
International Journal of Mathematical Archive-5(7), 2014, 205-212
 Available online through www.ijma.info ISSN 2229 – 5046

International Journal of Mathematical Archive- 5(7), July – 2014 205

AN EFFICIENT METHOD

FOR CONVOLUTIONAL CODES BASED FAST CORRELATION ATTACK

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2

1J. K. Institute of Applied Physics & Technology,

Department of Electronics & Communication, University of Allahabad, Allahabad, India.

2SAG, DRDO, Metcalfe House, Delhi-54, India.

(Received On: 30-06-14; Revised & Accepted On: 15-07-14)

ABSTRACT
Havard Molland et.al. Proposed efficient algorithm for fast correlation attack based on convolutional codes. Their
attack had run time complexity of 239operations with weight 𝑤𝑤 = 4 equations for LFSR of length 60. In this paper we
improve Havard Molland et. al. method for weight 𝑤𝑤 = 4. The run time complexity of our algorithm is 235 . We also
improve the data complexity for the attack. The results show that our algorithm gives better performance when error
probability 𝑝𝑝 is close to 0.5.

We also apply our method for finding weight 3 parity-check equations for LFSR of size 72 bits on a cluster machine.
Simulation results for the fast correlation attack using these equations are discussed. Correlation attacks for LFSR of
such a size have not been reported before.

Keywords: LFSR, Viterbi decoding, Convolutional code, Correlation attack, Computational complexity.

1. INTRODUCTION

One important family of encryption methods is stream ciphers. The principle behind stream ciphers is to consider the
message as a stream of message symbols and encrypt each symbol individually. Let 𝑚𝑚 = 𝑚𝑚1, 𝑚𝑚2, … .. be the plaintext
of length 𝑁𝑁, to encrypt the stream cipher takes a secret key 𝐾𝐾 and produces a key stream 𝑧𝑧 = 𝑧𝑧1, 𝑧𝑧2, … … 𝑧𝑧𝑁𝑁 . The
encryption is then given as 𝑐𝑐𝑡𝑡 = 𝑒𝑒(𝑧𝑧𝑡𝑡 ,𝑚𝑚𝑡𝑡). Often, the message, the cipher text, and the key stream are sequences of
binary digits and the operation 𝑒𝑒 is typically ⊕ (XOR operation). A binary (synchronous) stream cipher where the
encryption function is XOR, i.e., 𝑐𝑐𝑡𝑡 = (𝑚𝑚𝑡𝑡 ⊕ 𝑧𝑧𝑡𝑡), is also called binary additive stream cipher (shown in figure).

A common method to build a keystream generator is to combine several linear feedback shift registers to get a
keystream with desired statistical properties. Furthermore, the secret key K is the initial states of the LFSRs. An
important class of attacks on LFSR-based stream ciphers is correlation attacks. Correlation attacks are widely
applicable to stream ciphers, especially to designs based on feedback shift registers.

Corresponding author: Amar Pandey*1

Key stream
Generator

𝑧𝑧 = 𝑧𝑧1, 𝑧𝑧2, … ..

𝑚𝑚 = 𝑚𝑚1, 𝑚𝑚2, … .. 𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2, … ..

 Figure: Additive Stream Ciphers.

http://www.ijma.info/�

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2/
An Efficient Method for Convolutional Codes based Fast Correlation Attack / IJMA- 5(7), July-2014.

© 2014, IJMA. All Rights Reserved 206

A correlation attack exploits weakness in the combining function that allows some information about the initial state to
be extracted from the output key stream. In this situation, a statistical correlation exists between the internal states and
the output key stream. The first algorithm for implementing correlation attacks against a nonlinear combination
generator was introduced by Siegenthaler [14, 15].

Consider the situation where the nonlinear combination generator has 𝑛𝑛 LFSRs and their lengths are
𝑙𝑙1, 𝑙𝑙2, … … 𝑙𝑙𝑛𝑛 . Given the output keystream 𝑧𝑧𝑡𝑡 , 0 ≤ 𝑡𝑡 < 𝑁𝑁, an adversary tries to determine the initial state of 𝑛𝑛 LFSRs
by exhaustive search. Generally, the adversary needs to guess 2(𝑙𝑙1+𝑙𝑙2+⋯…..𝑙𝑙𝑛𝑛) possible initial states of the LFSRs & for
each guess compare generated sequence with given output sequence. However, if the correlation between the input and
the output keystream of each LFSR stream can be found–which is the internal output stream of an LFSR, the adversary
can test each LFSR separately and determine the initial states of each LFSR. The adversary guesses the initial state of
the first LFSR and produces its LFSR stream. He then XORs the LFSR stream and the observed output keystream, and
notes the number of zeros in the XORed sequence which is the same as the number of matches between LFSR
sequence and the output sequence. If the initial guess is correct, the relative frequency of zeros will be close to the
number of matches in obtained when last column of the truth table is compared with the column corresponding to the
input LFSR. Otherwise, the XORed sequence does not present any correlation and behaves like a random string. Hence,
the adversary can determine the correct initial state of the first LFSR by this statistical test. He can analyze the
remaining LFSRs by the same method. Thus, instead of trying to find the initial states of all the LFSRs simultaneously,
the initial states of each LFSR can be identified by using their correlations. In this situation the adversary needs only
(2𝑙𝑙1 + 2𝑙𝑙2 + ⋯… . +2𝑙𝑙𝑛𝑛) sequence generation & comparison steps. This approach is called a divide-and-conquer
attack. Siegenthaler also showed that there was a trade-off between the degree of the combiner function and the order
of correlation immunity; greater correlation immunity meant a reduced lower algebraic degree and thus lower linear
complexity. To overcome this trade-off, Rueppel suggested using combiners with memory [13]. It was shown that
maximum-order correlation immunity can be achieved, regardless of the linear complexity by using only one bit of
memory.

