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ABSTRACT 
Let A be a Banach algebra, with identity 1 and C be an algebra convex-cone in ordered Banach algebra (A, C). We 
investigate some results in ordered Banach algebra (A, C) with a proper, closed and inverse closed algebra convex-
cone C and a∈A such that σ(a)={1}. 
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1. INTRODUCTION 
 
A complex Banach algebra 𝐴𝐴 with identity 1 is classified in paper [12] by H. Raubenheimer and S. Rode as an ordered 
Banach algebra (OBA), if there is distinguished a positive cone 𝐶𝐶 ⊆ 𝐴𝐴 which is closed under non negative real linear 
combinations and norm limits, contains the identity, and is also closed under multiplication. In paper [3], R. Harte 
defined a partially ordered Banach algebra as a Banach algebra ordered by a cone that contains the unit and is closed 
under addition, positive scalar multiplication and multiplication by commuting positive elements. 
 
In this paper we investigate some results about an element 𝑎𝑎 ∈ 𝐴𝐴 such that 𝜎𝜎(𝑎𝑎) = {1} and 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶 for some 𝑁𝑁 ∈ ℕ, 
where 𝐶𝐶 is an inverse closed algebra convex-cone of an ordered Banach algebra (𝐴𝐴, 𝐶𝐶). The ordering that we introduce 
is via an algebra convex-cone. For basic properties of ordered Banach algebras see [9], [12] and [13]. 

 
In section 2, we provide the definitions and basic properties of elements in Banach algebras. In section 3, we define an 
algebra convex-cone 𝐶𝐶 of a unital complex Banach algebra 𝐴𝐴 and ordered Banach algebra (OBA). Some results on 
OBA are also proved. In section 4, we prove our main results in inverse closed algebra convex-cone 𝐶𝐶 of an            
OBA (𝐴𝐴, 𝐶𝐶). 

 
2. PRELIMINARY 
 
Throughout 𝐴𝐴 (or 𝐵𝐵) will be a complex unital Banach algebra and the field of complex numbers ℂ. A homomorphism 𝜑𝜑 
from a Banach algebra 𝐴𝐴 into a Banach algebra 𝐵𝐵 is a linear map 𝜑𝜑: 𝐴𝐴 → 𝐵𝐵 such that 𝜑𝜑(𝑎𝑎𝑎𝑎) = 𝜑𝜑(𝑎𝑎)𝜑𝜑(𝑏𝑏) for all 
𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 and 𝜑𝜑(1) = 1. The spectrum of an element 𝑎𝑎 in 𝐴𝐴 will be denoted by 𝜎𝜎(𝑎𝑎) and is defined by 𝜎𝜎(𝑎𝑎, 𝐴𝐴) or 
𝜎𝜎(𝑎𝑎) = {𝛼𝛼 ∈ ℂ: 𝑎𝑎 − 𝛼𝛼 is not invertible}, the spectral radius of 𝑎𝑎 in 𝐴𝐴 will be denoted by 𝑟𝑟(𝑎𝑎) and is defined by 𝑟𝑟(𝑎𝑎, 𝐴𝐴) 
or 𝑟𝑟(𝑎𝑎) = 𝑠𝑠𝑠𝑠𝑠𝑠{|𝜆𝜆|: 𝜆𝜆 ∈ 𝜎𝜎(𝑎𝑎)}. By spectral radius formula we have  

𝑟𝑟(𝑎𝑎) = lim
𝑛𝑛→∞

‖𝑎𝑎𝑛𝑛‖
1
𝑛𝑛 = inf

𝑛𝑛
 ‖𝑎𝑎𝑛𝑛‖

1
𝑛𝑛 . 

