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ABSTRACT 
This paper is concerned with the exponential stability of second order neutral stochastic evolution equation with 
infinite delays.  By applying fixed point principle authors present sufficient conditions to ensure that, the mild solutions 
are exponentially stable in p-th moment. An example is provided to illustrate the effectiveness of the proposed result. 
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1. INTRODUCTION 
 
Neutral stochastic partial differential equations with delay are well known to describe many sophisticated dynamical 
systems in physical, biological, medical, chemical engineering, aero-elasticity and social sciences. The existence, 
uniqueness and asymptotic behavior of mild solutions for first order non linear stochastic evolution equations have 
recently received a lot of attentions [1, 3, 14] and the references therein. However as for neutral SPDEs with infinite 
delay, as far as we know, there exist only a few results about the existence and asymptotic behavior of mild solutions. 
Ren and Sun [13], Li and Liu [10] considering the existence of solutions of second order stochastic evolution equations 
and neutral stochastic differential inclusions with infinite delay respectively. Cui and Yan [5] investigated that 
existence and long time behavior of mild solutions for a class of neutral stochastic partial differential equations with 
infinite delay in distribution. A difficulty is that mild solution does not have stochastic differentials. In [11] Luo and 
Taniguchi have analyzed the asymptotical stability for mild solution to neutral stochastic partial differential equations 
with infinite delay by using the fixed point theorem. Inspired by the idea proposed in Luo and Taniguchi in [11], Cui et 
al [6] have discussed the exponential stability for mild solution of neutral stochastic partial differential equations with 
delays and poisson jumps and Sakthivel and Ren [15] has studied the exponential stability for mild solution of second 
order stochastic evolution equations with poisson jumps respectively. By employing the integral inequality established 
in Chen [4], Boufoussi and Hajji [2] have obtained some sufficient conditions ensuring the exponential stability for 
neutral stochastic partial delayed differential equations driven by a fractional Brownian motion. Ren and Sakthivel [12] 
have considered the existence, uniqueness and stability of mild solution for second order neutral stochastic evolution 
equations with infinite delay and poisson jumps by employing the generalized Bihari’s inequality. In [9] the authors 
studied the Stability behavior of second order neutral impulsive stochastic differential equations with delay. In this 
work the exponential stability of non linear second order stochastic evolution equations with infinite delay are studied 
by using fixed point theorem.   
 
2. PRELIMINARIES 
 
Let X and E be two real separable Hibert spaces with the norms ‖∙‖X  and ‖∙‖E  respectively. Let (Ω,Γ, {Γt}t≥0, P) be a 
complete probability space equipped with a normal filtration  {Γt}t≥0 satisfying the usual conditions, that is filtration is 
right continuous and  Γ0 contains all P null sets. Let L(E, X) denotes the space of bounded linear operators from E in to 
X. Let Q be a nuclear operator from E to E.  L2

0 = L2( E; X) be the space of all Q–Hilbert–Schmidt operators from  E  to 
X with the norm  ‖ψ‖L2

0 = tr(ψQψ∗) < ∞,ψ ∈ L(E, X).   
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Let βn(t)  (n = 1, 2 , 3, … )  be a sequence of real value one dimensional standard Brownian motions mutually 
independent on (Ω,Γ, {Γt}t≥0, P).  Now we define a Q - Wiener process w(t) by w(t) = ∑ �λn

∞
n=1 βn (t)en , t ≥ 0, e ∈

E,  Here λn ≥ 0 (n = 1, 2 , 3, … )  are non negative real numbers and {en } (n = 1, 2 , 3, … ) is a complete orthonormal 
basis in E such that  Qen = λnen  , n = 1, 2 , 3, … . 
 