Meier and Staffelbach improved the correlation attack, in their fast correlation attack [7, 8]. This type of attack does not
require the search of all the initial states of the target register. Rather, it interprets system output as a noisy version if
the linear code defined by LFSR and tries to “decode”, the output sequence to obtain the LFSR sequence & thus the
initial state. The fast correlation attack can be quite successful if the feedback polynomial has few taps, or a multiple of
the feedback polynomial has a low weight [1, 9, 10, 12]. This work was followed by several papers, providing minor
improvements to the initial results of Meier and Staffelbach. However, the algorithms that are efficient (good
performance and low complexity) still require the feedback polynomial to be of low weight. Due to this requirement, a
general thumb rule method when constructing stream ciphers that the generator polynomial or its small multiples
should not be of low weight.

Thomas Johansson and Fredrik Jonsson’s attack works for LFSRs with many taps. An efficient algorithm is used to
find parity equations that are suitable for convolutional codes [2, 3, 4, 6]. Its performance and complexity are similar to
other correlation attacks. However, a large memory requirement is still a limitation of these attacks. The decoding is
done using the Viterbi algorithm, which is maximum likelihood decoding algorithm for convolutional codes. In [11],
Havard Molland, John Erik Mathiassen and Tor Helleseth proposed the quick metrics for use in decoding step of fast
correlation attacks, instead of using relatively few strong parity check equations and give an algorithm that has low run
time complexity by using many weak parity check equations. They present a new method that is capable of performing
an efficient ML decoding even when the code rate is very low and method gives the run time complexity is very low.
We improve on Havard Molland method.

The paper is organized as follows. In section 2 we give some preliminaries for finding parity equations with weight is
greater than two and also describe quick metrics of Molland et al. In section 3 we give a faster method for finding
parity check equations to reduce the run time complexity. In section 4 we give some simulation results and compare the
previous convolutional attacks. In section 5 we conclude with some possible extensions.

2. PRELIMINARIES

Let us start with the linear code 𝐶𝐶 stemming from the LFSR sequences. There is a corresponding 𝑙𝑙 × 𝑁𝑁 systematic
generator matrix 𝐺𝐺 = (𝐼𝐼𝑙𝑙 𝑍𝑍). Let 𝑔𝑔𝑖𝑖 be the 𝑖𝑖𝑡𝑡ℎ column of 𝐺𝐺. Clearly, 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝐼𝐼𝑔𝑔𝑖𝑖 , where 𝑣𝑣𝐼𝐼 is the initial state of the
LFSR. Fix the memory of the convolutional encoder to 𝐵𝐵. If we can find 𝑤𝑤 columns in the generator matrix 𝐺𝐺 such that
the sum of last 𝑙𝑙 − 𝐵𝐵 − 1 bits are zero and bit 𝑙𝑙 − 𝐵𝐵 is 1 i.e.

 �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2 + ⋯… + 𝑔𝑔𝑖𝑖𝑤𝑤 �
𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵−1, 0, 0, … … ,0�������

(𝑙𝑙−𝐵𝐵−1)
� (1)

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2/
An Efficient Method for Convolutional Codes based Fast Correlation Attack / IJMA- 5(7), July-2014.

© 2014, IJMA. All Rights Reserved 207

For a given 𝐵𝐵, 0 < 𝐵𝐵 ≤ 𝑙𝑙, and 𝑙𝑙 ≤ 𝑖𝑖1, 𝑖𝑖2, … . . , 𝑖𝑖𝑤𝑤 < 𝑁𝑁, we get an equation form
 𝑐𝑐0𝑣𝑣0 + 𝑐𝑐1𝑣𝑣1 + ⋯… . +𝑐𝑐𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 = 𝑣𝑣𝑖𝑖1 + 𝑣𝑣𝑖𝑖2 + ⋯… + 𝑣𝑣𝑖𝑖𝑤𝑤 (2)

Observe that 𝑖𝑖𝑡𝑡ℎ Column in 𝐺𝐺 gives the initialization bits 𝑣𝑣𝐼𝐼 = (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝑙𝑙−1) that sum up to the bit 𝑣𝑣𝑖𝑖 in the
sequence 𝑣𝑣. When sum of two columns, say sum of 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ columns is zero in the last
𝑙𝑙 − 𝐵𝐵 − 1 entries (𝑣𝑣𝐵𝐵+1, … … , 𝑣𝑣𝑙𝑙−1) then the sum 𝑣𝑣𝑖𝑖 + 𝑣𝑣𝑗𝑗 is independent of (𝑣𝑣𝐵𝐵+1, … … , 𝑣𝑣𝑙𝑙−1). Using equation (2), we
are interested in finding 𝑚𝑚 parity check equations having linear combinations of 𝑤𝑤 columns of 𝐺𝐺 on right side of the
equations and left hand side having 𝑣𝑣𝑖𝑖 of first 𝐵𝐵 + 1 bits.

