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ABSTRACT 
Havard Molland et.al. Proposed efficient algorithm for fast correlation attack based on convolutional codes. Their 
attack had run time complexity of 239operations with weight 𝑤𝑤 = 4 equations for LFSR of length 60. In this paper we 
improve Havard Molland et. al. method for weight 𝑤𝑤 = 4. The run time complexity of our algorithm is 235 . We also 
improve the data complexity for the attack. The results show that our algorithm gives better performance when error 
probability 𝑝𝑝 is close to 0.5. 
 
We also apply our method for finding weight 3 parity-check equations for LFSR of size 72 bits on a cluster machine. 
Simulation results for the fast correlation attack using these equations are discussed. Correlation attacks for LFSR of 
such a size have not been reported before. 
 
Keywords: LFSR, Viterbi decoding, Convolutional code, Correlation attack, Computational complexity. 
 
 
1. INTRODUCTION 
 
One important family of encryption methods is stream ciphers. The principle behind stream ciphers is to consider the 
message as a stream of message symbols and encrypt each symbol individually. Let 𝑚𝑚 = 𝑚𝑚1,  𝑚𝑚2, … .. be the plaintext 
of length 𝑁𝑁,  to encrypt the stream cipher takes a secret key 𝐾𝐾 and produces a key stream 𝑧𝑧 = 𝑧𝑧1, 𝑧𝑧2, … … 𝑧𝑧𝑁𝑁  . The 
encryption is then given as 𝑐𝑐𝑡𝑡 = 𝑒𝑒(𝑧𝑧𝑡𝑡 ,𝑚𝑚𝑡𝑡). Often, the message, the cipher text, and the key stream are sequences of 
binary digits and the operation 𝑒𝑒  is typically ⊕ (XOR operation). A binary (synchronous) stream cipher where the 
encryption function is XOR, i.e., 𝑐𝑐𝑡𝑡 = (𝑚𝑚𝑡𝑡 ⊕ 𝑧𝑧𝑡𝑡), is also called binary additive stream cipher (shown in figure). 
 
 
 
 
 
 
 
 
 
 
 
 
 
A common method to build a keystream generator is to combine several linear feedback shift registers to get a 
keystream with desired statistical properties. Furthermore, the secret key K is the initial states of the LFSRs. An 
important class of attacks on LFSR-based stream ciphers is correlation attacks. Correlation attacks are widely 
applicable to stream ciphers, especially to designs based on feedback shift registers.  
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Key stream 
Generator 
 

𝑧𝑧 = 𝑧𝑧1,  𝑧𝑧2, … .. 

𝑚𝑚 = 𝑚𝑚1,  𝑚𝑚2, … .. 𝑐𝑐 = 𝑐𝑐1,  𝑐𝑐2, … .. 

                     Figure: Additive Stream Ciphers. 
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A correlation attack exploits weakness in the combining function that allows some information about the initial state to 
be   extracted from the output key stream. In this situation, a statistical correlation exists between the internal states and 
the output key stream. The first algorithm for implementing correlation attacks against a nonlinear combination 
generator was introduced by Siegenthaler [14, 15].  
 
Consider the situation where the nonlinear combination generator has 𝑛𝑛  LFSRs and their lengths are 
𝑙𝑙1, 𝑙𝑙2, … … 𝑙𝑙𝑛𝑛 .   Given the output keystream  𝑧𝑧𝑡𝑡 , 0 ≤ 𝑡𝑡 < 𝑁𝑁, an adversary tries to determine the initial state of 𝑛𝑛  LFSRs 
by exhaustive search. Generally, the adversary needs to guess 2(𝑙𝑙1+𝑙𝑙2+⋯…..𝑙𝑙𝑛𝑛 ) possible initial states of the LFSRs & for 
each guess compare generated sequence with given output sequence. However, if the correlation between the input and 
the output keystream of each LFSR stream can be found–which is the internal output stream of an LFSR, the adversary 
can test each LFSR separately and determine the initial states of each LFSR. The adversary guesses the initial state of 
the first LFSR and produces its LFSR stream. He then XORs the LFSR stream and the observed output keystream, and 
notes the number of zeros in the XORed sequence which is the same as the number of matches between LFSR 
sequence and the output sequence. If the initial guess is correct, the relative frequency of zeros will be close to the 
number of matches in obtained when last column of the truth table is compared with the column corresponding to the 
input LFSR. Otherwise, the XORed sequence does not present any correlation and behaves like a random string. Hence, 
the adversary can determine the correct initial state of the first LFSR by this statistical test. He can analyze the 
remaining LFSRs by the same method. Thus, instead of trying to find the initial states of all the LFSRs simultaneously, 
the initial states of each LFSR can be identified by using their correlations. In this situation the adversary needs only 
(2𝑙𝑙1 + 2𝑙𝑙2 + ⋯… . +2𝑙𝑙𝑛𝑛 ) sequence generation & comparison steps. This approach is called a divide-and-conquer 
attack. Siegenthaler also showed that there was a trade-off between the degree of the combiner function and the order 
of correlation immunity; greater correlation immunity meant a reduced lower algebraic degree and thus lower linear 
complexity. To overcome this trade-off, Rueppel suggested using combiners with memory [13]. It was shown that 
maximum-order correlation immunity can be achieved, regardless of the linear complexity by using only one bit of 
memory. 
 
