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ABSTRACT 
A geodesic graphoidal cover of a graph G is a collection ψ  of shortest paths in G such that every path in ψ  has at 
least two vertices, every vertex of G is an internal vertex of at most one path in ψ  and every edge of G is in exactly one 
path in ψ . The minimum cardinality of a geodesic graphoidal cover of G is called the geodesic graphoidal covering 

number of G and is denoted by gη . In this paper we determine gη  for bicyclic graphs.  
 
Key words: Graphoidal covers, Acyclic graphoidal cover, Geodesic Graphoidal cover  
 
 
1. INTRODUCTION 
 
A graph is a pair ( ),G V E= , where V  is the set of vertices and E  is the set of edges. Here we consider only 
nontrivial, finite, connected, undirected graph without loops or multiple edges. The order and size of G are denoted by 
p and q respectively. For graph theoretic terminology we refer to Harary [4]. The concept of graphoidal cover was 
introduced by B.D Acharya and E. Sampathkumar [1] and the concept of acyclic graphoidal cover was introduced by 
Arumugam and Suresh  Suseela [4].The reader may refer [5], [2] and [7] for the terms not defined here. 
 
Let ( )1 2 3, , , , rp v v v v= 

 be a path or a cycle in a graph ( ),G V E= . Then vertices ( )2 3 1, , , rv v v −
 are called internal 

vertices of P and 1v  and rv are called external vertices of P. Two paths P and Q of a graph G are said to be internally 
disjoint if no vertex of G is an internal vertex of both P and Q. 
 
Definition 1.1 [1]: A graphoidal cover of a graph G is called a collection ψ of (not necessarily open) paths in G 
satisfying the following conditions: 
(i)   Every path in ψ  has at least two vertices. 
(ii)  Every vertex of G is an internal vertex of at most one path in ψ . 
(iii) Every edge of G is in exactly one path inψ . 

 
The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by  

( )Gη  . 
 
Definition 1.2 [3]: A graphoidal cover ψ  of a graph G is called an acyclic graphoidal cover if every member of ψ is 
an open path. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering 
number of G and is denoted by  ( )a Gη  or aη .    
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Definition 1.3 [4]: A geodesic graphoidal cover of a graph G is a collection ψ  of shortest paths in G such that every 
path in ψ  has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ  and every edge of 
G is an exactly one path in ψ . The minimum cardinality of a geodesic graphoidal cover of G is called the geodesic 

graphoidal covering number of G and is denoted by gη . 
 
Definition 1.4 [1]: Let ψ  be a collection of internally disjoint paths in G. A vertex of G is said to be in the interior of 
ψ  if it is an internal vertex of some path in ψ . Any vertex which is not in the interior of ψ  is said to be an exterior 
vertex of ψ . 
 
Theorem 1.5 [8]: For any graphoidal cover ψ  of G, let tψ  denote the number of exterior vertices of ψ . Let 

mint tψ=  where the minimum is taken over all graphoidal covers of G. Then q p tη = − +  
 
Corollary 1.6: For any graph G, q pη ≥ − . Morever the following are equivalent. 
(i)   q pη = −  
(ii)  There exists a graphoidal cover without exterior vertices. 
(iii) There exists a set of internally disjoint and edge disjoint paths without exterior vertices. 
 
In [4] given that a gη η η≤ ≤  and these inequalities can be strict and also for a tree 1a g nη η η= = = −  and 
Theorem 1.5 and corollary 1.6 are true for geodesic graphoidal covers. 

They observe that g qη =  if and only if G is Complete. Further for a cycle mC ,
2 if m is even
3 if m is oddgη


= 


 

 
Theorem 1.7 [4]: Let G be  a unicyclic graph with unique cycle  C which is even. Let n denote the number of pendant 
vertices of G and let m denote the number of vertices on C with degree greater than 2. Then

2 if 0
if m 2 and every ( , )-section of C in which all vertices 
 except  and  have degree 2 is a shortest path
1 otherwise

g

m
v w

n
v w

n

η

=
 ≥ =   

 
 +

 

 
Theorem 1.8 [4]: Let G be a unicyclic graph with unique cycle C of odd length 2k+1, 1k ≥ . Let n denote the number 
of pendant vertices of G and let m denote the number of vertices of degree greater than 2 on C with. Then

3 if 0
2 if 1
if m 2 and every ( , )-section of C in which all vertices 
 except  and  have degree 2 is a shortest path
1 otherwise

g

m
n m

v w
n

v w
n

η

=
 + == ≥ 

 
 

 +

 

 
Definition 1.9:  For two graphs G and H, their Cartesian product G H×  has vertex set ( ) ( )V G V H×  in which 

( )1 1,g h  is joined ( )2 2,g h  iff 1 2g g=  and ( )1 2h h E Hε  or  1 2h h=  and ( )1 2g g E Gε . 
 