The main purpose of this paper is to establish the exponential stability of mild solutions for a class of second order 
neutral stochastic differential equations with infinite delays of the form  
d �x′(t) − f1 �t, x�t − ρ(t)���= �Ax(t) + f2  �t, ∫ g�θ, x(t + θ)�dθ0

−∞ ��dt + h �t, ∫ σ�θ, x(t + θ)�dθ 0
−∞ �dw(t) (1)  

 
x(s) = φ(s),−∞ < 𝑠𝑠 ≤ 0, x,(0) = x1                                                                                                                              (2) 
 
where A: D(A) ⊂ X → X  is the infinitesimal generator of a strongly continuous cosine family on X. The 
mappings f1, f2: [0,∞) × X → X, h: [0,∞) × X →  L2

0 (E, X), g, σ: (−∞, 0] × X → X  are measurable functions. 
 φ: (−∞, 0] → X is a cadlag stochastic process with E�sup−∞<𝑠𝑠≤0 ‖φ(s)‖X

p� < ∞ and x1  is a  Γ0 measurable X valued 
random variable independent of w with finite second moment. 
 
In this section, let us recall some basic concepts about cosine families of operators [8, 16]. The one parameter family 
{C(t): t ∈ R}  ⊂ BL(X, X) satisfying that 

(i)  C(0) = I,  
(ii) C(t)x is continuous in t on R, for all x ∈ X, 
(iii)C(t + s) + C(t − s) = 2C(t)C(s) for all t, s ∈ R is called a strongly continuous cosine family.  

 
The corresponding strongly continuous sine family {S(t): t ∈ R} ⊂ BL(X, X)  is defined by (t)x =  ∫ C(s)xds, tt

0 ∈

R, x ∈ X. The generator A ∶ X → X of {C(t): t ∈ R}  is given by Ax =  � d
2

dt 2 C(t)x�
t=0

for all x ∈ D(A) = {x ∈ X: C(∙)x ∈
C2R;X. 
 
It is well known that the infinitesimal generator A is a closed, densely defined operator on X . Such cosine and 
corresponding sine families and their generators satisfy the following properties.   
 
Lemma 2.1: [8] Suppose that A is the infinitesimal generator of a cosine family of operators {C(t): t ∈ R}.Then the 
following properties hold. 

(i)  There exists N∗ ≥ 1 and w ≥ 0 such that ‖C(t)‖ ≤ N∗ew|t| and hence ‖S(t)‖ ≤ N∗ew|t|. 
(ii) A∫ S(u)r�

s xdu =  [C(r�) − C(s)]x for all 0 ≤ s ≤  r� < ∞. 

(iii)There exists N�∗ ≥ 1 such that ‖S(s) − S(r�)‖ ≤ N�∗ �∫ ew |s|r�
s ds�for all 0 ≤ S ≤  r� < ∞. 

 
In order to state our main results we impose the following assumptions on the functions fi , g, h, σ(i = 1,2). 
(H1) The cosine family of operators{C(t): t ≥ 0} on X and the corresponding sine family {S(t): t ≥ 0} satisfy the            
         conditions ‖C(t)‖X ≤ Me−βt  , ‖S(t)‖X ≤ Me−γt , t ≥ 0 for some constants M ≥ 1 and  β, γ > 0. 
 
(H2) For any x, y ∈ X, ‖f1(t, 0)‖X

p = 0;  ‖f2(t, 0)‖X
p = 0; and   

 
          ‖fi(t, x1) − fi(t, x2)‖X

p ≤ ki‖x1 − x2‖X
p  , ki > 0, i = 1,2. 

 
          ‖h(t, x) − h(t, y)‖X

p ≤ k3‖x1 − x2‖X
p , k3 > 0. 

 
(H3) The function  g,σ satisfies that  ‖g(t, 0)‖X = 0 and ‖σ(t, 0)‖X = 0 and 
 
          ‖g(t, x1) − g(t, x2)‖X ≤ η1(t)‖x1 − x2‖X  , 
 
          ‖σ(t, x1) − σ(t, x2)‖X ≤ η2(t)‖x1 − x2‖X , 
 
          where  0 < η1(t) ≤ d1e−ξ‖t‖, d1 > 0, ξ > 0 and 0 < η2(t) ≤ d2e−ξ‖t‖, d2 > 0, ξ > 0. 
   