Meier and Staffelbach improved the correlation attack, in their fast correlation attack [7, 8]. This type of attack does not 
require the search of all the initial states of the target register. Rather, it interprets system output as a noisy version if 
the linear code defined by LFSR and tries to “decode”, the output sequence to obtain the LFSR sequence & thus the 
initial state. The fast correlation attack can be quite successful if the feedback polynomial has few taps, or a multiple of 
the feedback polynomial has a low weight [1, 9, 10, 12]. This work was followed by several papers, providing minor 
improvements to the initial results of Meier and Staffelbach. However, the algorithms that are efficient (good 
performance and low complexity) still require the feedback polynomial to be of low weight. Due to this requirement, a 
general thumb rule method when constructing stream ciphers that the generator polynomial or its small multiples 
should not be of low weight. 
 
Thomas Johansson and Fredrik Jonsson’s attack works for LFSRs with many taps. An efficient algorithm is used to 
find parity equations that are suitable for convolutional codes [2, 3, 4, 6]. Its performance and complexity are similar to 
other correlation attacks. However, a large memory requirement is still a limitation of these attacks. The decoding is 
done using the Viterbi algorithm, which is maximum likelihood decoding algorithm for convolutional codes. In [11], 
Havard Molland, John Erik Mathiassen and Tor Helleseth proposed the quick metrics for use in decoding step of fast 
correlation attacks, instead of using relatively few strong parity check equations and give an algorithm that has low run 
time complexity by using many weak parity check equations. They present a new method that is capable of performing 
an efficient ML decoding even when the code rate is very low and method gives the run time complexity is very low. 
We improve on Havard Molland method. 
 
The paper is organized as follows. In section 2 we give some preliminaries for finding parity equations with weight is 
greater than two and also describe quick metrics of Molland et al. In section 3 we give a faster method for finding 
parity check equations to reduce the run time complexity. In section 4 we give some simulation results and compare the 
previous convolutional attacks. In section 5 we conclude with some possible extensions. 
 
2. PRELIMINARIES 
 
Let us start with the linear code 𝐶𝐶 stemming from the LFSR sequences. There is a corresponding 𝑙𝑙 × 𝑁𝑁 systematic 
generator matrix 𝐺𝐺 = (𝐼𝐼𝑙𝑙   𝑍𝑍).  Let 𝑔𝑔𝑖𝑖  be the 𝑖𝑖𝑡𝑡ℎ   column of 𝐺𝐺. Clearly, 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝐼𝐼𝑔𝑔𝑖𝑖 , where 𝑣𝑣𝐼𝐼  is the initial state of the 
LFSR. Fix the memory of the convolutional encoder to 𝐵𝐵.  If we can find 𝑤𝑤 columns in the generator matrix 𝐺𝐺 such that 
the sum of last 𝑙𝑙 − 𝐵𝐵 − 1 bits are zero and bit 𝑙𝑙 − 𝐵𝐵 is 1 i.e. 

                                           �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2 + ⋯… + 𝑔𝑔𝑖𝑖𝑤𝑤 �
𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵−1, 0, 0, … … ,0�������

(𝑙𝑙−𝐵𝐵−1)
�                                              (1) 
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For a given  𝐵𝐵, 0 < 𝐵𝐵 ≤ 𝑙𝑙, and 𝑙𝑙 ≤ 𝑖𝑖1, 𝑖𝑖2, … . . , 𝑖𝑖𝑤𝑤 < 𝑁𝑁, we get an equation form 
                                               𝑐𝑐0𝑣𝑣0 + 𝑐𝑐1𝑣𝑣1 + ⋯… . +𝑐𝑐𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 = 𝑣𝑣𝑖𝑖1 + 𝑣𝑣𝑖𝑖2 + ⋯… + 𝑣𝑣𝑖𝑖𝑤𝑤                                       (2) 
 