Definition 1.10: A triangular cactus is a connected graph all of whose blocks are triangles. A triangular snake is a 
triangular cactus whose block-cutpoint-graph is a path (a triangular snake is obtained from a path 1 2, ,..., nv v v  by 

joining iv  and 1iv +  to a new vertex iw  for 1, 2,..., 1i n= − ). 
 
Definition 1.11: A double triangular snake consists of two triangular snakes that have a common path. That is a double 
triangular snake is obtained from a path 1 2, ,..., nv v v by joining iv  and 1iv + to a new vertex iw  for 1, 2,..., 1i n= −
and to a new vertex iu  for 1, 2,..., 1i n= − . 
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Definition 1.12: A tripple triangular snake consists of three triangular snakes that have a common path. That is, a 
tripple triangular snake is obtained from a path 1 2, ,..., nu u u  by joining 1&i iu u +   to new vertex iv  for i = 1,2,…,n-1 

and to a new vertex w for i = 1,2,…,n-1 for and also to a new vertex iz for i = 1,2,…,n-1 
 
Definition 1.13: Mongolian tent as a graph obtained from m nP P× , n odd, by adding one extra vertex above the grid 

and joining every other vertex of the top row of  m nP P×  to the new vertex. 
 
Definition 1.14: The book mB  is the graph 2mS P×  where mS  is the star with m + 1 vertices 
 
Definition 1.15: A gear graph, denoted Gn is a graph obtained by inserting an extra vertex between each pair of 
adjacent vertices on the perimeter of a wheel graph Wn. Thus, Gn has 2n+1 vertices and 3n edges. Gear graphs are 
examples of square graphs, and play a key role in the forbidden graph characterization of square graphs. Gear graphs 
are also known as cogwheels and bipartite wheels. 
 
Definition 1.16: A helm graph, denoted Hn is a graph obtained by attaching a single edge and node to each node of 
the outer circuit of a wheel graph Wn.  
 
Definition 1.17: A graph G is called the flower graph with n petals if it has 3n+1 vertices which form an n- cycle. 
 
Definition 1.18: A shell Sn is the graph obtained by taking n-3 concurrent chords in a cycle Cn on n vertices. The 
vertex at which all the chords are concurrent is called the apex vertex. The shell is also called fan Fn-1. 
 i.e.. n n n 1S F -1 P -1 K .= = +  
 
Definition 1.19: The cartesian product of two paths is known as grid graph which is denoted by m nP P× . In particular 

the graph 2n nL P P= ×  is known as ladder graph. 
 
Definition 1.20: A web graph is the graph obtained by joining the pendant vertices of a helm to form a cycle and then 
adding a single pendant edge to each vertex of this outer cycle. 
 
Definition 1.21: A double-wheel graph NDW  of size N can be composed of N 12C +K , i.e. it consists of two cycles 

of size N, where the vertices of the two cycles are all connected to a common hub. 
 
Definition 1.22 [9]: For 3, 1, m

nn m A≥ ≥  the plane graph of a convex polytope which is obtained as a combination of 
antiprism. 
 
Definition 1.23 [9]: The m-prism , 3, 1m

nD n m≥ ≥  is a trivalent graph of a convex polytope which can be defined as 

cartesian product of a path on  m+1 vertices with a cycle on n vertices ( )1m np c+ ×  embedded in the plane. 
 
2. MAIN RESULTS 
 
Theorem 2.1: Let G be Triangular cactus graph with n number of triangles then 2 1g n q p nη = − = − +

 
 
Proof:  
Let ( ) { }0 1 2, , 1toi iV G v v v i n= =  
P = 2n+1 and q = 3n 
The Geodesic graphoidal path covering of G is as follows 

{ }11 12 0 2 1, , , ,n nP v v v v v=  

{ }1 2 0, , 2,3,..., 1i i iP v v v i n= = −  

{ }1 0, 1, 2,...,i iQ v v i n= =   

{ } { }i iP P Qψ = ∪ ∪   is minimum geodesic graphoidal covering of G 

1 2 2 1g n n nη⇒ = + − + = −  

http://en.wikipedia.org/wiki/Wheel_graph�
http://en.wikipedia.org/wiki/Squaregraph�
http://en.wikipedia.org/wiki/Forbidden_graph_characterization�
http://en.wikipedia.org/wiki/Wheel_graph�
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Theorem 2.2: Let G be Triangular snake graph with n-1 number of triangles then 2 3 1g n q p nη = − = − + −