Replacing its 𝑣𝑣𝑖𝑖𝑠𝑠 on RHS by corresponding key stream bits 𝑧𝑧. We get the equation set,
𝑐𝑐0,0𝑣𝑣0 + 𝑐𝑐0,1𝑣𝑣1 + ⋯+ 𝑐𝑐0,𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 ≈ 𝑧𝑧𝑖𝑖1,1 + 𝑧𝑧𝑖𝑖1,2 + ⋯+ 𝑧𝑧𝑖𝑖1,𝑤𝑤
𝑐𝑐1,0𝑣𝑣0 + 𝑐𝑐1,1𝑣𝑣1 + ⋯+ 𝑐𝑐1,𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 ≈ 𝑧𝑧𝑖𝑖2,1 + 𝑧𝑧𝑖𝑖2,2 + ⋯+ 𝑧𝑧𝑖𝑖2,𝑤𝑤
 … … … … … … … … (3)
 … … … … … … … …
𝑐𝑐𝑚𝑚 ,0𝑣𝑣0 + 𝑐𝑐𝑚𝑚 ,1𝑣𝑣1 + ⋯+ 𝑐𝑐𝑚𝑚 ,𝐵𝐵−1𝑣𝑣𝐵𝐵−1 + 𝑣𝑣𝐵𝐵 ≈ 𝑧𝑧𝑖𝑖𝑚𝑚 ,1 + 𝑧𝑧𝑖𝑖𝑚𝑚 ,2 + ⋯+ 𝑧𝑧𝑖𝑖𝑚𝑚 ,𝑤𝑤

We use " ≈ " to notify that the equations only hold with a certain probability.

A naive decoding approach would be guess values of first 𝐵𝐵 + 1 bits (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝐵𝐵−1). For all the 2𝐵𝐵+1 possible
guesses for (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝐵𝐵−1, 𝑣𝑣𝐵𝐵), test the guess, with all equations in the set (3) and give the guess one point for
every equation in the set that holds. We count the score for the every adversary guesses of (𝑣𝑣0, 𝑣𝑣1, … … , 𝑣𝑣𝐵𝐵−1, 𝑣𝑣𝐵𝐵), and
declare the one with the highest score as the most probable one. In this we get the first 𝐵𝐵 + 1 bits of the secret
initialization bits (𝑣𝑣0, 𝑣𝑣1, … … ,𝑣𝑣𝑙𝑙). The above method can be repeated to find the rest of the bits (𝑣𝑣𝐵𝐵+1, … … , 𝑣𝑣𝑙𝑙−1). The
complexity for this algorithm is 𝑂𝑂(2𝐵𝐵+1.𝑚𝑚)[1]. In [11, 14] Johansson and Jonsson, presented a theoretical estimate of
the success rate for fast correlation attacks via convolutional codes. The complexity of the convolutional attack is
𝑂𝑂(2𝑚𝑚 .𝑚𝑚.𝑇𝑇), since we decode over 𝑇𝑇 bits.

Finding equations with 𝑤𝑤 = 2 is easily done if we sort the columns of 𝐺𝐺 based on values in the last 𝑙𝑙 − 𝐵𝐵 − 1 rows.
Any pair of columns with same value in the last 𝑙𝑙 − 𝐵𝐵 − 1 rows and a different value at 𝑙𝑙 − 𝐵𝐵 position will contribute
to a parity check. The probability of getting such a pair of rows is 2−(𝑙𝑙−𝐵𝐵). For a given 𝐵𝐵, as register length 𝑙𝑙 increases,
the probability of getting such pairs becomes exponentially low. Thus it is required to find parity checks with 𝑤𝑤 > 3
even though the probability of such parity checks holding for the final sequence is lower.

2.1 Method for Finding Equations with weight 𝒘𝒘 > 2

Using birthday technique [16], we will describe the method for finding many equations. Let us consider, 𝐺𝐺 be a
generator matrix of the size 𝑙𝑙 × 𝑁𝑁. Firstly we sort the generator matrix 𝐺𝐺 column wise along with the last 𝑙𝑙 − 𝐵𝐵 − 1
bits. Take sum of 𝑤𝑤 − 1 columns of 𝐺𝐺 & search for columns of 𝐺𝐺 that are equal to the sum in the last 𝑙𝑙 − 𝐵𝐵 − 1 bits.
The sum of these 𝑤𝑤 columns is then zero in the last 𝑙𝑙 − 𝐵𝐵 − 1 bits. If bit 𝑙𝑙 − 𝐵𝐵 of the sum is 1, we use it as a equation
for viterbi decoding based attack.

For weight 𝑤𝑤 = 4, a more efficient method can be used–

Step-1. Consider all possible pairs of columns in the generator matrix 𝐺𝐺. The sums and indexes of the two columns in
𝐺𝐺 are stored in the another matrix 𝐺𝐺2.

