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ABSTRACT 
In this study, we examine power method for computing the dominant eigenvalue and its corresponding eigenvector of 
real square matrices. We produced an improvement in the convergence of power method. Our work is based on 
choosing of initial vector in power method for acceleration purpose. Finally, some examples are presented to illustrate 
the method and results discussed. 
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1. INTRODUCTION  
 
Eigenvalues and eigenvectors play an important part in the applications of linear algebra. The naive method of finding 
the eigenvalues of a matrix involves finding the roots of the characteristic polynomial of the matrix. In industrial sized 
matrices, however, this method is not feasible, and the eigenvalues must be obtained by other means. Fortunately, there 
exist several other techniques for finding eigenvalues and eigenvectors of a matrix, some of which fall under the realm 
of iterative methods. These methods work by repeatedly refining approximations to the eigenvectors or eigenvalues, 
and can be terminated whenever the approximations reach a suitable degree of accuracy. Iterative methods form the 
basis of much of modern day eigenvalue computation. In this paper, we outline power method, and summarize 
convergence of power method, derivations, procedures, and advantages. The method to be examined is the power 
method. 
             
Section 2 of this paper provides a brief review of some of the linear algebra background required to understand the 
concepts that are discussed. In section 3, we have presented power method and are studied in brief detail with example. 
In section 4, we produced convergence of power method with numerical examples. Finally, in section 5, we 
summarized some concluding remarks that are used in practice.  
 
For the purpose of this paper, we restrict our attention to real-valued, square matrices with a full set of real eigenvalues. 

 
2. LINEAR ALGEBRA REVIEW 
 
We begin by reviewing some basic definitions from linear algebra. It is assumed that the reader is comfortable with the 
notions of matrix and vector multiplication. 

 
Definition 2.1: Let n nA R ×∈ . A non zero vector nx R∈ is called an eigenvector of A  with corresponding eigenvalue 

Cλ∈  if .Ax xλ=  
 
Note that eigenvectors of a matrix are precisely the vectors in nR  whose direction is preserved when multiplied with 
the matrix. Although eigenvalues may not be real in general, we will focus on matrices whose eigenvalues are all real 
numbers. This is true in particular if the matrix is symmetric. 
 
It is often necessary to compute the eigenvalues of a matrix. The most immediate method for doing so involves finding 
the roots of characteristic polynomials. 
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Definition 2.2: Let 1 2, ,..........., nλ λ λ  be the eigenvalues of an n n×  matrix A . 1λ  is called the dominant eigenvalue 
of A  if  
               1 , 2,......, .i i nλ λ> =  

The eigenvectors corresponding to 1λ  are called dominant eigenvectors of A . 
 
Definition 2.3: Eigenvectors corresponding to distinct eigenvalues are linearly independent. However, two or more 
linearly independent eigenvectors may correspond to the same eigenvalue. 
 
Definition 2.4: An n n×  matrix is diagonalizable if and only if it possesses n  linearly independent eigenvectors. 
 
Definition 2.5: Let (1) (2) (3), , ,.......A A A be a sequence of matrices in m nR × . We say that the sequence of matrices 

converges to a matrix m nA R ×∈  if the sequence ( )
,
k

i jA of real numbers converges to ,i jA  for every pair

1 ,1i m j n≤ ≤ ≤ ≤ , as k  approaches infinity. That is, a sequence of matrices converges if the sequences given by 
each entry of the matrix all converge. 
 
3. DESCRIPTION OF THE POWER METHOD 
 
We saw that the eigenvalues of an n n×  matrix A  are obtained by solving its characteristic equation 
             1 2

1 2 0....... 0n n n
n nc c cλ λ λ− −
− −+ + + + =  

 
For large value of n , polynomial equations like this one are difficult and time-consuming to solve. Moreover, 
numerical techniques for approximating roots of polynomial equations of high degree are sensitive to rounding errors. 
We look at an alternative method for approximating eigenvalues. Here, the method can be used only to find the 
eigenvalue of A  that is largest in absolute value – we call this eigenvalue the dominant eigenvalue of A . The 
dominant neigenvalues are of primary interest in many physical applications. 
 

Example 3.1: Let us consider the matrix 
2 12
1 5

A
− 

=  − 
 for finding dominant eigenvalue and corresponding 

dominant eigenvectors. 
 