 
 
Proof:  
Let ( ) { }1 2 3 1 2 1, , ,..., , w , w ,..., wn nV G v v v v −=  
 
Here iw  adjacent to iv  and 1iv +   
 
The Geodesic graphoidal path covering of G is as follows 

{ }1 , 1, 2,..., 2i i iP v w i n+= = −
 

{ }1 1, 1 2 3 1, , ,..., ,n n nP w v v v v w− −=  

{ }, 1, 2,3,..., 1i i iR v w i n= = −  

1 1 2 1n nP P R Rψ − −= ∪ ∪ ∪ ∪ ∪    is minimum geodesic graphoidal covering of G 

1 2 2 3 1g n n n q p nη⇒ = − + − = − = − + −
 

 
Also for  triangular graph 1a q p nη = − + −  
 
Theorem 2.3: Let G be Double  Triangular snake graph with 2n-2   number of triangles then 

4 5 2 2g n q p nη = − = − + −
 

 
Proof: 

 
Let ( ) { }1 2 3 1 2 1 1 2 1, , ,..., , , ,..., , w , w ,..., wn n nV G v v v v u u u − −=  

 
Here iu  adjacent to iv  and 1iv +  in upward direction and  iw  adjacent to iv  and 1iv +  in downward direction. 

3 2, 5( 1)p n q n= − = −
 

 
The Geodesic graphoidal path covering of G is as follows 

{ }1 , 1, 2,3,..., 2i i iP v u i n+= = −
 

{ }1 1n n n nP u v w− −=
 

{ }, 2,3,..., 1i i iQ v u i n= = −
 

{ }1 2 3, , ,...,n nQ v v v v=  

{ }, 2,3,..., 1i i iR v w i n= = −
 

{ }1 1 1nR u v w=
 

{ }1 , 1, 2,3,..., 2i i iS v w i n+= = −  

{ } { } { } { }i i i iP Q R Sψ = ∪ ∪ ∪   is minimum geodesic graphoidal covering of G 

4( 2) 3 4 5 2 2g n n q p nη⇒ = − + = − = − + −
 

 
Note: 
Let G be triple Triangular snake graph with 3n-3   number of triangles then ( )3 1g q p nη = − + −

 
 
Theorem 2.4:  For  m np p×  , the geodesic graphoidal covering number is 2g q pη = − + . 
 
Proof: Let ( ) { }1 2, , , 1, 2,...,i i inV G v v v i m= =

 
 
Here  p = mn and q  = m(n-1)+n(m-1) 
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The geodesic graphoidal cover of m np p×  is as follows: 

{ }1,1 1 2, , , , 1, 2,..., 1i i i i inP v v v v i m+= = −

 

{ }1 2 3 , 1 , 2 2 1, , ,..., , , , , ,n n n n mn m n m n m mP v v v v v v v v− −= 

 
S = The remaining edges not covered by 1 2 3 1, , , , ,n nP P P P P−  

1 2 nP P P Sψ = ∪ ∪ ∪ ∪   is minimum geodesic graphoidal covering of G 
 
From above we see that all the paths are shortest paths and all the vertices of m np p×  are internal vertices in at least 

one path expect except 1 1andn mv v  

Therefore 2g q pη = − +
 

 
Note: 
(i)  For m np p× ,  

2a g q pη η= = − +
 

(ii) Let G be a Ladder  graph then  2g q pη = − + .Since Ladder  is a particular case of m np p×  
 
Theorem 2.5: Let G be a gear graph with 2n+1 vertices and 3n edges then  g q p nη = − + . 
 
Proof: Let ( ) { }0 1 2 3 1 2, , , ,..., , w , w ,..., wn nV G v v v v v=

 
where v0 is the centre vertex of wheel and iw  adjacent to iv and

  
1iv +  and

 
wn is adjacent to v1 and vn 

 and P = 2n+1 and 

q = 3n 
 
The Geodesic graphoidal path covering of G is as follows 

{ }1, , 1, 2,..., 1i i i iP v w v i n+= = −
 

{ }1, ,n n nP v w v=  

{ }0 , 2,3,..., 1i iQ v v i n= = −
 

{ }0 1, ,n nQ v v v=  

{ } { }i iP Qψ = ∪   is minimum geodesic graphoidal covering of G 

2 1g n q p nη⇒ = − = − +
 

 
Theorem 2.6: Let G be a Helm graph 2n+1 vertices and 3n edges then  g q p nη = − + . 
 
