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ABSTRACT 
In this paper, we study the weakly radical of modules over commutative ring with identity. Furthermore we prove that 
if jN  is a weakly prime submodule of ,jM  then jN  is to satisfy the weakly radical formula in jM  if and only if 

1 2 1 1j j j nM M M N M M− +× × × × × × ×   

is to satisfy the weakly radical formula in .M  
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1. INTRODUCTION 
 
Throughout this paper all rings are commutative with identity and all modules are unitary. A submodule N  of an R -
module M  is a weakly prime submodule of M  if for each submodule K  of M  and ,a b R∈  such that 

,abK N⊆  then aK N⊆  or .bK N⊆  
 
Recently, this notion of weakly prime submodule has been extensively studied by Behboodi and Koohi in (2004). An 
R -module M  is a weakly prime module if every proper submodule N  of M  is a weakly prime submodule of .M  
It is easy to show that if .N  is a prime submodule of ,M  then N  is a weakly prime submodule of .M  
 
Let N  be a proper submodule R -module .M  The weakly prime radical of N  in ,M denoted by ( ). ,Mw rad N  is 

defined to be the intersection of all weakly prime submodules containing .N  If there is no weakly prime submodule 
containing ,N then ( ). Mw rad N M=  (see, for example,[5, 14]). 
 
In this note, we shall need the notion of the envelope of a submodule introduced by R. L. McCasland and M. E. Moore 
in [11]. For a submodule N  of an R -module ,M  the envelope of N  in ,M  denoted by ( )ME N , is defined to be 

the subset {  :  rm r R∈  and m M∈  such that kr m N∈  for some }k +∈  of .M  Note that, in general, 

( )ME N  is not an R -module. With the help of envelopes, the notion of the radical formula is defined as follows: A 

submodule N  of an R -module M  is said to satisfy the radical formula in ,M  if ( ) ( )  .M ME N rad N=  

Also, an R -module M is said to satisfy the radical formula, if every submodule of M  satisfies the radical formula in 
.M  The radical formula has been studied extensively by various authors (see [7], [12] and [13]).  
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In this paper is to introduce the notion of a weakly radical formula, we study the weakly prime radical of modules over 
commutative ring with identity. Furthermore we prove that if jN  is a weakly prime submodule of ,jM  then jN  is to 

satisfy the weak radical formula in jM  if and only if 1 2 1 1j j j nM M M N M M− +× × × × × × ×   is to satisfy the 

weakly radical formula in .M  
 
2. PRELIMINARIES 
 

Let 
1

,
n

i
i

R R
=

=∏  where each iR  is a commutative ring with identity. Then an ideal 
1

n

i
i

I I
=

=∏  of P  is prime if and 

only if iI  is equal to the corresponding ring iR  and the other is prime. Moreover, any R -module M  can be uniquely 

decomposed into a direct product of modules, i.e. 
1

,
n

i
i

M M
=

=∏  where  

( )  0,0,0, ,0,1,0, 0iM M=    

is an iR -module with action  

( )( ) ( )1 2 1 2 1 1 2 2,  , , , , , ,  , , ,n n n nr r r m m m r m r m r m=    where i ir R∈  and i im M∈  [7]. 
 
Lemma 2.1: [7] Let 1 2N N N= ×  be a submodule of .M  Then  

( ) ( ) ( )
1 21 2    .M M ME N E N E N= ×  

 

Corollary 2.2: [7] Let 
1

n

i
i

N N
=

=∏  be a submodule of .M  Then ( ) ( )
1

  .
i

n

M M i
i

E N E N
=

= ∏  

 

Lemma 2.3: [14] If N  is a weakly prime submodule, then ( )   .ME N N=  

 

Lemma 2.4: [14] Let N  be a semiprime submodule of an R -module .M  Then ( )   .ME N N=  

 
3. WEAKLY PRIME SUBMODULES 
 
In this section, we give some characterizations for weakly prime submodule of R -module .M  