  (H4) k = 3p−1 �MpK1 β

1−p + MpK2 γ1−p d1
pξ1−p+CpMpK3 d2

p  ξ−p (2γ)
−p

2� �  be such that (0 ≤ k ≤ 1).     
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Definition 2.2: A stochastic process {x(t),−∞ < 𝑡𝑡 ≤ 𝑏𝑏}(0 < 𝑏𝑏 ≤ ∞) is called a mild solution of Equations (1) and 
(2) if  
(i)  x(t) is measurable and Γt  - adapted càdlàg  process with E∫ ‖x(t)‖X

pb
0 dt < ∞, 

(ii) x(t)  satisfies the following integral equation 
      x(t) =  C(t)φ(0) + S(t)�x1 − f1(0,φ)� +  ∫ C(t − s)t

0  f1 �s, x�s −  ρ(s)�� ds 

              +∫ S(t − s)t
0 f2 �s,   ∫ g �θ, x(s + θ)�dθ0

−∞ � ds + ∫ S(t − s)t
0 h �s,   ∫ σ �θ, x(s + θ)�dθ0

−∞ � dw(s).              (3) 
 
Definition 2.3: The equation (3) is said to be exponentially stable in p-th moment if there exist some constants 
M∗ ≥ 1, η > 0 such that E‖x(t)‖X

p  ≤  M∗E‖x(0) ‖X
p e−ηt , t ≥ 0. 

 
3. EXPONENTIAL STABILITY RESULT 
 
In this section, we establish existence of mild solutions to equations  (1) and (2) and prove the exponential stability 
result. 
 
Let the space H denote Banach space of all Γt  adapted  càdlàg process x(t) such that there exist two constants M∗ ≥ 1 
and η > 0  satisfying the inequality E‖x(t)‖X

p  ≤  M∗E‖x(0) ‖X
p e−ηt , t ≥ 0  with the norm ‖X‖H =  sup

t≥0  E‖x(t) ‖X
p . 

Further let the delay ρ(t) be finite, that is there exist a constant r > 0 and 0 ≤ ρ(t) ≤ r. Now let us prove the required 
result by using a fixed point argument. 
 
Lemma 3.1:[7] For any r ≥1 and for arbitrary L2

0  valued predictable process φ(∙), 

 
sup

s ∈ [0, t ]
 E�� φ(u)

s

0
dw(u)�

X

2r

≤ �r(2r − 1)�r �� �E‖φ(s)‖L2
0

2r�
1
r

t

0
ds�

r

 

 
Theorem 3.2: Let  p ≥ 2 be an integer. Suppose that (H1) - (H4) are satisfied the initial condition φ(s) satisfies the 
condition E‖φ(s)‖X

p  ≤  M1
∗E‖φ(0) ‖X

p e−μs , s ≤ 0, 0 < μ < 𝜂𝜂, here M∗ ≥ 1, then the mild solution to the second order 
stochastic evolution equations (1) and (2) exists and it is exponentially stable in p-th moment.  
 
Proof: Define a nonlinear operator F: H → H  by  
F(x)(t) =  C(t)φ(0) +  S(t)�x1 − f1(0,φ)�  +∫ C(t − s)t

0  f1 �s, x�s −  ρ(s)��ds  

                +∫ S(t − s)t
0 f2 �s,   ∫ g �θ, x(s + θ)�dθ0

−∞ �ds 

                + ∫ S(t − s)t
0 h �s,   ∫ σ �θ, x(s + θ)�dθ0

−∞ � dw(s)                                                                                        (4)  
 
In order to prove the exponential stability, it is enough to show that the operator F has a fixed point in H. 
E‖F(x)(t)‖ ≤ 5p−1E ‖C(t)φ(0)‖X

p +  5p−1E�S(t)�x1 − f1(0,φ)��
X
p          

                            +5p−1E�∫ C(t − s)t
0  f1 �s, x�s −  ρ(s)�� ds�

X

p
  

                            +5p−1E�∫ S(t − s)t
0 f2 �s,   ∫ g �θ, x(s + θ)�dθ0

−∞ � ds�
X

p
 

                            +5p−1E�∫ S(t − s)t
0 h �s,   ∫ σ �θ, x(s + θ)�dθ0

−∞ �dw(s)�
X

p
 

                    = 5p−1(I1 + I2 + I3 + I4 + I5)                                                                                                                    (5) 
 
First verify the continuity of  F(x)(t) on t ≥ 0. Let x ∈ X , t ≥ 0 and |r| > 0 be sufficiently small then 

‖(Fx)(t1 + r) − (Fx)(t1)‖X
p ≤ 5p−1 ∑ ‖Ii(t1 + r) − Ii(t1)‖X

p5
i=1 . 