Step-2. We sort the matrix 𝐺𝐺2 is column wise along with the last 𝑙𝑙 − 𝐵𝐵 − 1 bits. After sorting, search for pairs of
column in matrix 𝐺𝐺2 that sum to zero in the last 𝑙𝑙 − 𝐵𝐵 bits. We get, equation of the form (for weight 4)-

 �𝑓𝑓𝑖𝑖1 + 𝑓𝑓𝑖𝑖2�
𝑇𝑇 = �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2 + 𝑔𝑔𝑖𝑖3 + 𝑔𝑔𝑖𝑖4�

𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵−1, 𝑐𝑐𝐵𝐵 0, 0, … … ,0�������
(𝑙𝑙−𝐵𝐵−1)

�

where the 𝑓𝑓𝑗𝑗

′𝑠𝑠 are columns in 𝐺𝐺2 and the 𝑔𝑔𝑗𝑗 ′𝑠𝑠 are columns in 𝐺𝐺. From these we use only those equations which have
𝑐𝑐𝐵𝐵 = 1 for the viterbi decoding based attack. In Step-1 and Step-2, the number of possible sums is far too many. We
can reduce the size of matrix 𝐺𝐺2, without reducing the number of equations in Step-1’.

Step-1. We sort the generator matrix 𝐺𝐺 column wise along with the last 𝑙𝑙 − 𝐵𝐵2 positions, where 𝐵𝐵2 < 𝐵𝐵. After sorting,
 search for column in matrix 𝐺𝐺2 that sum to zero in the last 𝑙𝑙 − 𝐵𝐵2 bits. These sums and indexes of the two

columns in 𝐺𝐺 are stored in the matrix 𝐺𝐺2, then the size of matrix 𝐺𝐺2will be 𝑙𝑙 × 𝑁𝑁2, where 𝑁𝑁2 is much smaller
 than 𝑁𝑁(𝑁𝑁 − 1)/2. We get, equation of the form-

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2/
An Efficient Method for Convolutional Codes based Fast Correlation Attack / IJMA- 5(7), July-2014.

© 2014, IJMA. All Rights Reserved 208

𝑓𝑓𝑗𝑗
𝑇𝑇 = �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2�

𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵2−1, 0, 0, … … ,0�������
(𝑙𝑙−𝐵𝐵2)

�

 The number of columns of matrix 𝐺𝐺2 is reduced by a factor of 2𝑙𝑙−𝐵𝐵2 .

Step-2. Repeat the Step-1’ using 𝐵𝐵4 on matrix 𝐺𝐺2 of size 𝑙𝑙 × 𝑁𝑁2, where 𝐵𝐵4 < 𝐵𝐵2 < 𝑙𝑙. We get, equation of the form is–

�𝑓𝑓𝑖𝑖1 + 𝑓𝑓𝑖𝑖2�
𝑇𝑇 = �𝑔𝑔𝑖𝑖1 + 𝑔𝑔𝑖𝑖2 + 𝑔𝑔𝑖𝑖3 + 𝑔𝑔𝑖𝑖4�

𝑇𝑇 = �𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵4−1, 0, 0, … … ,0�������
(𝑙𝑙−𝐵𝐵4)

�

In this way we get weight 4 equation of the form (2). Again we select those equations for which 𝑐𝑐𝐵𝐵4−1 is 1. The
equations using the new 𝐺𝐺2 matrix is a subset of the original set. If the number of equations is not sufficient for the
attack, we can repeat Step-1’ with last 𝑙𝑙 − 𝐵𝐵2 rows summing to a value other than 0 and then perform Step-2’ on the
resulting 𝐺𝐺2 to get another set of parity equations. In fact this process can be repeated for each possible value in last
𝑙𝑙 − 𝐵𝐵2 bits to get the entire set of parity equations.

2.2 Quick Metric

When 𝑤𝑤 > 2 we get a large number of parity checks. If number of checks 𝑚𝑚 > 𝐵𝐵 then testing the equations for each
guess of 𝐵𝐵 bits or at each step in Viterbi decoding will be very expensive. In [11], Havard Molland, John Erik
Mathiassen and Tor Helleseth used quick metric during decoding stage of Fast Correlation Attack which is described in
the following paragraphs.

Let 𝑚𝑚 ≫ 2𝐵𝐵 be the number of equations found using the above method. Group equations in to sets which share the
same left side i.e. which have same value for the coefficients (𝑐𝑐0, 𝑐𝑐1, … … , 𝑐𝑐𝐵𝐵−1), We set

 𝑒𝑒 = 𝑐𝑐0 + 2𝑐𝑐1 + 22𝑐𝑐2 + ⋯… + 2𝐵𝐵−1𝑐𝑐𝐵𝐵−1 (4)

Now we will count and store the number of equations of the type 𝑒𝑒, denoted by 𝐸𝐸(𝑒𝑒) i.e. 𝐸𝐸(𝑒𝑒) is the number of
equations of type 𝑒𝑒. For the given keystream, find the number of equations of type 𝑒𝑒 that sum to 1 on the right hand
side, and denote it as 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒). Since we have to calculate 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒) for every time step 𝑡𝑡, 0 ≤ 𝑡𝑡 < 𝑇𝑇 , we use a 2–
dimension array 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒, 𝑡𝑡) in the program.

Let 𝑚𝑚𝑒𝑒 = 𝐸𝐸(𝑒𝑒) be the number of equations found of type 𝑒𝑒. Now we can test 𝑚𝑚𝑒𝑒 equations while doing path metric
computation for an edge in just one step instead of 𝑚𝑚𝑒𝑒 steps.

