) for every closed set V of (Y, σ). 
3 pre- continuous [11] if f-1 (V) is pre-closed in (X, τ) for every closed set V of (Y, σ). 
4 Semi-continuous [7] if f-1 (V) is semi-closed in (X, τ) for every closed set V of (Y, σ). 
5 gb- continuous [2] if f-1( V) is gb-closed   in (X, τ) for every closed set V of (Y, σ).  
6 gb- open map [2] if f (U) is gb-open in (Y,σ), for every open set U of (X, τ). 

 
Definition 2.1.4: A bijection f: (X, τ) →  (Y, σ) is called 

1 a homeomorphism [5] if f is both continuous and open. 
2 a gb-homeomorphism [2] if f is gb-continuous and gb-open. 

 
Definition 2.1: A space (X, τ) is called 

1 a Tgs – space [2] if every gb-closed set in it is b-closed. 
2 a Tb𝑔𝑔�  - space [14] if every b𝑔𝑔� - closed set in it is b-closed. 
3 a Tα𝑔𝑔�  - space [1] if every α𝑔𝑔� - closed set in it is α-closed. 

 
3. bα𝑔𝑔�- CLOSED SETS 
 
In this section we introduce a new class of closed sets called bα𝑔𝑔�- closed sets which lies between the class of α-closed 
sets and the class of gb-closed sets.  
 
Definition 3.1.1: A subset A of a topological space (X, τ) is said to be bα𝑔𝑔�- closed set if bcl(A)⊆U, whenever A⊆U  
and U is a α𝑔𝑔�- open set in (X, τ). 
 
3.1. Relationship of bα𝑔𝑔� - closed sets with other known sets. 
 
Theorem 3.1.1: Every pre-closed set is bα𝑔𝑔�- closed. 
 
Proof: Let A be pre-closed. Then Ac is pre open and Ac  ⊆ int(cl(Ac)) ⊆ int(cl(Ac )) ∪ cl(int(Ac ). Hence Ac is b-open 
and therefore whenever U is a α𝑔𝑔�- open set and A ⊆ U then bcl(A) = A ⊆ U and hence  A is bα𝑔𝑔� - closed. 
 
Theorem 3.1.2: Every semi-closed set is bα𝑔𝑔� -closed. 
 
Proof: Since every semi- closed set A is b- closed, bcl(A) = A. Therefore, bcl(A) = A⊆U, whenever A ⊆ U and U is 
α𝑔𝑔�- open. Thus, every semi-closed set is bα𝑔𝑔�- closed. 
 
Theorem 3.1.3: Every closed set is bα𝑔𝑔�- closed. 
 
Proof: A be closed then A is b-closed and hence whenever A ⊆ U, and U is α𝑔𝑔�-open, bcl(A) = A ⊆ U. Thus, A is    
bα𝑔𝑔� - closed. 
 
Theorem 3.1.4:  Every α-closed set is bα𝑔𝑔�- closed. 
 
Proof: Let A be α-closed and U be α𝑔𝑔�- open, such that A ⊆ U. Since every α-closed set is b- closed, bcl(A) = A ⊆ U. 
Hence A is bα𝑔𝑔�- closed. 
 
Note: The converse part of the above Theorems 3.1.1, 3.1.2, 3.1.3, and 3.1.4 need not be true. The following examples 
show that the class of bα𝑔𝑔�- closed sets properly contains the class of pre-closed, semi-closed, closed, -closed sets. 
 
Theorem 3.1.5: Let A bα𝑔𝑔�  be closed set. Then A need not be (i) pre-closed  (ii) semi-closed (iii)closed (iv) - closed. 
    
Proof:  
(i) Example 3.1.1:  X = {a, b, c}, τ = {X, φ, {a},{b},{a, b}}.  A = {a} is bα𝑔𝑔�- closed, but not pre-closed. 
 
(ii) Example 3.1.2:  X= {a, b, c}, τ = {X, φ, {a, c}}.  In X, the set A = {a, b} is bα𝑔𝑔�- closed, but not semi-closed. 
 
(iii) Example 3.1.3:  X = {a, b, c}, τ = {X,  φ, {a},{ a, b}}. In X, the set A = {b} is bα𝑔𝑔�- closed, but not closed.  
 
(iv) Example 3.1.4:  X = {a, b, c}, τ = {X,  φ, { a, c}}. In X, the set A = {b, c} is bα𝑔𝑔�- closed, but not -closed. 
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Theorem 3.1.6: Every b-closed set is bα𝑔𝑔�-closed set. 
 