Observe that 𝑖𝑖𝑡𝑡ℎ  Column in 𝐺𝐺 gives the initialization bits 𝑣𝑣𝐼𝐼 = (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝑙𝑙−1) that sum up to the bit 𝑣𝑣𝑖𝑖  in the 
sequence 𝑣𝑣. When sum of two columns, say sum of 𝑖𝑖𝑡𝑡ℎ  and 𝑗𝑗𝑡𝑡ℎ  columns is zero in the last 
𝑙𝑙 − 𝐵𝐵 − 1 entries ( 𝑣𝑣𝐵𝐵+1, … … , 𝑣𝑣𝑙𝑙−1) then the sum 𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑗𝑗  is independent of (𝑣𝑣𝐵𝐵+1, … … , 𝑣𝑣𝑙𝑙−1). Using equation (2), we 
are interested in finding 𝑚𝑚 parity check equations having linear combinations of  𝑤𝑤 columns of 𝐺𝐺 on right side of the 
equations and left hand side having 𝑣𝑣𝑖𝑖  of first 𝐵𝐵 + 1 bits.   
 
Replacing its 𝑣𝑣𝑖𝑖𝑠𝑠 on RHS by corresponding key stream bits 𝑧𝑧. We get the equation set, 
𝑐𝑐0,0𝑣𝑣0 + 𝑐𝑐0,1𝑣𝑣1 + ⋯+ 𝑐𝑐0,𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 ≈ 𝑧𝑧𝑖𝑖1,1 + 𝑧𝑧𝑖𝑖1,2 + ⋯+ 𝑧𝑧𝑖𝑖1,𝑤𝑤  
𝑐𝑐1,0𝑣𝑣0 + 𝑐𝑐1,1𝑣𝑣1 + ⋯+ 𝑐𝑐1,𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 ≈ 𝑧𝑧𝑖𝑖2,1 + 𝑧𝑧𝑖𝑖2,2 + ⋯+ 𝑧𝑧𝑖𝑖2,𝑤𝑤  
                                         … … … … … … … …                                                                                                                          (3) 
                                         … … … … … … … …   
𝑐𝑐𝑚𝑚 ,0𝑣𝑣0 + 𝑐𝑐𝑚𝑚 ,1𝑣𝑣1 + ⋯+ 𝑐𝑐𝑚𝑚 ,𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 ≈ 𝑧𝑧𝑖𝑖𝑚𝑚 ,1 + 𝑧𝑧𝑖𝑖𝑚𝑚 ,2 + ⋯+ 𝑧𝑧𝑖𝑖𝑚𝑚 ,𝑤𝑤  
 
We use " ≈ " to notify that the equations only hold with a certain probability. 
 
A naive decoding approach would be guess values of first 𝐵𝐵 + 1 bits (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝐵𝐵−1). For all the 2𝐵𝐵+1 possible 
guesses for (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝐵𝐵−1, 𝑣𝑣𝐵𝐵),  test the guess, with all equations in the set (3) and give the guess one point for 
every equation in the set that holds.  We count the score for the every adversary guesses of (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝐵𝐵−1, 𝑣𝑣𝐵𝐵), and 
declare the one with the highest score as the most probable one. In this we get the first 𝐵𝐵 + 1  bits of the secret 
initialization bits (𝑣𝑣0, 𝑣𝑣1, … … ,𝑣𝑣𝑙𝑙). The above method can be repeated to find the rest of the bits (𝑣𝑣𝐵𝐵+1, … … , 𝑣𝑣𝑙𝑙−1). The 
complexity for this algorithm is 𝑂𝑂(2𝐵𝐵+1.𝑚𝑚)[1]. In [11, 14] Johansson and Jonsson, presented a theoretical estimate of 
the success rate for fast correlation attacks via convolutional codes. The complexity of the convolutional attack is 
𝑂𝑂(2𝑚𝑚 .𝑚𝑚.𝑇𝑇), since we decode over 𝑇𝑇 bits. 
 
Finding equations with 𝑤𝑤 = 2 is easily done if we sort the columns of 𝐺𝐺 based on values in the last 𝑙𝑙 − 𝐵𝐵 − 1 rows. 
Any pair of columns with same value in the last 𝑙𝑙 − 𝐵𝐵 − 1 rows and a different value at 𝑙𝑙 − 𝐵𝐵 position will contribute 
to a parity check. The probability of getting such a pair of rows is 2−(𝑙𝑙−𝐵𝐵). For a given 𝐵𝐵, as register length 𝑙𝑙 increases, 
the probability of getting such pairs becomes exponentially low. Thus it is required to find parity checks with 𝑤𝑤 > 3 
even though the probability of such parity checks holding for the final sequence is lower. 
               