 
By ([10], Theorem 1.11), 𝜎𝜎(𝑎𝑎) is a closed subset of ℂ. The resolvent set of 𝑎𝑎 is defined by 𝜌𝜌(𝑎𝑎, 𝐴𝐴) or 𝜌𝜌(𝑎𝑎) =  ℂ\𝜎𝜎(𝑎𝑎). 
The function 𝜆𝜆 → (𝑎𝑎 −  𝜆𝜆)−1 defined in the open set 𝜌𝜌(𝑎𝑎, 𝐴𝐴) is called the resolvent of 𝑎𝑎. Also by Theorem 1.16 in 
paper [10], the resolvent function 𝜆𝜆 → (𝑎𝑎 −  𝜆𝜆)−1  is analytic in  ℂ\𝜎𝜎(𝑎𝑎). 
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An element 𝑎𝑎 in a unital Banach algebra 𝐴𝐴 is said to be left invertible in 𝐴𝐴 if there is some 𝑧𝑧 ∈ 𝐴𝐴 such that 𝑧𝑧𝑧𝑧 = 1. Also 
𝑎𝑎 is said to be right invertible if there is some 𝑧𝑧 ∈ 𝐴𝐴 such that 𝑎𝑎𝑎𝑎 = 1. An element 𝑎𝑎 in 𝐴𝐴 is said to be invertible (or 
non-singular) in 𝐴𝐴 if there is some 𝑧𝑧 ∈ 𝐴𝐴 such that 𝑎𝑎𝑎𝑎 = 𝑧𝑧𝑧𝑧 = 1. Note that if such a 𝑧𝑧 exists, then it is unique; for 
if 𝑧𝑧′𝑎𝑎 = 𝑎𝑎𝑧𝑧′ = 1, then 𝑧𝑧 = 𝑧𝑧1 = 𝑧𝑧𝑧𝑧𝑧𝑧′ = 1𝑧𝑧′ = 𝑧𝑧′ . 𝑧𝑧 is called the inverse of 𝑎𝑎, and as usual it is written 𝑎𝑎−1. The set of 
all invertible elements will be denoted by 𝐼𝐼𝐼𝐼𝐼𝐼(𝐴𝐴). Non-invertible elements are also called singular. 

 
Theorem 2.1: ([1], Theorem 3.2.1) Suppose that 𝐴𝐴 is a Banach algebra and 𝑎𝑎 ∈ 𝐴𝐴 such that ‖𝑎𝑎‖ ≤ 1. Then 1 − 𝑎𝑎 is 
invertible and (1 − 𝑎𝑎)−1 = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 . 
 
The series in Theorem 2.1 is called the Neumann series for (1 − 𝑎𝑎)−1. 

 
Theorem 2.2: ([1], Theorem 3.2.3) Suppose that 𝐴𝐴 is a Banach algebra and that 𝑎𝑎 is invertible. If ‖𝑥𝑥 − 𝑎𝑎‖ < 1

‖𝑎𝑎−1‖
, 

then 𝑥𝑥 is invertible. Moreover the mapping 𝑥𝑥 → 𝑥𝑥−1 is a homeomorphism from 𝐼𝐼𝐼𝐼𝐼𝐼(𝐴𝐴) onto 𝐼𝐼𝐼𝐼𝐼𝐼(𝐴𝐴). 
 
Theorem 2.3: ([1], Lemma 3.1.2 (N. Jacobson)). Let 𝐴𝐴 be a Banach algebra with unit 1 and let 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴, 𝜆𝜆 ∈ ℂ, with 
𝜆𝜆 ≠ 0. Then 𝜆𝜆 − 𝑎𝑎𝑎𝑎 is invertible in 𝐴𝐴 if and only if 𝜆𝜆 − 𝑏𝑏𝑏𝑏 is invertible in 𝐴𝐴. 
 
Theorem 2.4: ([1], Theorem 3.2.8) Let 𝐴𝐴 be a Banach algebra and 𝑎𝑎 ∈ 𝐴𝐴. Then the function 𝜆𝜆 → (𝜆𝜆1 − 𝑎𝑎)−1 is 
analytic on ℂ − 𝜎𝜎(𝑎𝑎) and goes to 0 at infinity. 
 
Theorem 2.5: ([1], Corollary 3.2.9) (I. M. Gelfand-S. Mazur). If 𝐴𝐴 is a Banach algebra in which every non-zero 
element is invertible then 𝐴𝐴 is isometrically isomorphic to ℂ. 
 