 
Moreover, by using the lemma 3.1, we obtain 

E‖I5(t1 + r) − I5(t1)‖X
p  ≤ 2p−1Cp �∫ �E��S(t1 + r − s) − S(t1 − s)�h �s,   ∫ σ �θ, x(s + θ)�dθ0

−∞ ��
L2

0

p
�

2 p�
dst1

0 �

p
2�

  

                                       + 2p−1Cp �∫ �E�S(t1 + r − s)h �s,   ∫ σ �θ, x(s + θ)�dθ0
−∞ ��

L2
0

p
�

2 p�
dst1+r

t1
�

p
2�

  

                                       → 0  as r → 0. 
 
Similarly we can verify that  
E‖Ii(t1 + r) − Ii(t1)‖X

p → 0  as → 0, i = 1,2,3,4. 
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First we show that F(H) ⊂ H . Let  x(t) ⊂ H , without loss of generality, we assume that 0 < η < 𝜉𝜉 . From the 
condition(H2), we obtain  
 

I3  ≤ MpK1 �� e−β(t−s)
t

0
�

p−1

� e−β(t−s)
t

0
 E�x�s −  ρ(s)��ds 

     ≤ MpK1 β1−p ∫ e−β(t−s)t
0  �M∗E‖x(0)‖X

p e−η�s−ρ(s)�ds + eμrM1
∗E‖φ(0)‖X

p e−μsds� 

     ≤  Mp K1 β1−p  M∗E‖x(0)‖X
p e−η t eη r

β−η
+ Mp K1 β1−p M1

∗E‖φ(0)‖X
p eμ(r−t)

β−η
                                                                                          (6)  

                                                                                                                              

 I4 ≤ E �∫ �S(t − s)f2 �s,∫ g�θ, x(s + θ)�dθ0
−∞ ��

X
dst

0 �
p
 

    ≤ MpK2 �∫ e−γ(t−s)t
0 �

p−1
E �∫ �e

−γ (t−s)
p ∫ g �θ, x(s + θ)�dθ0

−∞ �
X

p
t

0 � 

    ≤ MpK2 γ1−p d1
p ∫ ��∫ eξ(τ−s)dτs

−∞ �
p−1

× ∫ e−γ(τ−s)eξ(τ−s)E‖x(τ)‖X
p dτs

−∞ �t
0 ds 

    ≤ MpK2 γ1−p d1
pξ1−p � �� e−γ(t−s)eξ(τ−s)M1

∗E‖φ(0) ‖X
p e−μτdτ

0

−∞
+ � e−γ(t−s)eξ(τ−s)M∗E‖x(0) ‖X

p
s

0
dτ� ds

t

0
 

    ≤ MpK2 γ1−p d1
pξ1−p � M∗

(ξ−η)(γ−η)
E‖x(0) ‖X

p e−ξt + M1
∗

(ξ−μ)(γ−ξ)
E‖φ(0) ‖X

p e−μt�                                                             (7) 
 
I5 = E�∫ S(t − s)t

0 h �s,   ∫ σ �θ, x(s + θ)�dθ0
−∞ � dw(s)�

X

p
  

    ≤ cp �∫ �E�S(t − s)h �s,   ∫ σ �θ, x(s + θ)�dθ0
−∞ ��

L2
0

p
�

2 p�t
0 ds�

p
2�

   where cp = �p(p−1)�
2

 

    ≤ k3cpd2
p �∫ e−2γ(t−s) �E�∫ eξ(τ−s)‖x(τ)‖X

s
−∞ �

p
dτ�

2
pt

0 ds�

p
2�

  

    ≤ k3cpd2
p �∫ e−2γ(t−s)t

0 ��∫ eξ(τ−s)dτs
−∞ �

p−1
× ∫ eξ(τ−s)E‖x(τ)‖X

p dτs
−∞ �

2 p�
ds�

p
2�

  

    ≤ k3cpd2
pξ1−p �∫ e−2γ(t−s)�∫ eξ(τ−s)E‖x(τ)‖X

p dτs
−∞ �

2 p�t
0 ds�

p
2�

  