For every equation of type 𝑒𝑒 at time step 𝑡𝑡, if the left hand side of equation (4) corresponding to the edge is 1, since the
number of the equations from this set that have same RHS is 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒), the path metric is incremented with 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒, 𝑡𝑡).
Otherwise, metric is incremented with 𝑚𝑚𝑒𝑒 − 𝑆𝑆𝑆𝑆𝑚𝑚(𝑒𝑒, 𝑡𝑡).

When we use Quick Metric, the decoding is done in two steps, firstly building of the equation count matrix 𝑆𝑆𝑆𝑆𝑚𝑚 having
complexity of 𝑂𝑂(𝑇𝑇.𝑚𝑚) operations, second step is decoding using the Viterbi algorithm with complexity 𝑂𝑂(𝑇𝑇 . 22𝐵𝐵).
Thus, the total run time complexity for both step is given by 𝑂𝑂(𝑇𝑇.𝑚𝑚 + 𝑇𝑇 . 22𝐵𝐵) [11].

3. AN IMPROVED ALGORITHM

In this section we will describe an improved method for convolutional code based fast correlation attack which was
used for successful attack on a 72 stage LFSR. This algorithm for fast correlation attacks operate in two phases: In the
first phase the algorithm find a set of suitable parity check equations based on the feedback taps from the LFSR and
second phase uses these parity check equations in a fast decoding algorithm to recover the transmitted code word, thus
the initial state of the LFSR.

3.1 Method for finding parity check equations

The method described here is for finding parity check equations when weight 𝑤𝑤 = 3. Molland et al. [11] uses the
sorting for finding parity check equations but here we avoid the sorting. Let 𝑔𝑔(𝑥𝑥) be the primitive polynomial of
degree 𝑙𝑙 for LFSR that generates the sequence 𝑣𝑣. Let 𝛼𝛼 be defined by 𝑔𝑔(𝛼𝛼) = 0, using reduction rule we can define the
generator matrix for sequence by the 𝑙𝑙 × 𝑁𝑁 matrix 𝐺𝐺 such that 𝐺𝐺 = [𝛼𝛼0,𝛼𝛼1,𝛼𝛼2, … … ,𝛼𝛼𝑁𝑁−1].

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2/
An Efficient Method for Convolutional Codes based Fast Correlation Attack / IJMA- 5(7), July-2014.

© 2014, IJMA. All Rights Reserved 209

Firstly fix the convolutional encoder size, say 𝐵𝐵. We use an additional parameter 𝑙𝑙0, 𝐵𝐵 < 𝑙𝑙0 < 𝑙𝑙. We use two arrays of
size 2𝑙𝑙−𝑙𝑙0 in the program one a bit vector and other storing integers. We have to choose 𝑙𝑙0 so that 𝑙𝑙 − 𝑙𝑙0 is as large as
possible and yet the arrays fit in the memory.

Of the two arrays one stores if a 𝑙𝑙 − 𝑙𝑙0 bit value has been observed in the rows 𝑙𝑙0 … 𝑙𝑙 of the generator matrix 𝐺𝐺 as we
are scanning from left to right. The other stores the position where it was observed

In the algorithm, for every sum of 2 columns of 𝐺𝐺 we select bits 𝑙𝑙0 … 𝑙𝑙 of the sum and check if they have been observed
in the sequence. This is done using the first array with just one lookup. If so we find the position where it occurred
using the second array. The corresponding column of 𝐺𝐺 is generated on the fly and other bits are checked otherwise we
move on to the next pair of columns.

The complexity of this algorithm will be 𝑂𝑂(𝑁𝑁2) when 𝑙𝑙0 is selected as suggested. The pseudo codes for the above steps
are given in Algorithm 1.

For 𝑤𝑤 = 4 also, we follow the strategy of generating the columns of the generator matrix as and when required.

3.2 Complexity

Complexity of finding parity check equations (described in section 3.1) is 𝑂𝑂(𝑁𝑁2) and the complexity of decoding
process based on Viterbi algorithm by using quick metric described in section 2.2 is 𝑂𝑂(𝑇𝑇 . 22𝐵𝐵).Thus, the total run time
complexity is given by 𝑂𝑂(𝑁𝑁2 + 𝑇𝑇 . 22𝐵𝐵).

3.3 Reduction of time complexity using MPI

Suppose we run this programme on a system with 𝑛𝑛 processors, and each processor being assigned rank 0 to 𝑛𝑛 − 1.
Then computations for the columns 𝑆𝑆𝑒𝑒𝑆𝑆∝0 , 𝑆𝑆𝑒𝑒𝑆𝑆∝𝑛𝑛 , 𝑆𝑆𝑒𝑒𝑆𝑆∝2𝑛𝑛 … .. can be scheduled to run on system having rank 0.
Computations for the columns 𝑆𝑆𝑒𝑒𝑆𝑆∝1 , 𝑆𝑆𝑒𝑒𝑆𝑆∝𝑛𝑛+1 , 𝑆𝑆𝑒𝑒𝑆𝑆∝2𝑛𝑛+1 … .. can be scheduled to run on system having rank 1 and
similarly computations for columns 𝑆𝑆𝑒𝑒𝑆𝑆∝2 , 𝑆𝑆𝑒𝑒𝑆𝑆∝𝑛𝑛+2 , 𝑆𝑆𝑒𝑒𝑆𝑆∝2𝑛𝑛+2 … .. scheduled to run on system having rank 2 and so on.
Then the time taken reduces by a factor of 𝑛𝑛.