Proof: Let A be b-closed, so that whenever A ⊆ U, U is α𝑔𝑔�-open, bcl(A) = A ⊂ U, thus A is bα𝑔𝑔� closed. 
 
Theorem 3.1.7: Every bα𝑔𝑔�- closed set is gb- closed. The converse is not true. 
 
Proof: Let U be open such that A ⊆ U. Since every open set is α𝑔𝑔�- open, and A is bα𝑔𝑔�- closed set, A ⊂ U implies 
bcl(A)  ⊂ U and hence A is gb-closed. 
 
Example 3.1.5: X= {a, b, c}, τ = {X, φ, {a}, {a, b}}. A = {a, c} is gb-closed, but not bα𝑔𝑔�- closed. 
 
Remark: The following examples reveal that bα𝑔𝑔�- closed sets are independent from g- closed, gs- closed, gp -closed, 

g-closed, α𝑔𝑔� -closed and strongly g -closed sets. 
 
Example 3.1.6:  

(i)    Let X = {a, b, c}, τ = {X, φ, {a, c}}. A1 = {a} is bα𝑔𝑔� -closed but not g- closed. 
       X = {a, b, c}, τ = {X, φ, {a, c}}. A 2 = {a, c} is g-closed but not bα𝑔𝑔� -closed. 
(ii)   Let X = {a, b, c}, τ = {X, φ, {a}, {a, b}}. A1={ a, c} is gs-closed but not bα𝑔𝑔�- closed. A 2= {b} is bα𝑔𝑔� -closed       
        but not gs- closed. 
(iii)  Let X = {a, b, c}, τ = {X, φ, {a}}. A1 = {a, b} is gp-closed but not bα𝑔𝑔�- closed. 
       X = {a, b, c}, τ ={X, φ, {a}, {b}, {a, b}}. A2 ={a} is bα𝑔𝑔� - closed but not gp- closed.        
(iv)  Let X = {a, b, c},  τ = {X, φ, {a}}. A1 = {a, b} is g-closed but not bα𝑔𝑔�- closed. 
       X = {a, b, c}, τ = {X, φ, {a, c}}. A2 = {a} is bα𝑔𝑔� -closed but not g -closed. 
(v)   Let X = {a, b, c},  τ = {X, φ, {a}, {a, b}}. A1 = {a, c} is g -closed but not bα𝑔𝑔� -closed.           
        X = {a, b, c}, τ = {X, φ, {a, c}}. A 2 = {c} is bα𝑔𝑔� -closed but not g- closed.   
(vi)   Let X = {a, b, c}, τ = {X, φ, {a}}. A1={a, b} is strongly g-closed but not bα𝑔𝑔� - closed.  
        X = {a, b, c}, τ = {X, φ, {a},{b},{a, b}}. A 2 = {b} is bα𝑔𝑔� -closed but not strongly g- closed. 

     
3.2 Basic properties of bα𝒈𝒈�-closed sets. 
 
Theorem 3.2.1:   
(i) The finite union of bα𝑔𝑔� - closed set need not be bα𝑔𝑔�- closed set. 
(ii) Intersection of any two bα𝑔𝑔�- closed sets need not be bα𝑔𝑔�- closed. 
 
Proof:  Example 3.2.1: (i) Let X = {a, b, c}, τ = {X, φ, {a, c}}. In (X , τ) the sets X, φ, {a},{b},{c},{a, b},{b, c} are 
bα𝑔𝑔� - closed sets, but {a} ∪ {c} = {a, c} is not  bα𝑔𝑔� closed. 
 
Example 3.2.2: (ii) Let X = {a, b, c} and τ = {X, φ, {a},{b, c}}, In (X, τ), the sets X, φ, {a},{a, b},{b, c},{c, a}} are 
bα𝑔𝑔�- closed sets,  but {a, b} ∩  {b, c}= {b} is not bα𝑔𝑔� -closed. 
 
Remark: The collection of bα𝑔𝑔� - open sets is not a topology. 
 
Theorem 3.2.2: Let A be a b𝑔𝑔� - closed set in (X, τ). Then A need not be a bα𝑔𝑔� closed set of (X, τ). 
 
Proof: Example 3.2.3: Let X = {a, b, c} and τ = {X, φ, {a}}. In X, the set {a,b} is b𝑔𝑔� – closed but not bα𝑔𝑔� -closed. 
 
