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ABSTRACT 

In this paper we introduce the notion of Quasi-bi ideals in bi-near subtraction semigroup. Also we give 
characterizations of Quasi -bi ideals in bi-near subtraction semigroup. 
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1. INTRODUCTION 
 
In 2007, Dheena[1] introduced Near Subtraction Algebra, Throughout his paper by a Near Subtraction Algebra, we 
mean a Right Near Subtraction Algebra. For basic definition one may refer to Pillz[5].Tamil chelvam and Ganesan[6] 
introduced the notation of Bi-ideals in Near ring Maharasi[4] introduced the notation of Quasi-bi ideals  in Near ring.. 
Recently Firthous et.al [2] introduced the notation of Bi bi-ideals in Bi near subtraction semigroup. In this paper we 
shall obtained equivalent conditions for regularity in terms of Quasi-bi ideals.  
 
Given two subsets A and B of X the product AB = {ab /a∈A and b∈B}. Also we define another operator “*” on the 
class of subsets of X given by A*B= {ab-a(a′-b)/a,a′∈A, b∈B}. 
 
2. PRELIMINARIES  
 
Definition 2.1: A non-empty subset X together with two binary operations “−“and“.” is said to be subtraction 
semigroup If  
(i)  (X,−) is a subtraction algebra  
(ii) (X, .) is a semi group (iii) x(y−z)=xy−xz  and (x−y)z= xz−yz  for every x, y, z∈X. 
 
 
Definition 2.2: A non-empty subset X together with two binary operations “−“and “.” is said to be near subtraction 
semigroup if  
(i) (X,−) is a subtraction algebra  
(ii) (X,.) is a semi group and  
(iii) (x−y)z= xz−yz   for every x, y, z∈X. 
 
Definition 2.3: A non-empty subset X=X1∪X2 together with two binary operations “−“ and “.” is said to be bi-near 
subtraction semigroup  (right) if  
(i) (X1,−,.) is a near-subtraction semigroup  
(ii) (X2,−,.) is a subtraction semigroup 
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Definition 2.4:A non-empty subset S of X Is said to be Subalgebra if x−y∈ S whenever x, y∈ S. 
  
Definition 2.5: A non-empty subset I of X is said to be Right ideal if (i) x−y∈I for every x∈ I and y∈X and (ii) IX ⊆ I. 
 
Definition 2.6: A non-empty subset I of X is said to be Left ideal if (i) x−y∈I for every x∈ I and y∈X and (ii) XI ⊆ I. 
 
Definition 2.7: A non-empty subset I of X is said to be ideal if (i) IX ⊆ I and (ii) XI ⊆ I. 
 
Definition 2.8: Let (X1, −, .) be a bi-near subtraction semigroup. We say X is a Bi-regular bi-near subtraction 
semigroup if for any x∈X their exist y∈X such that xyx=x. 
 
If both X1 and X2 are regular subtraction semigroup then the bi-near subtraction semigroup X is regular 
 
Definition 2.9: An subalgebra Q of X is said to be Quasi-ideal if Q X∩X Q∩X *Q ⊆ Q. 
 
3. QUASI-BI IDEALS OF BI-NEAR SUBTRACTION SEMIGROUP 
 
Definition 3.1: A non-empty subset Q= Q 1∪ Q 2 of X is said to be Quasi-bi ideal, if  Q 1 is Quasi-ideal in X1 and Q 2 is 
ideal in X2. 
 
Example 3.2: Let X1={0,a,b,c} in which “−“  and  “.” be defined by 
 

− 0 a b c   . 0 a b c 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a 0 a 0 0 
b b b 0 b b 0 0 b 0 
c c c c 0 c 0 0 0 c 

 
Then Q1={0,b}  is Quasi-ideal in X1 
 
Let X2={0,a,b,1} in which “−“  and  “.” be defined by 
 

− 0 a b 1   . 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 a 0 a 0 a 0 a 
b b b 0 0 b 0 0 b b 
1 1 b a 0 1 0 a b 1 

 
Then Q2 = {0, a, b} is ideal in X2. 
 