This was implemented on a cluster machine and time taken (in approximate) for finding parity check equations are
shown in the Table 1 with different weights.

Algorithm 1: Algorithm for finding Parity Checks of 𝑤𝑤 = 3

 1: procedure FIND PARITY CHECK (𝑓𝑓, 𝑙𝑙,𝑁𝑁,𝐵𝐵, 𝑙𝑙0)
 2: ⊳ 𝐵𝐵 < 𝑙𝑙0 < 𝑙𝑙
 3: ⊳ Notation: 𝑆𝑆𝑒𝑒𝑆𝑆𝑎𝑎…𝑏𝑏 denotes bits 𝑎𝑎, … … . , 𝑏𝑏 − 1 of vector 𝑆𝑆𝑒𝑒𝑆𝑆
 4: ∝= root of 𝑓𝑓 ⊳ Column vector
 5: 𝑂𝑂𝑐𝑐𝑐𝑐𝑆𝑆𝑂𝑂(𝑖𝑖) = 0 for 𝑖𝑖 ∈ 0 … … 2𝑙𝑙0−𝐵𝐵
 6: for 𝑖𝑖 ∈ 𝐵𝐵 + 1 … …𝑁𝑁 do
 7: 𝑆𝑆𝑒𝑒𝑆𝑆 =∝𝑖𝑖
 8: for 𝑗𝑗 ∈ 𝑖𝑖 + 1 … …𝑁𝑁 do
 9: 𝑆𝑆𝑒𝑒𝑆𝑆1 =∝𝑗𝑗
10: 𝑘𝑘 = (𝑆𝑆𝑒𝑒𝑆𝑆 ⊕ 𝑆𝑆𝑒𝑒𝑆𝑆1)𝑙𝑙0…𝑙𝑙
11: if 𝑂𝑂𝑐𝑐𝑐𝑐𝑆𝑆𝑂𝑂(𝑘𝑘) == 1 then
12: 𝑝𝑝𝑝𝑝𝑠𝑠 = 𝐼𝐼𝑛𝑛𝐼𝐼𝑒𝑒𝑥𝑥(𝑘𝑘)
13: 𝑆𝑆𝑒𝑒𝑆𝑆2 =∝𝑝𝑝𝑝𝑝𝑠𝑠
14: if (𝑆𝑆𝑒𝑒𝑆𝑆2 ⊕𝑆𝑆𝑒𝑒𝑆𝑆1⨁𝑆𝑆𝑒𝑒𝑆𝑆)𝐵𝐵…𝑙𝑙0 == (10 … … 0) then
15: Print (𝑆𝑆𝑒𝑒𝑆𝑆2 ⊕ 𝑆𝑆𝑒𝑒𝑆𝑆1⨁𝑆𝑆𝑒𝑒𝑆𝑆)0…𝐵𝐵 , 𝑖𝑖 , 𝑗𝑗, 𝑝𝑝𝑝𝑝𝑠𝑠
16: end if
17: else
18: 𝑘𝑘 = (𝑆𝑆𝑒𝑒𝑆𝑆1)𝑙𝑙0…𝑙𝑙
19: 𝑂𝑂𝑐𝑐𝑐𝑐𝑆𝑆𝑂𝑂(𝑘𝑘) = 1
20: 𝐼𝐼𝑛𝑛𝐼𝐼𝑒𝑒𝑥𝑥(𝑘𝑘) = 𝑗𝑗
21: end if
22: end for
23: end for
24: end procedure

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2/
An Efficient Method for Convolutional Codes based Fast Correlation Attack / IJMA- 5(7), July-2014.

© 2014, IJMA. All Rights Reserved 210

4. SIMULATION RESULTS

In this section we present some simulation results for the proposed algorithm based on convolutional codes and parallel
version of 𝑤𝑤 = 4 equation construction. Time taken for cryptanalysis for weight 𝑤𝑤 = 3 and 𝑤𝑤 = 4. The simulation
results are of the execution times of our program implemented the attack on a 256 node cluster. The runs for two
different register lengths 60 & 72 and various values for 𝑝𝑝, the probability of error have been presented. In general,
increasing 𝑤𝑤 will increase the performance at the cost of an increased pre-computation time and increased memory
requirement in pre-computation. Whereas making 𝑝𝑝 close to 0.5 makes the attack more expensive in terms of time and
data requirement.

The first sets of results are for the feedback polynomial of length 𝑙𝑙 = 60 i.e. the LFSR has the following feedback
polynomial,
𝑔𝑔(𝑥𝑥) = 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥5 + 𝑥𝑥6 + 𝑥𝑥10 + 𝑥𝑥11 + 𝑥𝑥15 + 𝑥𝑥17 + 𝑥𝑥19 + 𝑥𝑥20 + 𝑥𝑥21 + 𝑥𝑥25 + 𝑥𝑥27 + 𝑥𝑥34 + 𝑥𝑥35 + 𝑥𝑥36

+ 𝑥𝑥37 + 𝑥𝑥38 + 𝑥𝑥39 + 𝑥𝑥41 + 𝑥𝑥42 + 𝑥𝑥45 + 𝑥𝑥46 + 𝑥𝑥47 + 𝑥𝑥48 + 𝑥𝑥49 + 𝑥𝑥50 + 𝑥𝑥51 + 𝑥𝑥52 + 𝑥𝑥53 + 𝑥𝑥54