Theorem 3.2.3: Let A be a bα𝑔𝑔� closed set of (X, τ). Then bcl (A) - A does not contain any non- empty α𝑔𝑔� -closed set.  
 
The converse part does not hold. 
 
Proof: Suppose G is a α𝑔𝑔�- closed subset of (X, τ) such that G⊆ bcl (A) –A. Then G⊆X - A, and this implies A⊆ X -G. 
Now X - G is α𝑔𝑔�  open set of (X, τ) such that A ⊆ X - G. Since A is bα𝑔𝑔� -closed set of (X, τ), bcl (A) ⊆ X-G. Thus      
G ⊆ X-bcl (A). Now G ⊆ bcl(A) ∩ ( X -bcl(A)) = φ. 
 
Example 3.2.4: Let X = {a, b, c},  τ = {X, φ, {a}, {a, b}}, and A = {b}, then bcl (A) - A= φ, which does not contain 
any non-empty  α𝑔𝑔�- closed set. But A is not bα𝑔𝑔�- closed set of (X, τ). 
 
Corollary 3.2.4: Let A be a bα𝑔𝑔�-closed set of (X, τ), then A is b- closed if and only if bcl (A) - A is α𝑔𝑔� closed. 
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Theorem 3.2.5: If A is a bα𝑔𝑔�- closed set in a space (X, τ) and A ⊆ B ⊆ bcl(A), then B is also a bα𝑔𝑔�- closed set. 
 
Proof: Let U be a α𝑔𝑔�- open set such that B ⊆ U, then A ⊆ U. Since A is bα𝑔𝑔�- closed,  bcl(A) ⊆ U. and B ⊆ bcl(A) 
implies bcl(B) ⊆ bcl (bcl(A)) =  bcl(A) ⊆ U. Hence B is also a bα𝑔𝑔�- closed set. 

 
Relationships of bα𝑔𝑔�-closed sets with other closed sets are represented by the following diagram 

 
In the above diagram, A→B denotes, A implies B.  A           B represents, A and B are independent. A           B 
denotes, B implies A, but A does not imply B.  A               B means, B does not imply A, but A implies B.  
 
3.3 bα𝑔𝑔 � −Continuous Functions: 
  
We introduce the following definition. 
 
Definition 3.3.1: A function f : (X, τ)→  (Y,σ) is called bα𝑔𝑔�- continuous if f-1(V) is bα𝑔𝑔�- closed set of (X, τ) for every 
closed set V of (Y, σ). 
 
Theorem 3.3.1: Every continuous map f: (X, τ) →  (Y,σ) is bα𝑔𝑔�- continuous but not conversely. 
 
Proof: Let V be a closed set in (Y, σ), then f-1 (V) is closed set in (X, τ) . By Theorem 3.1.3, f-1(V) is bα𝑔𝑔�  - closed. 
 
Example 3.3.1: X = {a, b, c} = Y, τ = {X, φ, {a}},  σ = {Y, φ, {a, b},{b, c}, {b}}. In X, the bα𝑔𝑔�- Closed sets are {X, 
φ, {b}, {c}, {b, c}}. Define f: (X, τ) →  (Y, σ) by  f(a) = b, f(b) = a ,f(c) = c. Then f is 𝑏𝑏α𝑔𝑔�- continuous but not 
continuous, for the closed set {a} in (Y, σ), f-1(a) = b is bα𝑔𝑔�- closed in (X, τ), but not closed in (X, τ). 
  
Theorem 3.3.2: Every - continuous map f is bα𝑔𝑔�- continuous but not conversely. 
 
Proof: Let f: (X, τ) →  (Y, σ) be  - continuous. Let A be closed in (Y, σ), then  f-1 (A) is -closed in (X, τ). 
 
By Theorem 3.1.4, f-1 (A) is bα𝑔𝑔� closed. Hence f is bα𝑔𝑔� - continuous.  
 
Example 3.3.2: X = {a, b, c} = Y,τ = {X, φ, {a}, {b}, {a, b}}, σ = {Y, φ, {a, c}}. In X, the bα𝑔𝑔�- Closed sets are        
{X, φ, {a}, {b}, {c}, {a, c},{b, c}} and α-closed sets are {X, φ, {c}, {a, c},{b, c}}. Let f: (X, τ) →  (Y, σ) be the 
identity map, then f is bα𝑔𝑔�- continuous, but not α-  continuous. For the closed set {b} in (Y,σ), f-1 (b) is bα𝑔𝑔�- closed in 
(X, τ), but not - closed in (X, τ). 
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Theorem 3.3.3: Every b-continuous map f is bα𝑔𝑔�- continuous. 
 