Solution: We know that the characteristic polynomial of A  is 2 3 2 ( 1)( 2)λ λ λ λ+ + = + + . Therefore the 

eigenvalues of A  are 1 1λ = −  and 2 2λ = − , of which the dominant one is 2 2λ = − . From the same example we 

know that the dominant eigenvectors of A  (those corresponding to 2 2λ = −  ) are of the form 
3

, 0.
1

X t t 
= ≠ 

 
 

 
3.2. THE POWER METHOD 
 
Power method is normally used to determine the largest eigenvalue (in magnitude) and the corresponding eigenvector 
of the system AX Xλ= . The power method for approximating eigenvalues is iterative. First we assume that the 
matrix A  has a dominant eigenvalue with corresponding dominant eigenvectors. Then we choose an initial 
approximation 0X  of one of the dominant eigenvectors of A . This initial approximation must be a nonzero vector in 

nR . 
 
Finally we form the sequence given by  

                  

1 0
2

2 1 0 0
2 3

3 2 0 0

1
1 0 0

( )

( )
.................................................
.................................................

( )k k
k k

X AX
X AX A AX A X
X AX A A X A X

X AX A A X A X−
−

=

= = =

= = =

= = =

 



Alanur Hussain Laskar and Samira Behera*/ Power Method and its Convergence for Approximating Dominant Eigenvalue and its 
Corresponding Eigenvector / IJMA- 5(6), June-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                                          3   

 
For large powers of k , and by properly scaling this sequence, we will see that we obtain a good approximation of the 
dominant eigenvector of A . This procedure is illustrated in example 3.3. 
 

Example 3.3: Let us now consider the matrix 
2 12
1 5

A
− 

=  − 
to approximate a dominant eigenvector. 

 

Solution: We begin with an initial approximation 0

1
1

X  
=  
 

 

 
We then obtain the following approximations. 
         
                      Itereation                   Approximation  

1 0X AX=
2 12
1 5

− 
=  − 

1 10 2.50
 4

1 4 1.00
−     

= → −     −       

2 1X AX=
2 12
1 5

− 
=  − 

10 28 2.80
  10

4 10 1.00
−     

= →     −       

3 2X AX=
2 12
1 5

− 
=  − 

28 64 2.91
 22

10 22 1.00
−     

= → −     −       

4 3X AX=
2 12
1 5

− 
=  − 

64 136 2.96
 46

22 46 1.00
−     

= →     −       

5 4X AX=
2 12
1 5

− 
=  − 

136 280 2.98
 94

46 94 1.00
−     

= → −     −       

6 5X AX=
2 12
1 5

− 
=  − 

280 568 2.99
 190

94 190 1.00
−     

= →     −       

 

Note that the approximation in example 3.3 appear to be approaching scalar multiples of
3
1
 
 
 

, which we know from 

example 3.1 is a dominant eigenvector of the matrix 
2 12
1 5

A
− 

=  − 
. 

 
In example 3.3, the power method was used to approximate a dominant eigenvector of the matrix A . In that example 
we already knew that the dominant eigenvalue of A  was 2λ = − . 
 
4. CONVERGENCE OF POWER METHOD 
 
Theorem 4.1: If A  is an n n×  diagonalizable matrix with a dominant eigenvalue, then there exists a nonzero vector 

0X  such that the sequence of vectors given by 2 3
0 0 0 0, , ,.........., ,..........kAX A X A X A X approaches a multiple of 

the dominant eigenvector of A . 
 
Proof: Since A  is diagonalizable, then we know that it has n  linearly independent eigenvectors 

1 2 3, , ,......., nX X X X  with corresponding eigenvalues of 1 2 3 ., , ,........, nλ λ λ λ . We assume that these eigenvalues 

are ordered so that 1λ  is the dominant eigenvalue (with a corresponding eigenvector of 1X ). Because the n  

eigenvectors 1 2 3, , ,........, nX X X X  are linearly independent, they must form a basis for nR . For the initial 

approximation 0X , we choose a nonzero vector such that the linear combination 

                   0 1 1 2 2 3 3 .......... n nX c X c X c X c X= + + + +  
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has nonzero leading coefficients. If 1 0c = , the power method may not converge, and a different 0X  must be used as 
the initial approximation. Now, multiplying both sides of this equation by A  produces 