Note 3.3: Obviously, every quasi-bi ideal is Bi-bi ideal in a bi-near subtraction semigroup. But the converse is not true 
 
Example 3.4: Let X1={0,a,b,c } in which “−“  and  “.” be defined by 
 

− 0 a b c   . 0 a b c 
0 0 0 0 0 0 0 0 0 0 
a a 0 c b a 0 a 0 0 
b b b 0 b b 0 0 b 0 
c c o c 0 c 0 0 0 c 

 
Here S1={0,a}  is bi-ideal but not Quasi-ideal  in X1 
 
Let X2={0,a,b,1} in which “−“  and  “.” be defined by 
 

− 0 a b 1   . 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 a 0 a 0 a 0 a 
b b b 0 0 b 0 0 b b 
1 1 b a 0 1 0 a b 1 

 
Then S2= {0, a, b} is an ideal  in X2.  Hence, every Bi_ bi ideal need not be a Quasi_bi  ideal.                                    
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Proposition 3.5: The set of all Quasi-bi ideals of a Bi-near subtraction semi group form a Moore System on X. 
 
Proof: Let Qi be a set of all Quasi-bi ideals in X. Let Q= ∩Qi, i∈I .Then Q= ∩(Qi′∪Qi′′).         
 
Since Intersection of all Qi′ are Quasi-ideal and Intersection of all Qi′′ are ideal, B is a Quasi -bi ideal of X. 
 
Proposition 3.6: If Q is a Quasi -bi ideal of a Bi-near subtraction semi group X and S is a subalgebra of X, then Q∩S is 
a Quasi -bi ideal of S. 
 
Proof: Let Q be a Quasi -bi ideal of X. Then Q∩ S= (Q1∪Q2) ∩S = (Q1∩S) ∪(Q2∩S) .Since Q1∩S is a Quai-ideal of S 
and Q2∩S is an ideal of S, B∩S is a Quasi -bi ideal of S. 
 
Theorem 3.7: Let X=X1∪X2 be a Bi-near subtraction semi group and let Q be a Quasi -ideal of X. Then Q is a Quasi-
bi ideal of X if and only if there exist two proper subsets X1 and X2 of X such that 
(i) X=X1∪X2 where X1 and X2 are proper subsets of X 
(ii) (Q ∩X1) is a Quasi-ideal of (X1,−,.) 
(iii) (Q ∩X2) is a ideal of (X2,−,.)  
 
Proof: Assume that Q is a Quasi –bi ideal of X. Thus there exist two subsets Q 1 and Q 2 of Q such that Q = Q 1∪ Q 2 
Where Q 1 is a Quasi -ideal of X1 and Q 2 is a ideal of X2. Taking Q 1= Q ∩X1 and Q 2= Q ∩X2. 
 
Conversely, let Q be a nonempty subset of X a satisfying conditions (i), (ii) and (iii).Hence 
(Q ∩ X1)∪ (Q ∩ X2) = ((Q ∩ X1)∪ Q)∩ ((Q ∩ X2) ∪ X2)  
                                   = ((Q ∪ Q)∩( X1∪ Q)) ∩ ((Q ∪ X2) ∩ ( X1∪ X2)) 
                                   = (Q ∩ (Q ∪X1))∩(( Q ∪ X2)∩ X) 
                                   = Q ∩ (Q ∪X2) (since Q ⊆ Q ∪X1and Q ∪X2⊆X) 
                                   = Q. (since Q ⊆ Q ∪X2) 
 
Thus,   (Q ∩ X1)∪ (Q ∩ X 2) = B. Hence, Q is a Quasi -bi-ideal of X.  
 
Theorem 3.8: Let X be a Zero- Symmetric Bi-Near subtraction semigroup. If B is a Bi-bi ideal of X. If the element of 
B are bi- regular then B is a Quasi-ideal. 
 
Proof: Let x∈ BX∩X B Then x=bx=x’b’ for some b,b’ in B and x,x’ in X. Since B is bi-regular, (i.e.,) bb1b=b1 for some 
b1in B. Now, x = bx = (bb1b) x = (bb1) (b x) = (bb1) (x’b) ∈BXB⊆B. Hence B is a Quasi-ideal.  
 
Theorem 3.9: Let X be a Zero- Symmetric Bi- Near subtraction semigroup. If B is a bi-ideal of X. If the element of B 
are bi- regular then B is a Quasi-bi ideal. 
 
Proof: Let x∈ B. Since B is Bi-bi ideal, therefore  B=B1∪B2 Where B1 is a bi-ideal of X1 and B2 is a ideal of X2 Every 
element of B is a Bi-regular, then every element of B1 and B2 is  a Bi-regular. By theorem3.8, B1 is a Quasi-ideal of X1 
and B2 is a ideal of X2. Hence B is a Quasi-bi ideal. 
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