2.1 Method for Finding Equations with weight 𝒘𝒘 > 2 
 
Using birthday technique [16], we will describe the method for finding many equations. Let us consider, 𝐺𝐺 be a 
generator matrix of the size  𝑙𝑙 × 𝑁𝑁. Firstly we sort the generator matrix  𝐺𝐺 column wise along with the last 𝑙𝑙 − 𝐵𝐵 − 1 
bits. Take sum of  𝑤𝑤 − 1 columns of 𝐺𝐺 & search for columns of 𝐺𝐺 that are equal to the sum in the last 𝑙𝑙 − 𝐵𝐵 − 1 bits. 
The sum of these 𝑤𝑤 columns is then zero in the last 𝑙𝑙 − 𝐵𝐵 − 1 bits. If bit 𝑙𝑙 − 𝐵𝐵 of the sum is 1, we use it as a equation 
for viterbi decoding based attack. 
 
For weight  𝑤𝑤 = 4, a more efficient method can be used– 
 
Step-1. Consider all possible pairs of columns in the generator matrix  𝐺𝐺. The sums and indexes of the two columns in         
𝐺𝐺 are stored in the another matrix  𝐺𝐺2. 
 
Step-2. We sort the matrix  𝐺𝐺2 is column wise along with the last 𝑙𝑙 − 𝐵𝐵 − 1 bits. After sorting, search for pairs of 
column in matrix 𝐺𝐺2 that sum to zero in the last  𝑙𝑙 − 𝐵𝐵  bits. We get, equation of the form (for weight 4)- 

                              �𝑓𝑓𝑖𝑖1 + 𝑓𝑓𝑖𝑖2�
𝑇𝑇 = �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2 + 𝑔𝑔𝑖𝑖3 + 𝑔𝑔𝑖𝑖4�

𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵−1, 𝑐𝑐𝐵𝐵  0, 0, … … ,0�������
(𝑙𝑙−𝐵𝐵−1)

� 

 
where the 𝑓𝑓𝑗𝑗

′𝑠𝑠 are columns in 𝐺𝐺2 and the 𝑔𝑔𝑗𝑗 ′𝑠𝑠 are columns in 𝐺𝐺. From these we use only those equations which have 
𝑐𝑐𝐵𝐵 = 1 for the viterbi decoding based attack. In Step-1 and Step-2, the number of possible sums is far too many. We 
can reduce the size of matrix 𝐺𝐺2, without reducing the number of equations in Step-1’. 
 
Step-1. We sort the generator matrix 𝐺𝐺 column wise along with the last 𝑙𝑙 − 𝐵𝐵2 positions, where  𝐵𝐵2 < 𝐵𝐵. After sorting,     
               search for column in matrix 𝐺𝐺2 that sum to zero in the last 𝑙𝑙 − 𝐵𝐵2 bits. These sums and indexes of the two                

columns in 𝐺𝐺 are stored in the matrix 𝐺𝐺2, then the size of matrix 𝐺𝐺2will be 𝑙𝑙 × 𝑁𝑁2, where 𝑁𝑁2 is much smaller  
               than 𝑁𝑁(𝑁𝑁 − 1)/2. We get, equation of the form- 
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𝑓𝑓𝑗𝑗
𝑇𝑇 = �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2�

𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵2−1, 0, 0, … … ,0�������
(𝑙𝑙−𝐵𝐵2)

� 

 
               The number of columns of matrix 𝐺𝐺2  is reduced by a factor of 2𝑙𝑙−𝐵𝐵2 . 
 
Step-2. Repeat the Step-1’ using 𝐵𝐵4 on matrix 𝐺𝐺2 of size 𝑙𝑙 × 𝑁𝑁2, where 𝐵𝐵4 < 𝐵𝐵2 < 𝑙𝑙. We get, equation of the form is– 

�𝑓𝑓𝑖𝑖1 + 𝑓𝑓𝑖𝑖2�
𝑇𝑇 = �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2 + 𝑔𝑔𝑖𝑖3 + 𝑔𝑔𝑖𝑖4�

𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵4−1, 0, 0, … … ,0�������
(𝑙𝑙−𝐵𝐵4)

� 

 
In this way we get weight 4 equation of the form (2). Again we select those equations for which 𝑐𝑐𝐵𝐵4−1 is 1. The 
equations using the new 𝐺𝐺2 matrix is a subset of the original set. If the number of equations is not sufficient for the 
attack, we can repeat Step-1’ with last 𝑙𝑙 − 𝐵𝐵2 rows summing to a value other than 0 and then perform Step-2’ on the 
resulting 𝐺𝐺2 to get another set of parity equations. In fact this process can be repeated for each possible value in last 
𝑙𝑙 − 𝐵𝐵2 bits to get the entire set of parity equations. 
 
2.2 Quick Metric 
 
When 𝑤𝑤 > 2 we get a large number of parity checks. If number of checks 𝑚𝑚 > 𝐵𝐵 then testing the equations for each 
guess of 𝐵𝐵  bits or at each step in Viterbi decoding will be very expensive. In [11], Havard Molland, John Erik 
Mathiassen and Tor Helleseth used quick metric during decoding stage of Fast Correlation Attack which is described in 
the following paragraphs. 
 