Let 𝑝𝑝(𝑧𝑧) = ∑ 𝛼𝛼𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=0  be a polynomial with coefficients 𝛼𝛼𝑖𝑖 ∈ ℂ for all 𝑖𝑖 = 1, 2, … , 𝑛𝑛. For 𝑎𝑎 ∈ 𝐴𝐴 we write               
𝑝𝑝(𝑎𝑎) = ∑ 𝛼𝛼𝑖𝑖𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=0 . The mapping 𝑝𝑝 → 𝑝𝑝(𝑎𝑎) is homomorphism from the algebra of all polynomials to Banach algebra 𝐴𝐴.  
 

Theorem 2.6: ([10], Proposition 1.1.34) (Spectral mapping theorem) Let 𝑎𝑎 be an element of a Banach algebra 𝐴𝐴 and let 
𝑝𝑝(𝑧𝑧) be a polynomial. Then 𝜎𝜎(𝑝𝑝(𝑎𝑎)) = 𝑝𝑝(𝜎𝜎(𝑎𝑎)). 
 
Let 𝐴𝐴 be a Banach algebra. An element 𝑎𝑎 ∈ 𝐴𝐴 is said to be idempotent if 𝑎𝑎2 = 𝑎𝑎. An element 𝑎𝑎 ∈ 𝐴𝐴 is said to be 
nilpotent if there is a natural number 𝑛𝑛 such that 𝑎𝑎𝑛𝑛 = 0. The set of nilpotent elements of Banach algebra 𝐴𝐴 will be 
denoted by 𝑁𝑁(𝐴𝐴). If 𝑎𝑎 ∈ 𝐴𝐴 such that 𝜎𝜎(𝑎𝑎) = 0, then 𝑎𝑎 is said to be quasinilpotent. The set of quasinilpotent elements of 
𝐴𝐴 will be denoted by 𝑄𝑄𝑄𝑄(𝐴𝐴). It is well known that in a finite-dimensional Banach algebra all quasinilpotents are 
nilpotent. We notice that if 𝑎𝑎 ∈ 𝐴𝐴 is nilpotent, then it is quasinilpotent, since  

𝑟𝑟(𝑎𝑎) = lim𝑛𝑛→∞‖𝑎𝑎𝑛𝑛‖
1
𝑛𝑛 = lim𝑛𝑛→∞‖0‖

1
𝑛𝑛 = 0. 

 
Theorem 2.7: ([2], Theorem 1.2.9). Let 𝐴𝐴 be a Banach algebra. If 𝑎𝑎 ∈ 𝐴𝐴 satisfies 𝑟𝑟(𝑎𝑎) < 1, then 1 − 𝑎𝑎 is invertible 
and (1 − 𝑎𝑎)−1 = 1 + ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=1 . 
 
3. ORDERED BANACH ALGEBRAS 
 
In ([12], section 3), we defined an algebra cone 𝐶𝐶 of a complex Banach algebra 𝐴𝐴 and showed that 𝐶𝐶 induced on 𝐴𝐴 an 
ordering that was compatible with the algebraic structure of 𝐴𝐴. Such a Banach algebra is called an ordered Banach 
algebra (OBA). We recall those definitions now and also the additional properties that 𝐶𝐶 may have. 

 
Let 𝐴𝐴 be a complex Banach algebra with unit 1. We call a nonempty subset 𝐶𝐶 of 𝐴𝐴 a cone of 𝐴𝐴 if 𝐶𝐶 satisfies the 
following properties:  

1. 𝐶𝐶 + 𝐶𝐶 ⊆ 𝐶𝐶 
2. 𝜆𝜆𝜆𝜆 ⊆ 𝐶𝐶 (for 0 ≤ 𝜆𝜆 ∈ 𝑅𝑅). 

 
If in addition 𝐶𝐶 satisfies 𝐶𝐶 ∩ −𝐶𝐶 = {0}, then 𝐶𝐶 is called a proper cone. 

 
Any cone 𝐶𝐶 of 𝐴𝐴 induces an ordering ≤ on 𝐴𝐴 in such that 𝑎𝑎 ≤ 𝑏𝑏 if and only if 𝑏𝑏 − 𝑎𝑎 ∈ 𝐶𝐶 for 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 .  

 
It can be shown that this ordering is a partial order on 𝐴𝐴, i.e., for every 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐴𝐴, 

(a) 𝑎𝑎 ≤ 𝑎𝑎 (≤ is reflexive), 
(b) if 𝑎𝑎 ≤ 𝑏𝑏 and 𝑏𝑏 ≤ 𝑐𝑐, then 𝑎𝑎 ≤ 𝑐𝑐 (≤ is transitive). 