    ≤ k3cpd2
pξ1−p �� e−2γ(t−s) �� eξ(τ−s)

0

−∞
M1
∗E‖φ(0)‖X

p e−μτdτ + � eξ(τ−s)M∗E‖x(0)‖X
p e−ητdτ  

s

0
�

2 p�

ds
t

0
�

p
2�

 

    ≤ k3cpd2
pξ1−p �� e−2γ(t−s) �

M∗E‖x(0) ‖X
p e−ξs

ξ − η
+

M1
∗E‖φ(0) ‖Xe−μs

p

ξ − μ
�

2 p�

ds
t

0
�

p
2�

 

   ≤ k3cpd2
p �M∗E‖x(0) ‖X

p

ξ−η
� p

2pγ−2η
�

p
2� e−ηt + M1

∗E‖φ(0) ‖X
p

ξ−μ
� p

2pγ−2ξ
�

p
2� e−ξt�                  (8) 

                                                                                                                                                   
From the above equations (5) − (8),  one can see that there exist k ≥ 1 and η ≥ 0 such that 

E‖(Fx)(t)‖X
p  ≤  FE‖F(x)(0) ‖X

p e−ηt . 
 
Thus we obtainF(H) ⊂ H. Next, we prove that F  is a contraction mapping. To see this, let x, y ∈ H, we have  

E‖(Fx)(t) − (Fy)(t)‖X

 
p  ≤ 3p−1E�∫ C(t − s)t

0  �f1 �s, x�s −  ρ(s)�� − f1 �s, y�s −  ρ(s)��� ds�
X

p
  

                                           +3p−1E�∫ S(t − s)t
0 �f2 �s,∫ g �θ, x(s + θ)�dθ0

−∞ � ds−f2 �s,∫ g �θ, y(s +    θ)�dθ0
−∞ �ds��

X

p
  

                                           +3p−1E�∫ S(t − s) �h �s,∫ σ�θ, x(s + θ)�0
−∞ dθ� − h �s,∫ σ�θ, y(s + θ)�0

−∞ dθ�� dwt
0 (s)�

X

p   
  

                                                                                                                                                                                           (9)                                     
Now we estimate for each term in equation(9) . We have  

E�∫ C(t − s)t
0  �f1 �s, x�s −  ρ(s)�� − f1 �s, y�s −  ρ(s)��� ds�

X

p
  

                                         ≤ E �∫ �C(t − s) �f1 �s, x�s −  ρ(s)�� − f1 �s, y�s −  ρ(s)����
X

t
0 �

p
  

                                        ≤ MpK1 E �∫ e−β(t−s)�x�s −  ρ(s)� − y�s −  ρ(s)��
X

t
0 ds�

p
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                                        ≤ MpK1 β1−p ∫ e−β(t−s)Et

0 �x�s −  ρ(s)� − y�s −  ρ(s)��
X
p ds  

                                        ≤ MpK1 β1−p sup
s≥0  E‖x(s) − y(s)‖X

p    
and 
E�∫ S(t − s)t

0 �f2 �s,   ∫ g �θ, x(s + θ)�dθ0
−∞ � − f2 �s,   ∫ g �θ, y(s + θ)�dθ0

−∞ � ds��
X

p
  

                                       ≤ MpK2 �∫ e−γ(t−s) �∫ g �θ, x(s + θ)�dθ −  ∫ g �θ, y(s + θ)�dθ0
−∞

0
−∞ �

X

t
0 ds�

p
    

                                       ≤ MpK2 E ��∫ e−γ(t−s)dst
0 �

p−1
∫ �∫ �e

−γ (t−s)
p �g�θ, x(s + θ)� − g�θ, x(s + θ)���

X
dθ 

0
−∞ �

p
t

0 ds�       

             
                                       ≤  MpK2 γ1−p d1

p �∫ �∫ eξ(τ−s)dτs
−∞ �

p−1t
0 �∫ e−γ(τ−s)eξ(τ−s)s

−∞ E‖x(τ) − y(τ)‖X
p dτ�ds� 

                                       ≤ MpK2 γ1−p d1
pξ−p sup

s≥0  E‖x(s) − y(s)‖X
p   

 
Also 

E�∫ S(t − s) �h �s,∫ σ�θ, x(s + θ)�0
−∞ dθ� − h �s,∫ σ�θ, y(s + θ)�0

−∞ dθ�� dwt
0 (s)�

X

p
  

                                        ≤ CpMpK3 �∫ e−2γ(t−s) �E�∫ �σ�θ, x(s + θ)� − σ�θ, y(s + θ)��dθ0
−∞ �

X

p
�

2 p�
dst

0 �

p
2�

  