 
Lemma 3.1: Let 1 2 ,M M M= ×  where iM  is an iR -module. A submodule 1 2N M×  is a weakly prime submodule 

of M  if and only if 1N  is a weakly prime submodule of 1.M  
 
Proof: Suppose that 1 2N M×  is a weakly prime submodule of R -module .M  We will show that 1N  is a weakly 

prime submodule of 1.M  Clearly, 1N  is a proper submodule of 1R -module 1.M  To show that weakly prime 

submodule properties of 1N  hold, let K  be a submodule of 1R -module 1M  and 1,a b R∈  such that 1.abK N⊆   
 
Then  
( )( ) 1 2,0 ,0 ( {0}) {0 .}a b K abK N M× = × ⊆ ×  
 
Since 1 2N M×  is a weakly prime submodule of R -module ,M  it follows that  

( ) 1 2( {0}) ,0 ( {0})aK a K N M× = × ⊆ ×  
or 

( ) 1 2( {0}) ,0 ( {0}) ;bK b K N M× = × ⊆ ×  

that is, 1aK N⊆  or  1.bK N⊆  Therefore 1N  is a weakly prime submodule of 1R -module 1.M  
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Conversely, suppose that 1N  is a weakly prime submodule of 1R -module 1.M  We will show that 1 2N M×  is a 

weakly prime submodule of R -module .M  Clearly, 1 2N M×  is a proper submodule of R -module .M  To show 

that weakly prime submodule properties of 1 2N M×  hold, let K L×  be a submodule of R -module M  and 

( ) ( )1 2 1 2, , ,a a b b R∈  such that 

( )( )1 1 2 2 1 2 1 2 1 2., , ( )a b K a b L a a b b K L N M× = × ⊆ ×  
 
Since 1N  is a weakly prime submodule of 1R -module 1M  and 1 1 1,a b K N⊆  we have 1 1a K N⊆  or 1 1.b K N⊆   
 
Therefore  
( )1 2 1 2 1 2, ( )a a K L a K a L N M× = × ⊆ ×  
or 
( )1 2 1 2 1 2, ( )b b K L b K b L N M× = × ⊆ ×  

and hence 1 2N M×  is a weakly prime submodule of R -module .M  
 
Corollary 3.2: Let 1 2 ,M M M= ×  where iM  is an iR -module. A submodule 1 2M N×  is a weakly prime 

submodule of R -module M  if and only if 2N  is a weakly prime submodule of 2R -module 2.M  
 
Proof: This follows from Lemma 3.1. 
 

Corollary 3.3: Let 
1

,
n

i
i

MM
=

=∏  where iM  is an  iR -module. A submodule  

1 2 1 1j j j nM M M N M M− +× × × × × × ×   

 is a weakly prime submodule of R -module M  if and only if jN  is a weakly prime submodule of jR -module .jM  
 
Proof: This follows from Lemma 3.1 and Corollary 3.2. 
 
Lemma 3.4: Let 1 2 ,M M M= ×  where iM  is an iR -module. If { }1 0N ×  is a weakly prime submodule of ,M  

then 1N  is a weakly prime submodule of 1.M  
 
Proof: Suppose that { }1 0N ×  is a weakly prime submodule of R -module .M  We will show that 1N  is a weakly 

prime submodule of 1.M  Clearly, 1N  is a proper submodule of 1R -module 1.M  To show that weakly prime 

submodule properties of 1N  hold, let K  be a submodule of 1R -module 1M  and 1,a b R∈  such that 1.abK N⊆   
 
Then  
( )( ) { }1,0 ,0 ( {0}) {0} 0 .a b K abK N× = × ⊆ ×  
 
Since 1 2N M×  is a weakly prime submodule of R -module ,M  it follows that  

( ) { }1( {0}) ,0 ( {0}) 0aK a K N× = × ⊆ ×  
or  

( ) { }1( {0}) ,0 ( {0}) 0bK b K N× = × ⊆ × ; 

that is, 1aK N⊆  or 1.bK N⊆  Therefore 1N  is a weakly prime submodule of 1R -module 1.M  
 