Let 𝑚𝑚 ≫ 2𝐵𝐵  be the number of equations found using the above method. Group equations in to sets which share the 
same left side i.e. which have same value for the coefficients (𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵−1), We set 
 
                                                          𝑒𝑒 = 𝑐𝑐0 + 2𝑐𝑐1 + 22𝑐𝑐2 + ⋯… + 2𝐵𝐵−1𝑐𝑐𝐵𝐵−1                                                               (4) 
 
Now we will count and store the number of equations of the type 𝑒𝑒, denoted by 𝐸𝐸(𝑒𝑒) i.e. 𝐸𝐸(𝑒𝑒) is the number of 
equations of type  𝑒𝑒. For the given keystream, find the number of equations of type 𝑒𝑒 that sum to 1 on the right hand 
side, and denote it as 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒). Since we have to calculate 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒) for every time step 𝑡𝑡,  0 ≤ 𝑡𝑡 < 𝑇𝑇 , we use a 2–
dimension array 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒, 𝑡𝑡)  in the program. 
 
Let 𝑚𝑚𝑒𝑒 = 𝐸𝐸(𝑒𝑒) be the number of equations found of type 𝑒𝑒. Now we can test  𝑚𝑚𝑒𝑒  equations while doing path metric 
computation for an edge in just one step instead of  𝑚𝑚𝑒𝑒  steps.  
 
For every equation of type 𝑒𝑒 at time step 𝑡𝑡, if the left hand side of equation (4) corresponding to the edge is 1, since  the 
number of the equations from this set that have same RHS is 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒), the path metric is incremented with 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒, 𝑡𝑡). 
Otherwise, metric is incremented with 𝑚𝑚𝑒𝑒 − 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒, 𝑡𝑡).  
 
When we use Quick Metric, the decoding is done in two steps, firstly building of the equation count matrix 𝑆𝑆𝑆𝑆𝑚𝑚 having 
complexity of 𝑂𝑂(𝑇𝑇.𝑚𝑚) operations, second step is decoding using the Viterbi algorithm with complexity 𝑂𝑂(𝑇𝑇 . 22𝐵𝐵). 
Thus, the total run time complexity for both step is given by 𝑂𝑂(𝑇𝑇.𝑚𝑚 + 𝑇𝑇 . 22𝐵𝐵) [11]. 
 
3. AN IMPROVED ALGORITHM 
 
In this section we will describe an improved method for convolutional code based fast correlation attack which was 
used for successful attack on a 72 stage LFSR. This algorithm for fast correlation attacks operate in two phases: In the 
first phase the algorithm find a set of suitable parity check equations based on the feedback taps from the LFSR and 
second phase uses these parity check equations in a fast decoding algorithm to recover the transmitted code word, thus 
the initial state of the LFSR. 
 
3.1 Method for finding parity check equations  
 
The method described here is for finding parity check equations when weight 𝑤𝑤 = 3. Molland et al. [11] uses the 
sorting for finding parity check equations but here we avoid the sorting.  Let 𝑔𝑔(𝑥𝑥) be the primitive polynomial of 
degree 𝑙𝑙 for LFSR that generates the sequence 𝑣𝑣. Let 𝛼𝛼 be defined by 𝑔𝑔(𝛼𝛼) = 0, using reduction rule we can define the 
generator matrix for sequence by the 𝑙𝑙 × 𝑁𝑁 matrix 𝐺𝐺 such that  𝐺𝐺 = [𝛼𝛼0,𝛼𝛼1,𝛼𝛼2, … … ,𝛼𝛼𝑁𝑁−1]. 
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Firstly fix the convolutional encoder size, say 𝐵𝐵. We use an additional parameter 𝑙𝑙0, 𝐵𝐵 < 𝑙𝑙0 < 𝑙𝑙. We use two arrays of 
size 2𝑙𝑙−𝑙𝑙0  in the program one a bit vector and other storing integers. We have to choose 𝑙𝑙0 so that 𝑙𝑙 − 𝑙𝑙0 is as large as 
possible and yet the arrays fit in the memory. 
 
Of the two arrays one stores if a 𝑙𝑙 − 𝑙𝑙0 bit value has been observed in the rows 𝑙𝑙0 … 𝑙𝑙 of the generator matrix 𝐺𝐺 as we 
are scanning from left to right. The other stores the position where it was observed 
 
In the algorithm, for every sum of 2 columns of 𝐺𝐺 we select bits 𝑙𝑙0 … 𝑙𝑙 of the sum and check if they have been observed 
in the sequence. This is done using the first array with just one lookup. If so we find the position where it occurred 
using the second array. The corresponding column of 𝐺𝐺 is generated on the fly and other bits are checked otherwise we 
move on to the next pair of columns. 
 
