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ABSTRACT 
Our main purpose in this paper is to introduce the notion of φ-contractive mapping in fuzzy metric spaces and on the 
existence and the approximation of fixed point of nonlinear contractions mappings in fuzzy metric spaces. results are 
analogous in metric spaces. 
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1.  INTRODUCTION 
 
Our terminology and notation for fuzzy metric spaces conform of that George et al. [5, 6]. Recently Gregori et al. [4] 
have showed that the study of the intuitionistic fuzzy metric space (IFMS) (X, M, N,*, ◊) can be reduced to the study of 
the fuzzy metric space (FMS) (X,M,*). More exactly, the topology T(MN) of an IFMS (X, M, N, *, ◊) coincides with the 
topology τ(M) generated by the FMS (X,M,*), which has as a base the family of open sets. So, our study is limited to 
FMSs. 
 
Definition 1.1: A subset B of FMS(X, M, *) is called fuzzy bounded if for each t > 0 there exists λ∈(0,1) such that  
M(x, y, t) ≥ λ for all x, y ∈ B. 
 
Remark 1.2: Let(X, d) be a metric space. Denote a∗b= min {a, b} for all a, b ∈ [0, 1] and let Md  be a fuzzy set on       
X2 × (0,∞) defined as follows: 
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It easy to check is that(X, Md,*) is a fuzzy metric space, and 
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So (X, Md,*) is a complete fuzzy metric space if and only if (X, d) is a complete metric space. Moreover, a nonempty 
subset A of (X, Md, *) is fuzzy bounded if and only if A is bounded in (X, d) 
 
Lemma 1.3: Every convergence sequence of a Fuzzy metric space is fuzzy bounded. 
 
Definition 1.4: Let (X, M, *) be a FMS. Let φ:[0,∞) →[0,∞) is an upper semi-continuous from the right function such 
that φ(0) = 0 and φ(t) < t for  t > 0. 
 
We will say the sequence {xn} in X is fuzzy φ-contractive if for each t > 0, 
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for all n ∈ N. 
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A selfmap f on (X, M, *) is called fuzzy φ-contractive if for each t > 0, 
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for all x, y ∈ X. 
 
Remark 1.5: It is not hard to prove that every φ-contractive selfmap f on a metric (X, d) is fuzzy φ-contractive on      
(X, Md,*) (* a t-norm such that (X, Md,*) is a fuzzy metric space). As it very easy to check that a fuzzy contractive 
mapping of contractive constant k is a φ-contractive with r → φ(r) = rk 
 
Lemma 1.6: Every fuzzy bounded φ-contractive sequence {xn} of a FMS (X, M,*) is a fuzzy Cauchy sequence. 
 
2. MAIN RESULTS  
 
Theorem 2.1: Let A, B, S and T be self mappings of a fuzzy metric space .Let (X, M,*) be a complete fuzzy metric 
space and A, B, S and T  be a φ-contractive self-map on X. If there exists x0 such that the sequence 

( ){ }0),,,,( xTSBA  is fuzzy bounded. Then A, B, S and T has a unique fixed point in X. Furthermore, the Picard 
iterates associate to each point of X converge to the fixed point  
 
Proof: Let x0 ∈ X, such that xn= ( ){ }0),,,,( xTSBA n ∈ IN is bounded. Since A, B, S and T is φ-contractive therefore 
{xn} is fuzzy bounded φ-contractive sequence. Hence from the Lemma 1.2 {xn} is a Cauchy sequence in a complete 
fuzzy metric space. Then there exists a point x ∈ X such that xn → x as n → ∞.  
 
Now we shall show that Ax=x. 
 
Since A, B, S, and T is φ-contractive then 
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As n→∞, then limn→∞M (A(xn),A(x),t) = 1 for each t>0. Therefore, 
 
limn→∞ xn=A(x) that is A(x)=x. Hence f has a fixed point x ∈ X. Next, 
 
Let z ∈ X then 
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As n→∞, then limn→∞ M ((A, B, S, T)(z), x, t) = 1 for each t > 0.Therefore, limn→∞An(z) = x. We claim that x is the 
unique fixed point of f. For this suppose that y (x ≠ y) is another fixed point of f in X. Then 
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That is a contradiction yielding Au=Su, therefore, u is a coincidence point of the pair (A, S) 
 
If T(x) is closed subset of X, then limn→∞ , T𝑦𝑦𝑛𝑛  =z ∈ T(x). There fore, there exists a point w∈ X such that Tw =z. 
 
Now, we assert that Bw = Tw, if not, then according to we have  
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Which on making n→ + ∞, for every t > 0 , reduces to  
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Which is a contraction as earlier . it follows that Bw = Tw which shows that w is a point of coincoidence of the pair 
(B,T) . Since the Pair (A,S) is weakly compatible  and Au = Su , hence Az=ASu=SAu=Sz 
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Implying thereby that AZ =Bw=Z. 
 
Finally, using the notion of weak compatibility of the pair (B,T) together with we get  Bz=z=Tz. Hence z is a common 
fixed point of both the pairs (A, S) and (B, T) 
 
Uniqueness of the common fixed point z say is an easy consequence of the condition. 
 
Letting n→∞ we obtain M(x, y, t) = 1 for each t > 0, that is x = y, which is a contradiction. This completes the proof of 
the theorem. 
 
Corollary 2.2: Suppose that A, B, S and T is φ-contractive self map on a complete metric space (X,d). Then A, B, S 
and T has a unique fixed point z and moreover, for any x belong to X. the sequence of iterates {aA, B, S, T(x)} 
converges to z  
 
Corollary2.3: Suppose that A,B,S and T is φ-contractive self map on a complete metric space. Let (X, M,*) be 
complete fuzzy metric space in which contractive sequences are Cauchy, A, B, S, T: X→X be an fuzzy contractive 
mapping. Then A, B, S and T has a unique fixed point.  
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