Proof: Let V be a closed set in (Y, σ), then f-1 (V) is b- closed in (X, τ). By Theorem 3.1.6, f-1 (V) is bα𝑔𝑔� - closed. 
 
Theorem 3.3.4: Every pre-continuous map f is bα𝑔𝑔�- continuous but not conversely. 
 
Proof: The first assertion follows by Theorem 3.1.1. 
 
Example 3.3.3: X= {a, b, c} = Y, τ ={X, φ, {a}, {b}, {a, b}}, σ = {Y, φ, {a}, {b, c}}. In X, the bα𝑔𝑔�- closed sets are X, 
φ, {a}, {b}, {c}, {a, c}, {b, c} and pre-closed sets are X, φ, {c}, {b, c}, {a, c}. Let f: (X, τ) →  (Y, σ) be the identity 
map, then f is bα𝑔𝑔�- continuous but not  pre- continuous. For the closed set {a} in (Y,σ), f-1 {a} = a is bα𝑔𝑔� closed in    
(X, τ), but not pre-closed in (X, τ). 
  
Theorem 3.3.5: Every semi- continuous map f is bα𝑔𝑔�- continuous but not conversely. 
 
Proof: The first part of the Theorem follows from Theorem 3.1.2. 
 
Example 3.3.4: X = {a, b, c} = Y, τ = {X, φ, {a}, {b, c}},  σ = {Y, φ, {a, c}}. 
 
In X, all the subsets are bα𝑔𝑔�- closed sets and semi-closed sets are {X, φ, {a}, {b, c}}. Let f: (X, τ) →  (Y, σ) be the 
identity map. Then f is bα𝑔𝑔� -continuous but not semi continuous. For the closed set {b} in (Y, σ), f 1− {b} = b is bα𝑔𝑔�-
closed in (X, τ) but not semi-closed in (X, τ). 
 
Theorem 3.3.6: Every bα𝑔𝑔�- continuous map is gb- continuous but not conversely. 
 
Proof: Let V be closed in (Y, σ), then f-1 (V) is bα𝑔𝑔�-closed in (X, τ). According to Theorem 3.1.7, f-1(V) is gb – closed. 
Hence every bα𝑔𝑔� -continuous map is gb- continuous. The converse of the above Theorem need not be true. 
 
Example 3.3.5: Let X = {a, b, c} = Y,   τ = {X, φ, {a}}, σ = {Y, φ, {a}, {a, b}}.In X , the bα𝑔𝑔�- closed sets are          
{X, φ, {b}, {c}, {b, c}} and gb-closed sets are {X, φ, {b}, {c}, {a, b}, {b, c}, {a, c}}. Define f : (X, τ) →  (Y,σ) by     
f (a) = b, f (b) = c, f(c) = a . For the closed set {b, c} in {Y,σ}, f 1− {b, c} = {a, b} is gb- closed, but not bα𝑔𝑔�- closed in 
(X, τ). 
 
Theorem 3.3.7: Composition of two bα𝑔𝑔�- continuous mapping need not be bα𝑔𝑔�- continuous. 
 
Proof: Example 3.3.6: Let X= {a, b, c},   τ ={X, φ { a, c}} , σ = {X, φ,{a},{b, c}},  η = { X, φ,{a}}. The bα𝑔𝑔�- closed 
sets in (X, τ) are {X, φ, {a}, {b}, {c}, {a, b}, {b, c}} and in (X, σ), bα𝑔𝑔�- closed sets are all the subsets of X. 
 
Define f: (X, τ)→ (X, σ) by  f(a) = a, f(b) =c, f(c) = b, and g : (X, σ)→ (X, η)  by  g(a) = c, g(b) = b, g(c) = a,. Then 
both f and g are bα𝑔𝑔� - continuous. For the closed set {b, c} in (X, η), (gof)-1 {b, c} = {a, c} is not bα𝑔𝑔�- closed in (X, τ). 
Hence composition of two bα𝑔𝑔�-continuous mapping need not be bα𝑔𝑔� -continuous. 
 
Definition 3.3.2: A function f: (X, τ) →  (Y, σ) is called a bα𝑔𝑔� - irresolute if f 1− (V)  is bα𝑔𝑔� -closed in  (X, τ) for every 
bα𝑔𝑔�- closed set V of (Y, σ). 
 