The complexity of this algorithm will be 𝑂𝑂(𝑁𝑁2) when 𝑙𝑙0 is selected as suggested. The pseudo codes for the above steps 
are given in Algorithm 1. 
 
For 𝑤𝑤 = 4 also, we follow the strategy of generating the columns of the generator matrix as and when required. 
 
3.2 Complexity 
 
Complexity of finding parity check equations (described in section 3.1) is 𝑂𝑂(𝑁𝑁2) and the complexity of decoding 
process based on Viterbi algorithm by using quick metric described in section 2.2 is 𝑂𝑂(𝑇𝑇 .  22𝐵𝐵).Thus, the total run time 
complexity is given by 𝑂𝑂(𝑁𝑁2 + 𝑇𝑇 .  22𝐵𝐵). 
 
3.3 Reduction of time complexity using MPI 
 
Suppose we run this programme on a system with 𝑛𝑛 processors, and each processor being assigned rank 0 to 𝑛𝑛 − 1. 
Then computations for the columns 𝑆𝑆𝑒𝑒𝑆𝑆∝0 , 𝑆𝑆𝑒𝑒𝑆𝑆∝𝑛𝑛 , 𝑆𝑆𝑒𝑒𝑆𝑆∝2𝑛𝑛 … .. can be scheduled to run on system having rank 0. 
Computations for the columns 𝑆𝑆𝑒𝑒𝑆𝑆∝1 , 𝑆𝑆𝑒𝑒𝑆𝑆∝𝑛𝑛+1 , 𝑆𝑆𝑒𝑒𝑆𝑆∝2𝑛𝑛+1 … .. can be scheduled to run on system having rank 1 and 
similarly computations for columns 𝑆𝑆𝑒𝑒𝑆𝑆∝2 , 𝑆𝑆𝑒𝑒𝑆𝑆∝𝑛𝑛+2 , 𝑆𝑆𝑒𝑒𝑆𝑆∝2𝑛𝑛+2 … .. scheduled to run on system having rank 2 and so on. 
Then the time taken reduces by a factor of  𝑛𝑛.  
 
This was implemented on a cluster machine and time taken (in approximate) for finding parity check equations are 
shown in the Table 1 with different weights. 
 

Algorithm 1:  Algorithm for finding Parity Checks of 𝑤𝑤 = 3 
 

  1:  procedure FIND PARITY CHECK (𝑓𝑓, 𝑙𝑙,𝑁𝑁,𝐵𝐵, 𝑙𝑙0) 
  2:                                                                          ⊳ 𝐵𝐵 < 𝑙𝑙0 < 𝑙𝑙 
  3:                 ⊳ Notation: 𝑆𝑆𝑒𝑒𝑆𝑆𝑎𝑎…𝑏𝑏  denotes bits 𝑎𝑎, … … . , 𝑏𝑏 − 1 of vector 𝑆𝑆𝑒𝑒𝑆𝑆 
  4:       ∝= root of 𝑓𝑓                                                          ⊳ Column vector 
  5:       𝑂𝑂𝑐𝑐𝑐𝑐𝑆𝑆𝑂𝑂(𝑖𝑖) = 0 for 𝑖𝑖 ∈ 0 … … 2𝑙𝑙0−𝐵𝐵 
  6:        for 𝑖𝑖 ∈ 𝐵𝐵 + 1 … …𝑁𝑁  do 
  7:              𝑆𝑆𝑒𝑒𝑆𝑆 =∝𝑖𝑖   
  8:               for 𝑗𝑗 ∈ 𝑖𝑖 + 1 … …𝑁𝑁  do 
  9:                     𝑆𝑆𝑒𝑒𝑆𝑆1 =∝𝑗𝑗    
10:                     𝑘𝑘 = (𝑆𝑆𝑒𝑒𝑆𝑆 ⊕ 𝑆𝑆𝑒𝑒𝑆𝑆1)𝑙𝑙0…𝑙𝑙     
11:                     if 𝑂𝑂𝑐𝑐𝑐𝑐𝑆𝑆𝑂𝑂(𝑘𝑘) == 1 then 
12:                         𝑝𝑝𝑝𝑝𝑠𝑠 = 𝐼𝐼𝑛𝑛𝐼𝐼𝑒𝑒𝑥𝑥(𝑘𝑘)    
13:                          𝑆𝑆𝑒𝑒𝑆𝑆2 =∝𝑝𝑝𝑝𝑝𝑠𝑠    
14:                           if (𝑆𝑆𝑒𝑒𝑆𝑆2 ⊕𝑆𝑆𝑒𝑒𝑆𝑆1⨁𝑆𝑆𝑒𝑒𝑆𝑆)𝐵𝐵…𝑙𝑙0 == (10 … … 0)  then 
15:                                Print (𝑆𝑆𝑒𝑒𝑆𝑆2 ⊕ 𝑆𝑆𝑒𝑒𝑆𝑆1⨁𝑆𝑆𝑒𝑒𝑆𝑆)0…𝐵𝐵 , 𝑖𝑖 , 𝑗𝑗, 𝑝𝑝𝑝𝑝𝑠𝑠 
16:                           end if 
17:                      else 
18:                            𝑘𝑘 = (𝑆𝑆𝑒𝑒𝑆𝑆1)𝑙𝑙0…𝑙𝑙    
19:                             𝑂𝑂𝑐𝑐𝑐𝑐𝑆𝑆𝑂𝑂(𝑘𝑘) = 1 
20:                              𝐼𝐼𝑛𝑛𝐼𝐼𝑒𝑒𝑥𝑥(𝑘𝑘) = 𝑗𝑗 
21:                       end if 
22:                  end for 
23:              end for 
24:     end procedure 
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4. SIMULATION RESULTS 
 