0 1 1 2 2

1 1 2 2

1 1 1 2 2 2

( ........... )
       ( ) ( ) ........... ( )
       ( ) ( ) ........... ( )

n n

n n

n n n

AX A c X c X c X
c AX c AX c AX
c X c X c Xλ λ λ

= + + +
= + + +
= + + +

 

 
Repeated multiplication of both sides of this equation by A  produces 

0 1 1 1 2 2 2( ) ( ) .............. ( ),k k k k
n n nA X c X c X c Xλ λ λ= + + +  

which implies that  

0 1 1 1 2 2 1 2 1[ ( ) ............ ( ) ]k k k k
n n nA X c X c X c Xλ λ λ λ λ= + + +  

 
Now, from our original assumption that 1λ  is larger in absolute value than the other eigenvalues it follows that each of 

the fractions 2 1 3 1 1, ,.........., nλ λ λ λ λ λ  is less than 1 in absolute value. Therefore each of the factors 

2 1 3 1 1( ) , ( ) ,.............., ( )k k k
nλ λ λ λ λ λ  must approach 0 as k  approaches infinity. This implies that the 

approximation 0 1 1 1 1, 0k kA X c X cλ≈ ≠ , improves as k  increases. Since 1X  is a dominant eigenvector, it follows 

that any scalar multiple of 1X  is also a dominant eigenvector. Thus we have shown that 0
kA X  approaches a multiple 

of the dominant eigenvector of A . 
 
N.B.: The proof of the above theorem provides some insight into the rate of convergence of the power method. That is, 
if the eigenvalues of A  are ordered so that  
 

1 2 3 .......... ,nλ λ λ λ> ≥ ≥ ≥  then the power method will converge quickly if 2 1λ λ  is small, and slowly if 

2 1λ λ  is close to 1. This fact is illustrated in example 4.2. 
 
Example 4.2: The rate of convergence of the power method 

(a)The matrix 
4     5
6     5

A  
=  
 

, has eigenvalues of 1 10λ =  and 2 1λ = − . Thus the ratio 2 1λ λ  is 0.1. For this 

matrix, we have seen that only four iterations are required to obtain successive approximations that agree when rounded 
to three significant digits, as shown in table 1.1. 
 

Table - 1.1. 
 

     0X                         1X                            2X                            3X                                    4X  

 
1.000
1.000
 
 
 

               
0.818
1.000
 
 
 

                
0.835
1.000
 
 
 

                  
0.833
1.000
 
 
 

                         
0.833
1.000
 
 
 

                    

 

(b) The matrix 
4     10

7         5
A

− 
=  
 

, has eigenvalues of 1 10λ =  and 2 9λ = − . For this matrix, the ratio 2 1λ λ  is 

0.9, and the power method does not produce successive approximations that agree to three significant digits until sixty-
eight iterations have been performed, as shown in table 1.2. 
 

Table - 1.2. 
 
      0X               1X                 2X          ……………………..      66X                         67X                         68X  

1.000
1.000
 
 
 

0.500
1.000
 
 
 

       
0.941
1.000
 
 
 

     …………………….    
0.715
1.000
 
 
 

              
0.714
1.000
 
 
 
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0.714
1.000
 
 
 

                  

 
From above two tables we conclude that if the ratio 2 1λ λ  is small, then the power method will converge quickly 

and if the ratio 2 1λ λ  is close to 1, then the power method will converge slowly. 
 
5. RESULT AND DISCUSSION 
 
We have discussed the use of the power method to approximate the dominant eigenvalue of a matrix. This method can 
be modified to approximate other eigenvalues through use of a procedure called deflation. Moreover, the power method 
is only one of several techniques that can be used to approximate the dominant eigenvalue and its corresponding 
eigenvector of a matrix. 

 
CONCLUSION 
 
The purpose of this paper was to provide an overview of the power method and its rate of convergence used to compute 
the dominant eigenvalue and its corresponding eigenvector of real-valued square matrices. Here, we used the new 
initial vector for the power method for the approximation of dominant eigenvalue and its corresponding eigenvector.  
 
Mainly, in this paper we have seen that with examples 4.2(a) and 4.2(b), the rate of convergence of power method is 
faster if 2 1λ λ  is small and slow rate of convergence if 2 1λ λ  is close to 1. 
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