Theorem 3.3.8: Let f: (X, τ) →  (Y, σ) and  h : (Y, σ) →  (Z, η) be any two functions. Then  

(i) hof is bα𝑔𝑔�- continuous if h is continuous and f is bα𝑔𝑔� -continuous.  
(ii) hof is bα𝑔𝑔� - irresolute if h and f are bα𝑔𝑔�- irresolute.  

(iii) hof is bα𝑔𝑔�- continuous if h is bα𝑔𝑔�- continuous and f is bα𝑔𝑔�- irresolute. 
 
Proof: The statements in (i), (ii) and (iii) easily follow from the respective definitions. 
 
3.4. bα𝑔𝑔�- open maps and homeomorphism 
 
We introduce the following definitions. 
 
Definition 3.4.1: A map f : (X, τ) →  (Y, σ) is called a bα𝑔𝑔� - open map if f (U) is bα𝑔𝑔� open in (Y, σ) for every open 
set U of (X, τ). 
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Definition 3.4.2: A bijection f:(X, τ) →  (Y, σ) is called a bα𝑔𝑔�- homeomorphism if f is bα𝑔𝑔�-continuous and          
bα𝑔𝑔�- open. 
 
Theorem 3.4.1: Every open map is bα𝑔𝑔�- open map but not conversely. 
 
Proof: Let f: (X, τ) →  (Y, σ) be an open map. Let U be an open set in (X, τ), then f (U) be an open set in (Y, σ). By 
Theorem 3.1.3, f is bα𝑔𝑔�- open map. 
 
Example 3.4.1: Let X = {a, b, c} = Y,    τ = {X, φ, {a}, {b}, {a, b}},  σ = {Y, φ, {a}, {b, c}}. Let f: (X, τ) →  (Y, σ) 
be the identity map. For the open set {b} in (X, τ), f(b) = {b} is bα𝑔𝑔�- open in (Y, σ) . But f(b) = b is not open in (Y, σ) 
and f is not an open map. 
 
Theorem 3.4.2: Every bα𝑔𝑔�  open map is a gb- open map. 
 
Proof: Let f: (X, τ) →  (Y, σ) be a map. Let U be an open set in (X, τ), then f(U) is  bα𝑔𝑔� - open in (Y, σ). By Theorem 
3.1.7, f (U) is gb-open. Hence every bα𝑔𝑔�-open map is gb-open map. The converse of the above Theorem is not true. 
 
Example 3.4.2:  Let X = {a, b, c} = Y, τ = {X, φ, {a},{b, c}},  σ = {Y, φ, {a}, {a, b}}. Define f: (X, τ) →  (Y,σ) by      
f (a) = b, f (b) = c, f (c) = a. For the open set {a} in (X, τ), f (a) = b is gb- open in (Y, σ). But f(a) = b is not bα𝑔𝑔� open in 
(Y, σ) and hence f is not a bα𝑔𝑔�- open map. 
 
Theorem 3.4.3: Let A ⇒ B represents, A implies B but not conversely. Let f :( X, τ) →  (Y,σ) be a mapping. Then f is 
homeomorphism ⇒ f is bα𝑔𝑔� - homeomorphism  ⇒ f is gb- homeomorphism. 
 
Proof: The first relation holds by the definition of homeomorphism and Theorem 3.4.1.  
 
The second relation holds by the following Theorems, namely, every bα𝑔𝑔�- continuous is gb-continuous and every   
bα𝑔𝑔� open map is gb-open map. 
 
The fact that the converse of the above implications do not hold is evident from the following examples. 
 
Example 3.4.3: Let X = {a, b, c}, τ = {X, φ, {a}}, σ = {X, φ, {a, b}, {b, c}, {b}}and  f: (X, τ) →  (X, σ). 
 
By Example 3.3.1, f is bα𝑔𝑔�- continuous, but not continuous. Let τ = {X, φ, {a},{b},{a, b}},  σ = {X, φ, {a},{b, c}} 
 
By Example 3.4.1, f is bα𝑔𝑔� -open map but not an open map. Thus, f is bα𝑔𝑔� - homeomorphism ≠>f is homeomorphism.  
 
Let τ = {X, φ, {a}}, σ = (X, φ, {a}, {a, b}}. By Example 3.3.5,   f is gb- continuous but not bα𝑔𝑔�- continuous.  
 