Corollary 3.5: Let 1 2 ,M M M= ×  where iM  is an iR -module. If { } 20 N×  is a weakly prime submodule of R -

module ,M  then 2N  is a weakly prime submodule of 2R -module 2.M  
 
Proof: This follows from Lemma 3.1. 
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Corollary 3.6: Let 
1

,
n

i
i

MM
=

=∏  where iM  is an iR -module. If { } { } { }0 0 0jN× × × × ×   is a weakly prime 

submodule of R -module ,M  then jN  is a weakly prime submodule of jR -module .jM  
 
Proof: This follows from Lemma 3.4 and Corollary 3.5. 
 
4. RADICAL OF WEAKLY PRIME SUBMODULES 
 
A submodule N  of an R -module M  is said to satisfy the weakly radical formula in ,M  if 

( ) ( )  . .M ME N w rad N=  

 
Lemma 4.1: Let 1 2 ,M M M= ×  where iM  is an iR -module. If W  is a weakly prime submodule of R -module 

M  and 1{ ( ,0 },: )P x M x W= ∈ ∈  then 1P M=  or P  is a weakly prime submodule of 1R -module 1.M  
 
Proof: Suppose that 1.P M≠  We will show that P  is a weakly prime submodule of 1R -module 1.M  It is clear that, 

P  is a proper submodule of 1R -module 1.M  To show that weakly prime submodule properties of ,P  let 1,a b R∈  

and K  be submodule of 1M  such that .abK P⊆  Let .k K∈  Then abk P∈  so that 

( )( ),0 ,0 ( ,0) ( ,0) .a b k abk W= ∈  Thus ( )( ),0 ,0 ( {0}) .a b K W× ⊆  Since W  is a weakly prime submodule of 

,M  we have  

( ),0 ( {0})a K W× ⊆  
or 
( ),0 ( {0}) .b K W× ⊆  
Thus  

( )( ,0) ,0 ( ,0)ak a k W= ∈  
or 

( )( ,0) ,0 ( ,0) .bk b k W= ∈  
 
It follows that ak P∈  or .bk P∈  Therefore aK P⊆  or bK P⊆  and hence P  is a weakly prime submodule of 

1.M  
 
Corollary 4.2: Let 1 2 ,M M M= ×  where iM  is an iR -module. If W  is a weakly prime submodule of R -module 

M  and 2{ (0, ) ,: }P x M x W= ∈ ∈  then 2P M=  or P  is a weakly prime submodule of 2R -module 2.M  
 
Proof: This follows from Lemma 4.1. 
 

Corollary 4.3: Let 
1

,
n

i
i

MM
=

=∏  where iM  is an iR -module. If W  is a weakly prime submodule of R -module M  

and { (0,0, , ,0 ,0) },:jP x M x W= ∈ ∈   then jP M=  or P  is a weakly prime submodule of jR -module 

.jM  
 
Proof: This follows from Lemma 4.1 and Corollary 4.2. 
 
Lemma 4.4: Let 1 2 ,M M M= ×  where iM  is an iR -module and let N  be a submodule of 1R -module 1.M  Then 

( )
1

. Mm w rad N∈  if and only if ( ) { }( )
1

,0 . 0 .Mm w rad N∈ ×  
 
Proof: Suppose that 1 2 ,M M M= ×  where iM  is an iR -module. Let N  be a submodule of 1R -module 1M  and 

let ( )
1

. .Mm w rad N∈   
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If there is no weakly prime submodule of M  containing { }0 ,N ×  then { }( ). 0 .Mw rad N M× =

 
Therefore 

( ) { }( )
1

,0 . 0 .Mm w rad N∈ ×   
 
If there is weakly prime submodule of M  containing { }0 ,N ×  then there exists a weakly prime submodule W  with 

{ }0 .N W× ⊆  By Lemma 4.1 and 1{ ( ,0 },: )P x M x W= ∈ ∈  we have 1P M=  or P  is a weakly prime 

submodule of 1R -module 1.M  
 
Case - 1: 1.P M=  Since ( )

1
. ,Mm w rad N∈  we have .m P∈  Then ( ),0 .m W∈  Therefore if  W  is a weakly 

prime submodule of M  containing { }0 ,N ×  then ( ),0 .m W∈  
 
Case - 2: 1.P M≠  Since 1,P M≠  we have P  is a weakly prime submodule of 1R -module 1.M  Let .x N∈  Then 

( ) { },0 0x N∈ ×   so that .x P∈  It follows that .N P⊆  We have 

( )
1

. Mw rad N ( )
1

. Mw rad P⊆  

                         P=  
 
so that .m P∈  Therefore if  W  is a weakly prime submodule of M  containing { }0 ,N ×  then ( ),0m W∈  and 

hence ( ) { }( )
1

,0 . 0 .Mm w rad N∈ ×  
 
Corollary 4.5: Let 1 2 ,M M M= ×  where iM  is an iR -module and let N  be a submodule of 2R -module 2.M  

Then 
2

. ( )Mm w rad N∈  if and only if (0, ) . ({0} )Mm w rad N∈ × . 
 
Proof: This follows from Lemma 4.4. 
 

Corollary 4.6: Let 
1

,
n

i
i

MM
=

=∏  where iM  is an iR -module and let N  be a submodule of jR -module .jM  Then 

. ( )
jMm w rad N∈  if and only if  

{ } { } { }(0, , ,0, ,0) . ({0} 0 0 0 ).Mm w rad N∈ × × × × × ×     
 
Proof: This follows from Lemma 4.4 and Corollary 4.5. 
 
Lemma 4.7: Let 1 2 ,M M M= ×  where iM  is an iR -module. If iN  be a submodule of iR -module ,iM  then

1 21 2 1 2. ( ) . ( ) . ( ).M M Mw rad N w rad N w rad N N× ⊆ ×  
 
Proof: Suppose that 1 2 ,M M M= ×  where iM  is an iR -module. Let iN  be a submodule of iR -module .iM  We 

will show that 
1 21 2 1 2. ( ) . ( ) . ( ).M M Mw rad N w rad N w rad N N× ⊆ ×  Let 

1 21 2( , ) . ( ) . ( ).M Mx y w rad N w rad N∈ ×  
 
Then 

1 1. ( )Mx w rad N∈  and 
2 1. ( ).My w rad N∈  By Lemma 4.1 and Lemma 4.4, we have  

1 1 2( ,0 ). ( {0}) . ( )M Mx w rad N w rad N N∈ × ⊆ ×  
and 

2 1 2(0, ) . ({0} ) . ( ).M My w rad N w rad N N∈ × ⊆ ×  
 
Then 1 2( , ) ( ,0 ) (0, ) . ( )Mx y x y w rad N N= + ∈ × and hence  

1 21 2 1 2. ( ) . ( ) . ( ).M M Mw rad N w rad N w rad N N× ⊆ ×  
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Corollary 4.8:. Let 
1

,
n

i
i

MM
=

=∏  where iM  is an iR -module. If iN  be a submodule of iR -module ,iM  then 

1 1

. ( ) . ( ).
i

n n

M i M i
i i

w rad N w rad N
= =

⊆∏ ∏  

 
Proof: This follows from Lemma 4.7. 
 