                                       ≤ CpMpK3 d2
p �∫ e−2γ(t−s) �E�∫ eξ(τ−s)s

−∞ ‖x(τ) − y(τ)‖X
 dτ�

p
�

2 p�t
0 ds�

p
2�

  

                                       ≤ CpMpK3 d2
p �∫ e−2γ(t−s) ��∫ eξ(τ−s)dτs

−∞ �
p−1

∫ eξ(τ−s)E‖x(τ) − y(τ)‖dτs
−∞ �

2 p�t
0 �

p
2�

                                          

                                       ≤ CpMpK3 d2
p  ξ−p (2γ)

−p
2� sup

s≥0  E‖x(s) − y(s)‖X
p  

 
Consequently we have  

sup
s ≥ 0

E‖(Fx)(t) − (Fy)(t)‖X
p ≤ k

sup
s ≥ 0

E‖x(s) − y(s)‖X
p  

 
where  k = 3p−1 �MpK1 β1−p + MpK2 γ1−p d1

pξ1−p+CpMpK3 d2
p  ξ−p (2γ)

−p
2� � 

 
Since 0 ≤ k < 1, then F is a contraction mapping.Thus by the contraction mapping the operator F has a unique fixed 
point x(t) in  H which is a solution of equations (1) and (2)  with x(s) = φ(s), x,(0) = x1 and  x(t) is exponentially 
stable in p -th moment. 
 
Corollary 3.3: Under the conditions of theorem 3.2 with p = 2, the mild solution of  (2.1) exists uniquely which is 
exponentially stable in mean square. 
 
4. EXAMPLE 

In this section we present an example for illustrating the main theorem. Let X = E = L2(0, π) and en =  �2
π

sin(nx) . 

Then {en }  be a complete orthonormal basis in X . Let w(t) = ∑ �λn
∞
n=1 βn(t)en , λn > 0 , where βn (t)  are one 

dimensional Brownian motions mutually independent on a usual complete probability space. Define the operator 
Q: X → X  by setting Qen = λn en  , (n = 1, 2 , 3, … )   and assume that trace(Q) = ∑ λn < ∞∞

n=1  . Let A = −∂2

∂x2   with 

domain D(A) = H0 
1 (0,π) ∩ H2(0, π) . Here H0 

1 (0,π) =  �w ∈ L2(0, π): ∂w
∂z
∈  L2(0, π), w(0) =  w(π) = 0� 

and H2(0,π) =  �w ∈ L2(0, π): ∂w
∂z

, ∂2w
∂z2 ∈  L2(0, π)�. 

 
Consider the following stochastic partial differential equation. 
∂ �∂x(t,ξ)

∂t
� = ∂2x(t,ξ)

∂ξ2 ∂t + f1 �t,∫ aeηθ  x(t + θ, ξ)0
−∞ dθ� dt + f2 �t,∫ beηθ  x(t + θ, ξ)0

−∞ dθ� dw(t); t ≥ 0                      (10) 
 
x(t, ξ) = φ(t, ξ) = 0 ;  ξ ∈ [0,π] ; t ≤ 0  
 
x(t, 0) =  x(t,π) = 0. 

 
∂
∂t

x(0, ξ) = x1(ξ); 0 < ξ < 𝜋𝜋;                                                                                                                                         (11) 
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where a, b ≥ 0;η > 0 and assume that E‖φ(s)‖X

2  ≤  ME‖φ(0) ‖X
2 e−μs  for s ≤ 0 where M ≥ 1;μ > 0.  

 
Take M = 1, γ = 1 and by theorem 3.2 we obtain the inequality 4a2 + 2trace(Q)b2 < ξ2.Therefore by theorem 3.2, the 
mild solution to equations (10) and (11) exists and also it is exponentially stable in mean square. 
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