Proof: Let ( ) { }0 1 2 3 1 2, , , ,..., , , ,...,n nV G v v v v v w w w=

 
where v0 is the centre vertex of wheel and is vi adjacent to wi and v0 

 and  P = 2n+1 and q = 3n 

 
The Geodesic graphoidal path covering of G is as follows 

{ }1, , , 1, 2,..., 1i i i iP w v v i n+= = −
 

{ }1, ,n n nP w v v=
 

{ }0 , , 2, 4,5,...,i iQ v v i n= =
 

{ }3 0 1, ,nQ v v v=  

{ } { }i iP Qψ = ∪   is minimum geodesic graphoidal covering of G 

2 1g n q p nη⇒ = − = − +
 

 
For the Helm graph  the  graphoidal  cover is also the same. 

 ( ). . ai e q p nη = − +
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Theorem 2.7: Let G be ( )m nP QS  graph then ( 1) 1g n mη = + −

 
 
Proof: 
Let ( ) { }1 2 3 1 2 1 2 1 2, , ,..., , , ,..., , , ,..., , , ,..., 1, 2,...,m i i in i i in i i inV G v v v v l l l r r r w w w i n= =  
 
The Geodesic graphoidal path covering of G is as follows 

( ) ( ){ }2 2 1 1 1 1,1 1,1 1 11 1 1, , ,...., , , , , , , , ,..., , , 1, 2,..., 1i in in i i i i i i i i i n i ni n i nP w l w w l w l v v l w w l w i n+ + + + +− + −= = −  

{ }1 1, , , 1, 2,...,i i i iQ v r w i n= =  

{ }1 2 2, , , 1, 2,...,i i i iR w r w i n= =  
                      … 

( ){ }1 , , , 1, 2,...,i im imi mS w r w i n−= =  

{ } { } { } { }i i i iP P Q R Sψ = ∪ ∪ ∪ ∪ ∪   is minimum geodesic graphoidal covering of G 

1 ( 1) 1g n mn n mη⇒ = − + = + −
 

 
Theorem 2.8: Let G be ( )m nC QS  graph then g n mnη = +

 
 
Proof:  

 
Let ( ) { }1 2 3 1 2 1 2 1 2, , ,..., , , ,..., , , ,..., , , ,..., 1, 2,...,m i i in i i in i i inV G v v v v l l l r r r w w w i n= =  

 
The Geodesic graphoidal path covering of G is as follows 

( ) ( ){ }2 2 1 1 1 1,1 1,1 1 11 1 1, , ,...., , , , , , , , ,..., , , 1, 2,..., 1i in in i i i i i i i i i n i ni n i nP w l w w l w l v v l w w l w i n+ + + + +− + −= = −
 

( )1,n nP v v=  

{ }1 1, , , 1, 2,...,i i i iQ v r w i n= =  

{ }1 2 2, , , 1, 2,...,i i i iR w r w i n= =  

( ){ }1 , , , 1, 2,...,i im imi mS w r w i n−= =  

{ } { } { } { }i i i iP Q R Sψ = ∪ ∪ ∪ ∪   is minimum geodesic graphoidal covering of G 

g n mnη⇒ = +
 

 
Theorem 2.9: Let G be a web graph with 3n+1 vertices and 5n edges then g q p nη = − + . 
 
Proof: Let ( ) { }0 1 2, , , 1, 2,...,i i iV G v v v v i n= =

 
 
Here 2iv is adjacent to 0v and 1iv  and 1iv is adjacent to iv and 2iv  
 
The Geodesic graphoidal path covering of G is as follows 

{ }1 1,1 1, 1, 2,..., 1i i i iP v v v i n+ += = −
 

{ }1 11, 1,n nP v v v=  

{ }1 2 1,2, 1, 2,..., 1i i i iQ v v v i n+= = −
 

{ }1 2 12, ,n n nQ v v v=
 

{ }0 2 2, 4,5,...,i iR v v i n= =
 

{ }12 0 32, ,nR v v v=
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{ } { } { }i i iP Q Rψ = ∪ ∪   is minimum geodesic graphoidal covering of G 

3 1g n q p nη⇒ = − = − +
 

 
For the Web graph  the  graphoidal  cover is also the same. 

 ( ). . ai e q p nη = − +
 

 

Theorem 2.10: Let G be a shell  graph with n+1 vertices then  
3 6

2 2g
n nq pη −

= − + = . 