Let τ = {X, φ, {a},{b, c}}, σ = (X, φ,{a},{a, b}}. By example 3.4.2, f is gb- open map but not bα𝑔𝑔�- open map. f is     
gb- homeomorphism ≠>f is bα𝑔𝑔�- homeomorphism. 
 
3.5 Applications of bα𝑔𝑔�- closed sets 
 
As an application of  bα𝑔𝑔� - closed sets we introduce three new spaces namely, Tbα𝑔𝑔�

c  -space, Tbα𝑔𝑔�
gb -space and Tbα𝑔𝑔�

b𝑔𝑔�  - 
space. 
 
Definition 3.5.1: A topological space (X, τ) is called 

1. a  Tbα𝑔𝑔�
c   - space if every bα𝑔𝑔� - closed set is closed. 

2     a  Tbα𝑔𝑔�
gb    - space if every gb- closed set is bα𝑔𝑔� - closed. 

3 a Tbα𝑔𝑔�
b𝑔𝑔�   - space if every b𝑔𝑔� - closed set is bα𝑔𝑔�- closed. 

 
Theorem 3.5.1: Every Tgs - space is a Tbα𝑔𝑔�

gb  - space. 
 
Proof:  Let A be gb-closed. In Tgs - space, A is b – closed. By Theorem 3.1.6, A is bα𝑔𝑔�- closed. Hence A is in Tbα𝑔𝑔�

gb  -  
space. 
 
Theorem 3.5.2: Every Tb𝑔𝑔�   - space is Tbα𝑔𝑔�

b𝑔𝑔� - space.  
 
Proof: Let A be b𝑔𝑔� - closed.  In Tb𝑔𝑔�    - space, A is b -closed and hence bα𝑔𝑔� −closed. 
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Theorem 3.5.3: If (X, τ) is a Tbα𝑔𝑔�

gb  - space and a Tbα𝑔𝑔�
c   - space, then it is a Tgs - space, the converse need not hold. 

 
Proof: Let A be gb-closed, then in a Tbα𝑔𝑔�

gb   - space, A is bα𝑔𝑔� - closed. In Tbα𝑔𝑔�
𝑐𝑐  - space, A is closed and hence b - closed 

implies A is in Tgs  - space. 
 
Example 3.5.1: Let X = {a, b, c} τ = {X, φ, {a},{b},{a, b}}. In (X, τ), the gb-closed sets are {X, φ, {a}, {b}, {c},       
{b, c}, {a, c}} and b- closed sets are {X, φ, {a}, {b}, {c},{b, c},{a, c}}. So, every gb- closed set is b-closed set. Hence 
X is a Tgs- space. The closed sets are{X, φ, {c},{b, c},{a, c}}. The bα𝑔𝑔� −closed sets are {X, φ, {a}, {b}, {c}, {b, c}, 
{a, c}}. Since {a} is bα𝑔𝑔� -closed but not closed, (X, τ) is not a Tbα𝑔𝑔�

c   - space. 
 
Theorem 3.5.4: If (X, τ) is a Tbα𝑔𝑔�

b𝑔𝑔�  - space and a Tbα𝑔𝑔�
𝑐𝑐  - space, then it is a  Tα𝑔𝑔�  - space, but not conversely. 

 
Proof: Let A be α𝑔𝑔�closed, then it is b𝑔𝑔�- closed and in a Tbα𝑔𝑔�

b𝑔𝑔�  - space, A is bα𝑔𝑔�- closed set. In Tbα𝑔𝑔�
𝑐𝑐  - space A is           

- closed. 
 
Example 3.5.2: Let X = {a, b, c} τ = {X, φ, {a},{b},{a, b}}. The α𝑔𝑔�-closed sets are X, φ, {c},{b, c},{a, c}.  The        
α - closed sets are X, φ, {c},{b, c},{a, c}. In (X, τ), the α𝑔𝑔�-closed sets are the same as α-closed sets. So, it is a Tα𝑔𝑔� - 
space. But not  Tbα𝑔𝑔�

𝑐𝑐  - space, since {b} is bα𝑔𝑔� closed but not closed. 
 
Corollary 3.5.5: If (X, τ) is a  Tb𝑔𝑔�  - space   and a Tbα𝑔𝑔�

𝑐𝑐  - space, then it is a Tα𝑔𝑔�  - space.     
 
Proof: The assertion follows by Theorem 3.5.2 and Theorem 3.5.4. 
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