+ 𝑥𝑥56 + 𝑥𝑥58 + 𝑥𝑥59 + 𝑥𝑥60

For a fixed size of memory of the convolutional encoder to 𝐵𝐵 = 23, with weight 𝑤𝑤 = 3, length of the LFSR 𝑙𝑙 = 60
and sequence length 𝑁𝑁 = 4 × 106, the time taken for finding parity check equations are shown in Table 1. In this case
𝐵𝐵 = 23, the improved method finds approximately 𝑚𝑚 = 75342859 ≈ 218.14 parity check equations and hence the
convolutional code is of rate 𝑅𝑅 = 1 218.14⁄ ≈ 2−18.14. The correct solution is found at iteration number 60 in viterbi
decoding, the time taken for finding correct solutions are shown in Table 2, when probability 𝑝𝑝 is varied. The total run
time complexity for successful attack is 235.98.

On fixing the memory of the convolutional encoder to 𝐵𝐵 = 16, with weight 𝑤𝑤 = 4, length of the LFSR 𝑙𝑙 = 60 and
𝑁𝑁 = 4 × 107, the time taken for finding parity check equations are shown in Table 1. In this case with 𝐵𝐵 = 16, the
parallelized implementation of above method then we finds approximately 𝑚𝑚 = 6505280801 ≈ 222.59 parity check
equations and hence the convolutional code is of rate 𝑅𝑅 = 1 222.59 ≈ 2−22.59⁄ . The correct solution is found at iteration
number 60, the time taken for finding correct solutions are shown in Table 3, for various values of probability 𝑝𝑝. The
total run time complexity for successful attack is 235 .

The second set of results are for the feedback polynomial of length 𝑙𝑙 = 72 , with weight 𝑤𝑤 = 3 i.e. the LFSR has the
following feedback polynomial,

𝑔𝑔(𝑥𝑥) = 1 + 𝑥𝑥3 + 𝑥𝑥7 + 𝑥𝑥8 + 𝑥𝑥9 + 𝑥𝑥10 + 𝑥𝑥14 + 𝑥𝑥17 + 𝑥𝑥19 + 𝑥𝑥22 + 𝑥𝑥23 + 𝑥𝑥26 + 𝑥𝑥29 + 𝑥𝑥33 + 𝑥𝑥36 + 𝑥𝑥37 + 𝑥𝑥41 + 𝑥𝑥43

+ 𝑥𝑥44 + 𝑥𝑥45 + 𝑥𝑥46 + 𝑥𝑥49 + 𝑥𝑥50 + 𝑥𝑥51 + 𝑥𝑥52 + 𝑥𝑥55 + 𝑥𝑥60 + 𝑥𝑥67 + 𝑥𝑥68 + 𝑥𝑥69 + 𝑥𝑥70 + 𝑥𝑥71 + 𝑥𝑥72

Table 1: Timings (in approximate) for finding parity check equations

𝑙𝑙 𝐵𝐵 𝑁𝑁 𝑤𝑤 No. of parity check equations Time taken (in hours)
60 23 4 × 106 3 75342859 ≈ 12
60 16 4 × 107 4 6505280801 ≈ 10
72 23 64 × 106 3 1109747 ≈ 20

Table 2: Timings for 𝑙𝑙 = 60,
𝐵𝐵 = 23, 𝑁𝑁 = 4 × 106, weight 𝑤𝑤 = 3

Probability (𝑝𝑝) Time taken (In Second)
0.450 218.74
0.455 217.91
0.470 321.51
0.471 320.13
0.472 320.85

Table 3: Timings for 𝑙𝑙 = 60,
𝐵𝐵 = 16, 𝑁𝑁 = 4 × 107, weight 𝑤𝑤 = 4

Probability (𝑝𝑝) Time taken (In Second)
0.468 10564.96
0.470 10905.36

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2/
An Efficient Method for Convolutional Codes based Fast Correlation Attack / IJMA- 5(7), July-2014.

© 2014, IJMA. All Rights Reserved 211

For the simulations, we fixed the convolutional encoder memory size 𝐵𝐵 to 23 with weight 𝑤𝑤 = 3, length of the LFSR
𝑙𝑙 = 72 and 𝑁𝑁 = 64 × 106. The time taken for finding parity check equations are shown in Table 1. We found
approximately 𝑚𝑚 = 1109747 ≈ 213.92 parity check equations and hence the convolutional code is of rate 𝑅𝑅 =
1 213.92 ≈ 2−13.92⁄ , also the correct solution is found at step number 72. The times taken for finding correct solutions
are shown in Table 4, when probability 𝑝𝑝 is varied. The total run time complexity for successful attack is 236.75 . If we
use the method in [4, 5], the estimated run time complexity is 234.13 .

4.1 Comparison between previous convolutional attacks

We compare our attack with the fast correlation attack using convolutional codes described in [4, 5]. Havard Molland
focuses on weight 𝑤𝑤 = 4 and convolutional attack shown in Table 5. For 𝑝𝑝 = 0.47, Molland et. al’s method gives run
time complexity is 239 and code rate is 𝑂𝑂 = 2−33 , our attack has run time complexity 235 and code rate is 𝑂𝑂 = 2−22.59.
Our attack is better when 𝑝𝑝 is close to 0.5, because of the improvement it gives the first step complexity i.e. finding
parity check equations.