 
Furthermore, 𝐶𝐶 is proper if and only if this partial order has the additional property of being antisymmetric, i.e. 
if 𝑎𝑎 ≤ 𝑏𝑏 and 𝑏𝑏 ≤ 𝑎𝑎, then 𝑎𝑎 = 𝑏𝑏. 
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Considering the partial order that 𝐶𝐶 induces we find that 𝐶𝐶 = {𝑎𝑎 ∈ 𝐴𝐴: 𝑎𝑎 ≥ 0} and therefore we call the 
elements of 𝐶𝐶 positive. 
 
A cone 𝐶𝐶 of a Banach algebra 𝐴𝐴 is called an algebra cone of 𝐴𝐴 if 𝐶𝐶 satisfies the following conditions: 

3. 𝐶𝐶. 𝐶𝐶 ⊆ 𝐶𝐶, 
4. 1 ∈ 𝐶𝐶. 

 
Motivated by this concept we call a complex Banach algebra with unit element 1 an ordered Banach algebra (OBA) if 
𝐴𝐴 is partially ordered by a relation " ≤ " in such a manner that for every 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐴𝐴 and 𝜆𝜆 ∈ ℂ, 

(1) 𝑎𝑎, 𝑏𝑏 ≥ 0 ⇒ 𝑎𝑎 + 𝑏𝑏 ≥ 0, 
(2) 𝑎𝑎 ≥ 0, 𝜆𝜆 ≥ 0 ⇒ 𝜆𝜆𝜆𝜆 ≥ 0, 
(3) 𝑎𝑎, 𝑏𝑏 ≥ 0 ⇒ 𝑎𝑎𝑎𝑎 ≥ 0, 
(4) 1 ≥ 0. 

 
Therefore, if 𝐴𝐴 is ordered by an algebra cone 𝐶𝐶, then A, or more specifically (𝐴𝐴, 𝐶𝐶), is an OBA. 

 
A cone 𝐶𝐶 of a Banach algebra 𝐴𝐴 is called algebra convex-cone if it satisfies the following: 

(i) 𝑎𝑎𝑎𝑎 ∈ 𝐶𝐶 for all 𝑎𝑎, 𝑏𝑏 ∈ 𝐶𝐶 such that 0 ≤ 𝜆𝜆 ≤ 1 implies λa+(1-λ)b∈C. 
(ii) 1 ∈ 𝐶𝐶, where 1 is the unit of 𝐴𝐴. 

 
An algebra convex-cone 𝐶𝐶 of 𝐴𝐴 is called proper if 𝐶𝐶 is a proper convex-cone of 𝐴𝐴, and closed if it is a closed subset of 
𝐴𝐴. Furthermore, 𝐶𝐶 is said to be normal if there exists a constant 𝛼𝛼 > 0 such that it follows from 0 ≤ 𝑎𝑎 ≤ 𝑏𝑏 in 𝐴𝐴 that 
‖𝑎𝑎‖ ≤ 𝛼𝛼‖𝑏𝑏‖.  

 
Note that if 𝑎𝑎 ∈ 𝐶𝐶 ∩ −𝐶𝐶, then it follows that −𝑎𝑎 ∈ 𝐶𝐶 i.e., 𝑎𝑎 ≤ 0. Hence if 𝐶𝐶 is normal, with normality constant 
0 < 𝛼𝛼 ∈ ℝ, then 0 ≤ ‖𝑎𝑎‖ ≤ 𝛼𝛼‖0‖ = 0  and so 𝑎𝑎 = 0. Therefore every normal cone is proper. 

 
If an algebra cone 𝐶𝐶 has the property that if 𝑎𝑎 ∈ 𝐶𝐶 and 𝑎𝑎 is invertible, then 𝑎𝑎−1 ∈ 𝐶𝐶, then 𝐶𝐶 is said to be inverse-closed. 

 
Example 3.1: Let 𝐿𝐿 be a non-zero complex Banach lattice and let= {𝑥𝑥 ∈ 𝐿𝐿: 𝑥𝑥 = ‖𝑥𝑥‖}.  𝐼𝐼𝐼𝐼 𝐾𝐾 = {𝑇𝑇 ∈ 𝐿𝐿(𝐿𝐿): 𝑇𝑇𝑇𝑇 ⊆ 𝐶𝐶}, 
then 𝐾𝐾 is a closed, normal algebra cone of 𝐿𝐿(𝐿𝐿). Therefore (𝐿𝐿(𝐿𝐿), 𝐾𝐾) is an OBA. 
 
Definition 3.2: Let (𝐴𝐴, 𝐶𝐶) be an OBA. If 0 ≤ 𝑎𝑎 ≤ 𝑏𝑏 relative to the algebra convex-cone 𝐶𝐶 implies 𝑟𝑟(𝑎𝑎) ≤ 𝑟𝑟(𝑏𝑏), then 
the spectral radius (function) is monotone w. r. t. the algebra convex-cone 𝐶𝐶. 
 
Theorem 3.3: Let (𝐴𝐴 𝐶𝐶) be an OBA with a normal algebra convex-cone 𝐶𝐶. Then the spectral radius is monotone w. r. t. 
𝐶𝐶. 
 
Proof: Let 0 ≤ 𝑎𝑎 ≤ 𝑏𝑏, then by using Principal of Mathematical Induction, we see that 0 ≤ 𝑎𝑎𝑛𝑛 ≤ 𝑏𝑏𝑛𝑛 . Let 𝛼𝛼 be the 
constant of normality, then ‖𝑎𝑎𝑛𝑛‖ ≤ 𝛼𝛼‖𝑏𝑏𝑛𝑛‖ for all 𝑛𝑛 ∈ ℕ, so 
 

𝑟𝑟(𝑎𝑎) = lim
𝑛𝑛→∞

‖𝑎𝑎𝑛𝑛‖
1
𝑛𝑛 ≤ lim

𝑛𝑛→∞
(𝛼𝛼‖𝑏𝑏‖

1
𝑛𝑛) 

         = lim𝑛𝑛→∞(𝛼𝛼
1
𝑛𝑛) . lim𝑛𝑛→∞(‖𝑏𝑏‖

1
𝑛𝑛) = 𝑟𝑟(𝑏𝑏).   

     
The converse of theorem 3.3 is in general not true. Also if the algebra convex-cone is not normal, the spectral radius 
may not be monotone. See Example 4.2 in paper [12]. 

 
Theorem 3.4: Let (𝐴𝐴, 𝐶𝐶) be an OBA with algebra convex-cone 𝐶𝐶 such that the spectral radius is monotone.                
Let 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 be such that 0 ≤ 𝑎𝑎 ≤ 𝑏𝑏 relative to 𝐶𝐶. If 𝑏𝑏 is quasinilpotent, then 𝑎𝑎 is quasinilpotent. 
 
Proof: If 𝑏𝑏 is quasinilpotent, then 𝑟𝑟(𝑏𝑏) = 0. So from Theorem 3.3, we have 0 ≤ 𝑟𝑟(𝑎𝑎) ≤ 0, which gives 𝑟𝑟(𝑎𝑎) = 0. 
Hence 𝑎𝑎 is quasinilpotent.   
         
Theorem 3.5: ([12], Theorem 4.4). Let (𝐴𝐴, 𝐶𝐶) be an OBA with normal algebra cone 𝐶𝐶 and 𝑎𝑎, 𝑏𝑏 ∈ 𝐶𝐶. If 𝑎𝑎𝑎𝑎 ≤ 𝑏𝑏𝑏𝑏, then 
𝑟𝑟(𝑎𝑎𝑎𝑎) ≤ 𝑟𝑟(𝑏𝑏)𝑟𝑟(𝑎𝑎) and 𝑟𝑟(𝑎𝑎𝑎𝑎) ≤ 𝑟𝑟(𝑎𝑎)𝑟𝑟(𝑏𝑏). 
 
By using above theorem, it can be easily proved that 𝑟𝑟(𝑎𝑎 + 𝑏𝑏) ≤ 𝑟𝑟(𝑎𝑎) + 𝑟𝑟(𝑏𝑏). 
 