In this section we present some simulation results for the proposed algorithm based on convolutional codes and parallel 
version of 𝑤𝑤 = 4  equation construction. Time taken for cryptanalysis for weight 𝑤𝑤 = 3 and 𝑤𝑤 = 4. The simulation 
results are of the execution times of our program implemented the attack on a 256 node cluster. The runs for two 
different register lengths 60 & 72 and various values for 𝑝𝑝, the probability of error have been presented. In general, 
increasing 𝑤𝑤 will increase the performance at the cost of an increased pre-computation time and increased memory 
requirement in pre-computation. Whereas making 𝑝𝑝 close to 0.5 makes the attack more expensive in terms of time and 
data requirement. 
 
The first sets of results are for the feedback polynomial of length 𝑙𝑙 = 60  i.e. the LFSR has the following feedback 
polynomial, 
𝑔𝑔(𝑥𝑥) = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥5 + 𝑥𝑥6 + 𝑥𝑥10 + 𝑥𝑥11 + 𝑥𝑥15 + 𝑥𝑥17 + 𝑥𝑥19 + 𝑥𝑥20 + 𝑥𝑥21 + 𝑥𝑥25 + 𝑥𝑥27 + 𝑥𝑥34 + 𝑥𝑥35 + 𝑥𝑥36

+ 𝑥𝑥37 + 𝑥𝑥38 + 𝑥𝑥39 + 𝑥𝑥41 + 𝑥𝑥42 + 𝑥𝑥45 + 𝑥𝑥46 + 𝑥𝑥47 + 𝑥𝑥48 + 𝑥𝑥49 + 𝑥𝑥50 + 𝑥𝑥51 + 𝑥𝑥52 + 𝑥𝑥53 + 𝑥𝑥54

+ 𝑥𝑥56 + 𝑥𝑥58 + 𝑥𝑥59 + 𝑥𝑥60  
 
For a fixed size of memory of the convolutional encoder to 𝐵𝐵 = 23, with weight 𝑤𝑤 = 3,  length of the LFSR  𝑙𝑙 = 60  
and sequence length 𝑁𝑁 = 4 × 106, the time taken for finding parity check equations are shown in Table 1. In this case 
𝐵𝐵 = 23,  the improved method finds approximately  𝑚𝑚 = 75342859 ≈ 218.14 parity check equations and hence the 
convolutional code  is of  rate 𝑅𝑅 = 1 218.14⁄ ≈ 2−18.14.  The correct solution is found at iteration number 60 in viterbi 
decoding, the time taken for finding correct solutions are shown in Table 2, when probability 𝑝𝑝  is varied. The total run 
time complexity for successful attack is  235.98. 
 
 
 
 
        
 
 
 
 
 
 
 
On fixing the memory of the convolutional encoder to  𝐵𝐵 = 16, with weight 𝑤𝑤 = 4,  length of the LFSR  𝑙𝑙 = 60  and  
𝑁𝑁 = 4 × 107,  the time taken for finding parity check equations are shown in Table 1. In this case with 𝐵𝐵 = 16,  the 
parallelized implementation of above method then we finds approximately 𝑚𝑚 = 6505280801 ≈ 222.59  parity check 
equations and hence the convolutional code is of  rate 𝑅𝑅 = 1 222.59 ≈ 2−22.59⁄ . The correct solution is found at iteration 
number 60, the time taken for finding correct solutions are shown in Table 3, for various values of probability 𝑝𝑝. The 
total run time complexity for successful attack is 235 . 
 