Table 5: Previous convolutional attack for 𝑙𝑙 = 60 [11]

𝐵𝐵 𝑝𝑝 𝑁𝑁 𝑤𝑤 Total decoding complexity

14 0.43 15 × 106 4 235

10 0.43 100 × 106 4 231

16 0.47 100 × 106 4 239

11 0.43 40 × 106 4 230

5. CONCLUSION

We have improved the fast correlation attack based on convolution codes. Our method for finding parity check
equations of 𝑤𝑤 = 3 and 𝑤𝑤 = 4 is more efficient than the method by Molland et. al. The run time complexity and data
complexity of our attack is much lower. Further speed up of the attack is possible through distributed computing on
clusters. As a part of future work we will work on parallel algorithms for the attack.

ACKNOWLEDGEMENT

The authors wish to thank Dr. P. K. Saxena for encouraging us to work on this problem. They also wish to thank Dr. N.
Rajesh Pillai and Dr. Indivar Gupta for their invaluable support and informative suggestions.

Table 4: Timings for 𝑙𝑙 = 72,
𝐵𝐵 = 23, 𝑁𝑁 = 64 × 106, weight 𝑤𝑤 = 3

Probability (𝑝𝑝) Time taken (In Second)
0.420 119.66
0.430 295.34
0.440 118.64
0.442 118.33
0.443 118.18
0.444 118.83
0.445 118.70
0.447 119.53
0.448 121.05
0.450 121.78

Amar Pandey*1, Manoj Kumar Singh2 and S. S. Bedi2/
An Efficient Method for Convolutional Codes based Fast Correlation Attack / IJMA- 5(7), July-2014.

© 2014, IJMA. All Rights Reserved 212

REFERENCES

[1]. V. Chepyzhov and B. Smeets. On a fast correlation attack on certain stream ciphers. In Advances in
Cryptology – EUROCRYPT-91, volume 547 of Lecture Notes in Computer Science, pages 176–185, February
1991.

[2]. P. Chose, A. Joux, and M. Mitton. Fast correlation attacks: An algorithmic point of view. In Advances in
Cryptology – EUROCRYPT-2002, volume 2332 of Lecture Notes in Computer Science, pages 209–221. Springer,
February 2004.

[3]. T. Johansson and F. Jonsson. Fast correlation attacks based on turbo code techniques. In Advances in
Cryptology – CRYPTO-99, volume 1666 of Lecture Notes in Computer Science, pages 181–197.Springer, 1999.

[4]. T. Johansson and F. Jonsson. Improved fast correlation attacks on stream ciphers via convolutional codes. In
Advances in Cryptology – EUROCRYPT-99, volume 1592 of Lecture Notes in Computer Science, pages
347–362. Springer, 1999.

[5]. T. Johansson and F. Jonsson. “Theoretical Analysis of a Correlation Attack based on Convolutional Codes”,
Proceeding of 2000 IEEE International Symposium on Information Theory, IEEE, 2000, pp. 212.

[6]. T. Johansson and F. Jonsson. Fast correlation attacks through reconstruction of linear polynomials. In
Advances in Cryptology – CRYPTO-2000, volume 1880 of Lecture Notes in Computer Science, pages 300–315.
Springer, 2000.

[7]. W. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers. Journal of Cryptology,
1(3):159–176, 1989.

[8]. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In advances in cryptology
EUROCRYPT- 88, volume LNCS 330, pages 301 –314. Springer – verlag, 1988.

[9]. M. J. Mihaljevic and J. D. Golic. A comparison of cryptanalytic principles based on iterative error-correction.
In Advances in Cryptology – EUROCRYPT-91, volume 547 of Lecture Notes in Computer Science, pages 527–
531. Springer, 1991.

[10]. M. J. Mihaljevic and J. D. Golic. A fast iterative algorithm for a shift register initial state reconstruction given
the noisy output sequence. In Advances in Cryptology – AUSCRYPT-90, volume 453 of Lecture Notes in
Computer Science, pages 165–175.Springer-Verlag, 1992.

[11]. Havard Molland, John Erik Mathiassen and Tor Helleseth, “Improved Fast Correlation Attack Using Low
Rate codes”, K. G. Paterson (Ed); Cryptography and coding 2003, LNCS 2898, pp. 67-81, 2003.@Springer-Verlag
Heidelberg 2003.

[12]. W. T. Penzhorn. Correlation attacks on stream ciphers: Computing low-weight parity checks based on error-
correcting codes. In Proceedings of the Third International Workshop on Fast Software Encryption, pages 159–
172, London, UK, 1996. Springer- Verlag.

[13]. R. A. Rueppel. Design and Analysis of Stream Cipher. Springer Verlag, 1986. ISBN 0-387-16870-2.

[14]. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE
Transactions on Information Theory, IT-30:776–780, 1984.

[15]. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only.IEEE Transactions on Computing,
C 34:81–85, 1985.

[16]. David Wagner, “A Generalized Birthday Problem”, CRYPTO-2002, LNCS 2442, Springer-Verlag, 2002, pp.
288-303.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2014. This is an Open Access article distributed under the terms of the International Journal
of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.]

mailto:2003.@Springer-Verlag�

