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ABSTRACT 
In this paper introducing fixed point theorem on expansion in fuzzy metric space, we also introduce the concept of      
R- weak commutatively of fuzzy metric spaces. Some illustrative examples. 
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1. INTRODUCTION 
 
Zadeh [1], introduction of fuzzy sets by the fuzzyness invaded almost all the branches of crisp mathematics. introduced 
the concept of fuzzy metric space, George and Veeramani [4] modified the concept of fuzzy metric space introduced by 
kramosil and michalek [5]. In this paper effort has been made to obtain some results on fixed points of expansion type 
mapping in fuzzy metric space. 
 
2. PRELIMINARIES  
 
Definition 2.1: [7] A binary operation *:[0, 1] × [0, 1] → [0, 1] is cal led a continuous t-norm if ([0,1],*) is an abelian 
topological monoid with the unit 1 such that a*b ≤ c*d whenever 

a ≤ c and b ≤ d for all a, b, c, d∈[0, 1]. 
 
Examples of t-norms are a * b = ab and a * b = min{a, b}  
 
Definition 2.2: [4] the 3-tuple (X, M, *) is called a fuzzy metric space (FM-space) if X is an arbitrary set * is a 
continuous t-norm and M is a fuzzy set in X2 × [0, ∞] satisfying the following conditions for all x, y, z∈X and t, s > 0.  
2. (1) M(x, y, 0) > 0 
2. (2) M(x, y, t) = 1, ∀ t > 0 iff x = y 
2. (3) M(x, y, t) = M(y, x, t),  
2. (4) M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s) 
2. (5) M(x, y, .) : [0, ∞] → [0, 1] is continuous.  
 
Remark 2.3: since * is continuous, it follows from (2. (4)) that the limit of a sequence in FM-space is uniquely 
determined 
 
Example 2.4: Let X = N define a * b = max {0, a + b – 1} and a ◊ b = a + b – ab for all a, b ∈[0, 1] and let M and N be 
fuzzy sets on as follows 
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For all x, y∈X and t > 0 then (X, M, *) is fuzzy metric space.  
 
Lemma 2.1: in fuzzy metric space x, M(x, y, .) is non decreasing and non increasing for all x, y∈X 
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Lemma 2.2: Let (X, M, *) be fuzzy metric space if there exist k∈(0, 1) such that M(x, y, kt) ≥ M(x, y, t)  for all x, y∈
X then x = y 
 
Lemma 2.3: Let (X, M, *) be a fuzzy metric space if there exists a number k∈(0, 1) such that 
 M(yn+2, yn+1,qt) ≥ M(yn+1,yn,t)                                                 (1) 
 
And n = 1, 2… then {yn} is a Cauchy sequence in X 
 
3. MAIN RESULTS  
 
Theorem 3.1: Let (X, M,, *,) be a complete FM – space and f be a self map of X, onto itself there exist a constant k > 1 
 
M(fx, fy, kt) ≤ M(x, y, t)                                                                              (1) 
 
For all x, y∈X and t > 0.  Then f has a unique fixed point in x.  
 
Proof: Let x0∈X as f is onto, there is an element x1∈f-1x0. In the same way xn∈f-1xn-1. For all n = 2, 3, 4… thus we 
get a sequence {xn}, if xm = xm-1 for some m then xm is a fixed point of f now suppose  
 
xn ≠ xn-1 for all n = 1,2……… then it follows from (1) that 

( ) ( ) ( )txxMktffMktxxM nnxxnn nn
,,,,,, 211 21 +++ ≤=

++
 and for all {xn} is a 

 

Cauchy sequence in X since X is complete {xn} has limit Xu∈ as f is onto there is an element v X∈  such that 
ufv 1−∈ .   

 
Now  
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Which as n → ∞ gives M(u, v, t) = 1 for all t > 0, therefore (FM 2.(.2) it follows that u = v yielding thereby fu = u and 
so u is the fixed point of f.  let u and v be the two fixed points of f ie fu = u and fv = v then (1) yields  

M(u, v, kt) = M(fu, fv, t) ≤ M(u, v, t) 
for all t > 0 hence in view of lemma 2.2 we obtain u = v which shows the uniqueness of u as a fixed point of f this 
completes the proof  
 
Theorem 3.2: let (X, M, *) be a complete FM-space with t * t ≥ t and (1 – t) ◊ (1 – t) ≤ (1 – t) for all t∈[0, 1] and f be 
mapping from X onto itself there exist a number k > 1 such that  
 M(fx, fy, kt) ≤ M(x, y, t) * M(x, fx, t) * M(y, fy, t)                                                            (1) 
For all x, y∈X and t > 0 then f has a unique fixed point in X  
 
Proof: a sequence {xn} is developed similarly as in theorem 3.1, if xm-1 = xm for some m, f has a fixed point xm, 
suppose xn-1 ≠ xn for every positive integer n then from (1)  

( ) ( )ktffMktxxM
nn xxnn ,,,,
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=+  