Theorem 4.9: Let 1 2 ,M M M= ×  where iM  is an iR -module. If N  is a submodule of 1R -module 1,M  then 

1 21 2 1 2. ( ) . ( ) . ( ).M M Mw rad N w rad M w rad N M× = ×  
 
Proof: Suppose that 1 2 ,M M M= ×  where iM  is an iR -module. Let N  be a submodule of 1R -module 1.M  By 

Lemma 4.7, we have 
1 2 2 2. ( ) . ( ) . ( ).M M Mw rad N w rad M w rad N M× ⊆ ×  We show that 

1 21 2 1 2. ( ) . ( ) . ( ).M M Mw rad N M w rad N w rad M× ⊆ ×  If there is no weakly prime submodule of M containing 

,N  then ( )
1 1. .Mw rad N M=  Then 

1 21 2 1 2. ( ) . ( ) . ( ).M M Mw rad N M w rad N w rad M× ⊆ ×  
 
If there is weakly prime submodule of M  containing ,N   then there exists W  is a weakly prime submodule of 1M  

containing .N  Then 2W M×  is a weakly prime submodule of M   containing 2.N M×  Let P  be a weakly prime 

submodule of M containing 2.N M×  Then 

2N M× ( )
1 2. Mw rad N M⊆ ×  

                ( ) ( )
1 2 2. . .M Mw rad N w rad M= ×  

 
Therefore 

1 21 2 1 2. ( ) . ( ) . ( )M M Mw rad N M w rad N w rad M× ⊆ × and hence  

1 21 2 1 2. ( ) . ( ) . ( ).M M Mw rad N M w rad N w rad M× = ×  
 
Corollary 4.10: Let 1 2 ,M M M= ×  where iM  is an iR -module. If N  is a submodule of 2R -module 2 ,M  then

( ) ( ) ( )
1 22 2. . . .M M Mw rad M N w rad M w rad N× = ×  

 
Proof: This follows from Lemma 4.9. 
 

Corollary 4.11: Let 
1

,
n

i
i

MM
=

=∏  where iM  is an iR -module. If iN  be a submodule of iR -module ,iM  then 

1 1

. ( ) . ( ).
i

n n

M i M i
i i

w rad N w rad N
= =

=∏ ∏  

 
Proof: This follows from Lemma 4.9 and Corollary 4.10. 
 
Theorem 4.12: Let 1 2 ,M M M= ×  where iM  is an iR -module. If 1N  is a weakly prime submodule of 1,M  then 

1N  is to satisfy the weakly radical formula in 1M  if and only if 1 2N M×  is to satisfy the weakly radical formula in 

.M  
 
Proof: Suppose that 1N  is a weakly prime submodule of 1M  and 1N  is to satisfy the weakly  radical formula in 1.M  

We will show that 1 2N M×  is to satisfy the weakly radical formula in .M  Since 1N  is a weakly prime submodule of 

1,M  it follows that  
 
 



Pairote Yiarayong* and Phakakorn Panpho/Weakly Radical Formula and weakly Primary Submodules/IJMA-5(7), July-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                     261   

 

1 2. ( )Mw rad N M×
1 21 2. ( ) . ( )M Mw rad N w rad M= ×  

                                1 1 2( )ME N M= ×  

                                1 2( ) .ME N M= ×  
 
Therefore 1 2N M×  is to satisfy the weakly radical formula in .M  Conversely, suppose that 1N   is a weakly 

submodule of 1M  and 1 2N M×  is to satisfy the weakly radical formula in .M  We will show that 1N  is to satisfy 

the weakly radical formula in 1.M  Since 1 2N M×  is a weakly prime submodule of ,M  it follows that  

1 1 2( )ME N M× 1 2( )ME N M= ×  

                               1 21 2. ( ) . ( ).M Mw rad N w rad M= ×  
 

Then 
1 11 1. ( ) ( )M Mw rad N E N=  and hence 1N  is to satisfy the weakly radical formula in 1.M  

 

Corollary 4.13: Let 
1

,
n

i
i

MM
=

=∏  where iM  is an iR -module. If jN  is a weakly prime submodule of ,jM  then 

jN  is to satisfy the weakly radical formula in jM  if and only if  

1 2 1 1j j j nM M M N M M− +× × × × × × ×   

is to satisfy the weakly radical formula in .M  
 
Proof: This follows from Theorem 4.12. 
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