 
Proof: Let ( ) { }1 2 3, , ,..., nV G v v v v=

 
, 2 1p n q n= = +  

 
The Geodesic graphoidal path covering of G is as follows 

{ }1 3, 4,..., 1i iP v v i n= = −  

{ }2 1 nQ v v v=
 

{ }1 2 2, 4,6,..., 2i i i iR v v v i n+ += = −
 

{ } { } { }i iP Q Rψ = ∪ ∪   is minimum geodesic graphoidal covering of G 

3 63 1 1
2 2 2g
n n nn q pη −

⇒ = − + + − = − + =  
 
Theorem 2.11: Let G be a book graph with 2n+2 vertices then  g q p nη = − + . 
 
Proof: Let ( ) { }1 2 1 2, , , 1, 2,...,i iV G v v b b i n= =

 
 
The Geodesic graphoidal path covering of G is as follows 

( )1 1 2,P v v=
 

{ }2 11 12 2 22, , ,P b b v b=
 

{ }1 11 1 21 22, , ,nP b v b b+ =
 

{ }1 2 1, , 3, 4...,i i iP b b v i n= =
  

 
[ if this path not exists for some i then for that particular i , { }2 1 1, ,i i iP b b v= ]

 

{ } { }2 1 2 2, , 3, 4...,i i iQ v b o rv b i n= =  

{ } { }i iP Qψ = ∪  is minimum geodesic graphoidal covering of G 

3 2 2 2 1g n n n q p nη⇒ = + − + − = − = − +
 

 
For book graph the graphoidal coveing number  is also same as geodesic graphoidal covering number 
( ). . ai e q p nη = − +

 
 
Theorem 2.12: Let G be Mongolian tent graph then   ( ), 2g m nM q pη = − +  

 
Proof:  Let ,m nG M=

 
Let ( ) { }0 1 2, , , , 1, 2,...,i i inV G v v v v i m= =
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The Geodesic graphoidal path covering of G is as follows 

{ }1,1 1 2, , , , 1, 2,..., 1i i i i inP v v v v i m+= = −

 

{ }1 2 3 , 1 , 2 2 1, , ,..., , , , , ,n n n n mn m n m n m mP v v v v v v v v− −= 

 
{ }1 11 0 1, ,n nP v v v+ =

 
S=  The remaining edges 
 
From above paths  all the vertices are exterior points except 1 1andn mv v  

1 2 1n nP P P P Sψ += ∪ ∪ ∪ ∪ ∪  is minimum geodesic graphoidal covering of G 

2g q pη⇒ = − +
 

 
For book graph the graphoidal coveing number  is also same as geodesic graphoidal covering number 
 

Theorem 2.13: Let G be double wheel graph with 2n+1 vertices ( ) 3 2 if n is odd
3 if n is eveng

n
G

n
η

+
= 


. 

 
Proof: Let ( ) { }0 11 12 1 21 22 2, , , , , , , ,n nV G v c c c c c c=  

 
( )1 21 0 11, v ,P c c=

 { 1 2, , , 1, 2 & 1,3,5,..., 2ij ij ij ijP c c c i j n+ += = = −
  

, 2 ,1

, 1 ,n i, j

, , 1, 2 & n is odd
, ,c , 1, 2 & n is even

i n i
ij

i n i

c c i
Q

c c i
−

−

==  =  
2 2 1 1 3 2 if n is odd

2 2 1 1 3 if n is even
g

g

n n n
n n n

η

η

⇒ = − + − + = −

= − + + + =  
 
Theorem 2.14: ( )3

5 2g A q pη = − + . 

 
Proof: Let ( ) { }11 12 1 21 22 2 31 32 3, , , , , , , , , , , , ,n n nV G x c c c c c c c c c y=     
 
The Geodesic graphoidal path covering of G is as follows 

{ }1 2 3, c ,c ,c , y 1,2,...,i i i iP x i n= =
 

 
Clearly all the vertices are internal vertices except x and y. 

{ } Remaining Edges
i

Pψ = ∪   is minimum geodesic graphoidal covering of G 

2g q pη∴ = − +
 

 
Theorem 2.15: ( )3

7 2g D q pη = − + . 

 
Proof: Let ( ) { }1 2y, , , , 1, 2,...,i i inV G v v v i m= =  
 
The geodesic graphoidal cover of  3

7D  is as follows: 

{ }1,1 1 2, , , , 1, 2,..., 1i i i i inP v v v v i m+= = −

 
{ }1 2 3 , 1 , 2 2 1, , ,..., , , , , ,n n n n mn m n m n m mP v v v v v v v v− −= 

 
( )11 1, , nQ v y v=

  
S = The remaining edges  
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{ }i
P Q Sψ = ∪ ∪   is minimum geodesic graphoidal covering of G and all the  

vertices are internal vertices except v11  and  v1ny. 
2g q pη∴ = − +  
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