Theorem 3.6: ([12], Proposition 5.1) Let 𝐴𝐴 be an OBA with a closed normal algebra cone 𝐶𝐶 and 𝑎𝑎 ∈ 𝐶𝐶. Then  
𝑟𝑟(𝑎𝑎) ∈ 𝜎𝜎(𝑎𝑎). 
 



Naresh Kumar Aggarwal and Mangat Ram*/  
Inverse Closed Algebra Convex-Cones in Ordered Banach Algebras / IJMA- 5(10), Oct.-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                      45   

 
Theorem 3.7: ([12], Theorem 5.2). Let (𝐴𝐴, 𝐶𝐶) be an OBA with a closed algebra cone C such that the spectral radius 
function is monotone. If 𝑎𝑎 ∈ 𝐶𝐶, then 𝑟𝑟(𝑎𝑎) ∈ 𝜎𝜎(𝑎𝑎). 
 
4. INVERSE CLOSED ALGEBRA CONVEX-CONES 
 
Let 𝐴𝐴 be a Banach algebra with unit 1. Let 𝐶𝐶 be an inverse closed algebra convex-cone. Let an element 𝑎𝑎 with unit 
spectrum belongs to an ordered Banach algebra 𝐴𝐴. We prove that if 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶 for some 𝑁𝑁 ∈ ℕ, then 𝑎𝑎 is unit element in 
𝐴𝐴.  

 
Theorem 4.1: Let (𝐴𝐴, 𝐶𝐶) be an ordered Banach algebra with a proper, closed and inverse closed algebra convex-cone 𝐶𝐶 
and 𝑎𝑎 ∈ 𝐴𝐴 such that 𝜎𝜎(𝑎𝑎) = {1}. If 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶 for some 𝑁𝑁 ∈ ℕ, then 𝑎𝑎 = 1. 
 
Proof: Since 𝜎𝜎(𝑎𝑎) = {1}, therefore from Theorem 3.6 and Theorem 2.7, for |𝜆𝜆| > 1 we have 

(𝜆𝜆1 − 𝑎𝑎𝑁𝑁)−1 = �
𝑎𝑎𝑁𝑁𝑁𝑁

𝜆𝜆𝑘𝑘+1

∞

𝑘𝑘=0

 

 
Let 𝜆𝜆 > 1. Since 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶 and 𝐶𝐶 is closed and convex-cone, so 𝑎𝑎𝑁𝑁 ≥ 0 and it follows that (𝜆𝜆1 − 𝑎𝑎𝑁𝑁)−1 ∈ 𝐶𝐶. Also 𝐶𝐶 is 
inverse closed, therefore we have 𝜆𝜆1 − 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶 for 𝜆𝜆 > 1. Let us take the limit 𝜆𝜆 → 1+ and since 𝐶𝐶 is closed, therefore 
it again follows that 1 − 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶.  
 
Since 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶 and 𝐶𝐶 is inverse closed, so 𝑎𝑎−𝑁𝑁 ∈ 𝐶𝐶. From the similar argument as above we conclude that 1 − 𝑎𝑎−𝑁𝑁 ∈ 𝐶𝐶.  
 
Again 𝐶𝐶 is closed algebra convex-cone, so it is algebraically closed under multiplication, we have  
𝑎𝑎𝑁𝑁 − 1 = 𝑎𝑎𝑁𝑁(1 − 𝑎𝑎−𝑁𝑁) ∈ 𝐶𝐶.  
 
Now 1 − 𝑎𝑎𝑁𝑁 ∈ 𝐶𝐶, 𝑎𝑎𝑁𝑁 − 1 ∈ 𝐶𝐶 and 𝐶𝐶 is proper, we must have 𝑎𝑎𝑁𝑁 − 1 = 0 or 𝑎𝑎𝑁𝑁 = 1. 
 
Again by factorization, we have  

𝑎𝑎𝑁𝑁 − 1 = (𝑎𝑎 − 1)(𝑎𝑎𝑁𝑁−1 + 𝑎𝑎𝑁𝑁−2 + ⋯+ 1) = 0 
 
Since 𝜎𝜎(𝑎𝑎) = {1} and by Theorem 2.6, we have  𝑎𝑎𝑁𝑁−1 + 𝑎𝑎𝑁𝑁−2 + ⋯+ 1 is invertible. Therefore 𝑎𝑎 = 1.    