                            
( ) ( ) ( )tfxMtfxMtxxM

nn xnxnnn ,,*,,*,,
31 2121 ++ ++++≤

 

                            ( ) ( ) ( )txxMtxxMtxxM nnnnnn ,,*,,*,, 12121 +++++=  
 
yielding there by 

( ) ( ) ( )txxMtxxMktxxM nnnnnn ,,*,,,, 2211 ++++ ≤                                                             (2) 
 
Now suppose 

( ) ( )txxMtxxM nnnn ,,,, 121 +++ <  
 
For all t > 0 then in view of lemma 2.3 {xn} is a Cauchy sequence in X which is complete therefore there exists some 

Xu∈ such that xn → u since f is onto there is an element now 1−∈ fu  and  

( ) ( )ktffMktuxM vxn n
,,,,
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Which as letting n → ∞ gives M(u, v, t) = 1 for all t > 0.  
 
Therefore by (FM 2.4.2) it is noting that u = v and so fu = u i.e. u is a fixed point of f the uniqueness of u can be shown 
easily from (1) hence the theorem proved  
 
Theorem 3.3: let (X, M, *) be a complete FM- space with t * t ≥ t and (1 – t) ◊ (1 – t) ≤ (1 – t) for all t∈[0, 1] and f, g 
be two self maps of X onto itself if there exist a number k > 1 such that  

M(fx, gy, kt) ≤ M(x, y, t) * M(x, fx, t) * M(y, gy, t)                                                             (1) 
for all x∈X and t > 0 then f has a unique common fixed point in X  
 
Proof: choose an element x0∈X as f is onto there is an element x1∈f-1x0 since g is onto there exist an element x2 
satisfying x2∈g-1x1 thus in general a sequence {xn} is defined as x2n+1∈f-1x2n, x2n+2∈g-1x1, for all n = 0, 1, 2, ……… 
now we have two cases as follows  
 
Case - (1): when xm ≠ xm+1 for all m = 0, 1, 2…… in this case it follows from (1) that  

( ) ( )ktffMktxxM
nn xxnn ,,,,

2213122 ++
=+  

                                ( ) ( ) ( )txxMtxxMtxxM nnnnnn ,,*,,*,, 22122122212 +++++≤               

                                    ( ) ( )txxMtxxM nnnn ,,*,, 1222212 +++                                   (2) 
 
Suppose  

( ) ( )txxMtxxM nnnn ,,,, 1222212 +++ <  
 
Then from (2) we obtain  

( ) ( )txxMktxxM nnnn ,,,, 122122 ++ ≤  
 
Which in view of lemma (2.2) implies x2n = x2n+1 which is a contradiction therefore 
Let ( ) ( )txxMtxxM nnnn ,,,, 1222212 +++ ≥  
 
Then (2) yields  

( ) ( )txxMktxxM nnnn ,,,, 222122 ++ ≤  
 
For all t > 0 similarly it can be show that  

( ) ( )txxMktxxM nnnn ,,,, 12222212 ++++ ≤  
 
For all t > 0, thus in general we obtain 

( ) ( )txxMktxxM nnnn ,,,, 211 +++ ≤  
 
For all t > 0 and n = 0, 1, 2…… hence in view of lemma (2.3) {xn} is a Cauchy sequence in X which is complete 
therefore {xn} has a limit point in x since {x2n} and {x2n+1} are subsequence of {xn}, x2n → u and x2n → u as n → ∞ as f 
and g are onto there exist v, w ∈X satisfying v∈f-1u and w∈f-1u now  

( ) ( )ktgwfMktuxM
nxn ,,,,

122 +
=  

                         ( ) ( ) ( )tgwwMtxxMtwxM nnn ,,*,,*,, 21212 ++≤  
 
Which as n→∞ gives M(u, w, t)=1, for all t>0 then by (FM 2.4.2) it follows that u=w in the similar pattern taking x = v 
and y = x2n+2 in (1) and therefore proceeding as above we obtain u = v therefore u = v = w which immediately implies 
fu = gu = u and so u is a common fixed point of f and g now let u and v be two common fixed point of f and g. 
 
 i.e.         fu = gu and fv = gv = v then  
 
 
M(u, v, kt) = M(fu, fv, kt) 
                  ≤ M(u, v, t) * M(u, fu, t) * M(v, gv, t) 
                  = M(u, v, t) * 1 * 1 = M(u, v, t) 
 
For all t > 0 further by application of lemma (2.2) we obtain u = v 
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Case - II: When xm-1 = xm for some m here m may be even or odd, positive integer without loss of generality suppose 
m is an integer say m = 2p then x2p-1 = x2p i.e. gx2p = fx2p-1 which implies x2p = x2p+1 (as we have fx ≠ fy if x ≠ y) 
therefore we have x2p-1 = x2p = x2p+1 = …… which shows that {xn} is convergent sequence and so Cauchy sequence in 
X the rest of the proof is similar to as in case (I) and this complete the proof.  
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