 
 
 
 
                  
                 
                
The second set of results are for the feedback polynomial of length 𝑙𝑙 = 72 , with weight 𝑤𝑤 = 3  i.e. the LFSR  has the 
following feedback polynomial, 
 
𝑔𝑔(𝑥𝑥) = 1 + 𝑥𝑥3 + 𝑥𝑥7 + 𝑥𝑥8 + 𝑥𝑥9 + 𝑥𝑥10 + 𝑥𝑥14 + 𝑥𝑥17 + 𝑥𝑥19 + 𝑥𝑥22 + 𝑥𝑥23 + 𝑥𝑥26 + 𝑥𝑥29 + 𝑥𝑥33 + 𝑥𝑥36 + 𝑥𝑥37 + 𝑥𝑥41 + 𝑥𝑥43

+ 𝑥𝑥44 + 𝑥𝑥45 + 𝑥𝑥46 + 𝑥𝑥49 + 𝑥𝑥50 + 𝑥𝑥51 + 𝑥𝑥52 + 𝑥𝑥55 + 𝑥𝑥60 + 𝑥𝑥67 + 𝑥𝑥68 + 𝑥𝑥69 + 𝑥𝑥70 + 𝑥𝑥71 + 𝑥𝑥72  
 

Table 1: Timings (in approximate) for finding parity check equations 

𝑙𝑙 𝐵𝐵 𝑁𝑁 𝑤𝑤 No. of parity check equations Time taken (in hours) 
60 23 4 × 106 3 75342859 ≈ 12 
60 16 4 × 107 4 6505280801 ≈ 10 
72 23 64 × 106 3 1109747 ≈ 20 

Table 2: Timings for 𝑙𝑙 = 60, 
𝐵𝐵 = 23, 𝑁𝑁 = 4 × 106, weight 𝑤𝑤 = 3 

Probability (𝑝𝑝) Time taken (In Second) 
0.450 218.74 
0.455 217.91 
0.470 321.51 
0.471 320.13 
0.472 320.85 

Table 3: Timings for 𝑙𝑙 = 60, 
𝐵𝐵 = 16, 𝑁𝑁 = 4 × 107, weight 𝑤𝑤 = 4 

Probability (𝑝𝑝) Time taken (In Second) 
0.468 10564.96 
0.470 10905.36 
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For the simulations, we fixed the convolutional encoder memory size  𝐵𝐵 to 23 with weight 𝑤𝑤 = 3,  length of the LFSR  
𝑙𝑙 = 72  and  𝑁𝑁 = 64 × 106. The time taken for finding parity check equations are shown in Table 1. We found 
approximately 𝑚𝑚 = 1109747 ≈ 213.92  parity check equations and hence the convolutional code is of  rate 𝑅𝑅 =
1 213.92 ≈ 2−13.92⁄ , also the correct solution is found at step number 72. The times taken for finding correct solutions 
are shown in Table 4, when probability 𝑝𝑝 is varied. The total run time complexity for successful attack is 236.75 .  If we 
use the method in [4, 5], the estimated run time complexity is 234.13 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1   Comparison between previous convolutional attacks 
 
We compare our attack with the fast correlation attack using convolutional codes described in [4, 5].  Havard Molland 
focuses on weight  𝑤𝑤 = 4 and convolutional attack shown in Table 5. For 𝑝𝑝 = 0.47, Molland et. al’s method gives run 
time complexity is 239 and code rate is 𝑂𝑂 = 2−33 , our attack has run time complexity 235  and code rate is 𝑂𝑂 = 2−22.59.  
Our attack is better when  𝑝𝑝 is close to 0.5,  because of the improvement it gives the first step complexity i.e. finding 
parity check equations. 
 

Table 5: Previous convolutional attack for 𝑙𝑙 = 60 [11] 

𝐵𝐵 𝑝𝑝 𝑁𝑁 𝑤𝑤 Total decoding complexity 

14 0.43 15 × 106 4 235  

10 0.43 100 × 106 4 231  

16 0.47 100 × 106 4 239 

11 0.43 40 × 106 4 230  

 
5. CONCLUSION 
 
We have improved the fast correlation attack based on convolution codes. Our method for finding parity check 
equations of 𝑤𝑤 = 3 and 𝑤𝑤 = 4 is more efficient than the method by Molland et. al. The run time complexity and data 
complexity of our attack is much lower. Further speed up of the attack is possible through distributed computing on 
clusters. As a part of future work we will work on parallel algorithms for the attack.  
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Table 4: Timings for 𝑙𝑙 = 72, 
𝐵𝐵 = 23, 𝑁𝑁 = 64 × 106, weight 𝑤𝑤 = 3 

Probability (𝑝𝑝) Time taken (In Second) 
0.420 119.66 
0.430 295.34 
0.440 118.64 
0.442 118.33 
0.443 118.18 
0.444 118.83 
0.445 118.70 
0.447 119.53 
0.448 121.05 
0.450 121.78 
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