           
 
The next theorem states that the elements of a closed, inverse closed algebra convex-cone, are dominated by their 
spectral radii. 

 
Theorem 4.2: Let (𝐴𝐴, 𝐶𝐶) be an ordered Banach algebra with closed and inverse closed algebra convex-cone 𝐶𝐶. If 𝑎𝑎 ∈
𝐶𝐶, then 0 ≤ 𝑎𝑎 ≤ 𝑟𝑟(𝑎𝑎)1 . 
 
Proof: Let |𝜆𝜆| > 𝑟𝑟(𝑎𝑎), so from Theorem 2.7, we have 

(𝜆𝜆1 − 𝑎𝑎)−1 = �
𝑎𝑎𝑘𝑘

𝜆𝜆𝑘𝑘+1

∞

𝑘𝑘=0

 

 
Since 𝑎𝑎 ∈ 𝐶𝐶 and 𝐶𝐶 is closed algebra convex-cone, so it is algebraically closed under multiplication and addition, it 

follows that for all |𝜆𝜆| > 𝑟𝑟(𝑎𝑎), ∑ 𝑎𝑎𝑘𝑘

𝜆𝜆𝑘𝑘+1
∞
𝑘𝑘=0  ∈ 𝐶𝐶. Hence for all |𝜆𝜆| > 𝑟𝑟(𝑎𝑎), (𝜆𝜆1 − 𝑎𝑎)−1 ∈ 𝐶𝐶. Again since the algebra 

convex-cone 𝐶𝐶 is inverse closed, it follows that for all |𝜆𝜆| > 𝑟𝑟(𝑎𝑎) we have 𝜆𝜆1 − 𝑎𝑎 ∈ 𝐶𝐶. Let us take the limit 𝜆𝜆 → 𝑟𝑟(𝑎𝑎)+ 
and since 𝐶𝐶 is closed, therefore it again follows that 𝑟𝑟(𝑎𝑎)1 − 𝑎𝑎 ∈ 𝐶𝐶. Since 𝐶𝐶 is algebra convex-cone, so its elements are 
positive and hence 0 ≤ 𝑎𝑎 ≤ 𝑟𝑟(𝑎𝑎)1.    

     
Theorem 4.3: Let (𝐴𝐴, 𝐶𝐶) be an ordered Banach algebra with a proper, closed and inverse closed algebra convex-cone𝐶𝐶. 
Then 𝑄𝑄𝑄𝑄(𝐴𝐴) ∩ 𝐶𝐶 = {0}. 
 
Proof: It is obvious that 0 ∈ 𝑄𝑄𝑄𝑄(𝐴𝐴) ∩ 𝐶𝐶.  
 
Let 𝑎𝑎 ∈ 𝑄𝑄𝑄𝑄(𝐴𝐴) ∩ 𝐶𝐶. Therefore 𝑎𝑎 ∈ 𝑄𝑄𝑄𝑄(𝐴𝐴) and so 𝑟𝑟(𝑎𝑎) = 0.  
 
From Theorem 4.2, we have 0 ≤ 𝑎𝑎 ≤ 0.1 = 0. Hence 𝑎𝑎 ≤ 0 and 0 ≤ 𝑎𝑎 and since 𝐶𝐶 is proper, therefore 𝑎𝑎 = 0.    
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One of the simplest examples of a proper, closed and inverse closed algebra convex-cone is obtained if we consider the 
cone of all 𝑛𝑛 × 𝑛𝑛 diagonal matrices with nonnegative real entries. It is clear that the spectrum of an element belonging 
to the cone is the set of points on the diagonal. Thus, a quasinilpotent element of the cone has zeros on the main 
diagonal, and is therefore the zero matrix. 

 
5. CONCLUSIONS 
 
Let 𝐴𝐴 be a Banach algebra, with identity 1. Let (𝐴𝐴, 𝐶𝐶) be an ordered Banach algebra. We proved some results in 
OBA (𝐴𝐴, 𝐶𝐶) and investigated some results in (𝐴𝐴, 𝐶𝐶) with a proper, closed and inverse closed algebra convex-cone 𝐶𝐶 and 
𝑎𝑎 ∈ 𝐴𝐴 such that 𝜎𝜎(𝑎𝑎) = {1}. 
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