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ABSTRACT 
The variable viscosity effects on the onset of penetrative convection simulated via internal heating in a two-layer 
system in which a layer of fluid overlies and saturates a layer of porous medium is studied. The Beavers–Joseph slip 
condition is applied at the interface between the fluid and the porous layers and dependence of viscosity is assumed to 
be exponential. The boundaries are considered to be rigid, however permeable, and insulated to temperature 
perturbations. The eigen value problem is solved using a regular perturbation technique with wave number as a 
perturbation parameter. The ratio of fluid layer thickness to porous layer thickness, ζ, the viscosity parameter B, and 
the presence of volumetric internal heat source in fluid and/or porous layer play a decisive role on the stability 
characteristics of the system. It is observed that both stabilizing and destabilizing factors can be enhanced because of 
the simultaneous presence of a volumetric heat source and variable viscosity effects so that a more precise control 
(suppress or augment) of thermal convective instability in a layer of fluid or porous medium is possible. 
 
Key words: composite layer; penetrative convection; Variable viscosity. 
 
 
1. INTRODUCTION 
 
The problem of fluid flow over a porous medium is encountered in a wide range of industrial and geophysical 
applications, such as   the extraction of oil from underground reservoirs, the manufacturing of composite materials used 
in the aircraft and automobile industries, flow of water under the earth’s surface and growing of compound films in 
thermal chemical vapour deposition reactors. A detailed review is given by Nield and Bejan (2006) with current highly 
relevant literature including (Chen 1990; Chen and Jay W. Lu 1992; Carr 2004; Chang (2004; 2005; 2006); 
Shivakumara et al. (2011; 2012) and Hill and Straughan 2009). 
 
The mechanism of internal heating in a flowing fluid is relevant to the thermal processing of liquid foods through 
ohmic heating, where the internal heat generation serves for the pasteurization/sterilization of the food Ruan et al. 
(2004). Other important applications of flows with internal heat generation are relative to nuclear reactors, as well as to 
the geophysics of the earth’s mantle. In both cases, the internal heating is due to the radioactive decay. For nuclear 
reactors, processes of natural convection with internal heating are extremely important in the analysis of severe 
accident conditions. As pointed out by Generalis and Busse (2008), flows with volumetric heating are relevant for the 
physics of the atmosphere, in connection with the absorption of solar radiation. Due to the wide range of industrial and 
geophysical applications, extensive literature has been recently produced on this subject; see e.g. (Carr 2004, Carr and 
Putter 2003, Hill 2004, Straughan 2008 and Zhang and Schubert 2002). 

 
It is important to note that the viscosity of a liquid is usually strongly dependent on temperature (cf. Capone & Gentile 
1994, 1995; Galiano 2000). Convection problems for which the viscosity or conductivity is a function of temperature 
has received much recent attention in the literature (e.g. Payne & Straughan 2000; Manga et al. 2001; Shevtsova et al. 
2001), making this work particularly timely. 
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Variable viscosity effects on the convective stability in superposed fluid and porous layers configuration were 
investigated by Chen et al. (1992). They chose the viscosity-temperature model as exponential and the onset of the 
convection are obtained from observing the streamline patterns at the onset of instability. The stability of convection in 
a two-layer system in which a layer of fluid with a temperature-dependent viscosity overlies and saturates a highly 
porous material is studied by Antony et al. (2009). The intent of the present study is to obtain the criterion for the onset 
of instability thresholds of penetrative convection via internal heating in a two-layer system in which a fluid layer 
overlies a layer of fluid saturated porous medium with variable viscosity effects. This is achieved by performing the 
linear stability analysis. The boundaries are considered to be insulated to temperature perturbations. A regular 
perturbation technique with wave number as a perturbation parameter is used to solve the eigen value problem in a 
closed form. A wide-ranging parametric study is undertaken to explore their impact on the stability characteristics of 
the system. 

 
2. MATHEMATICAL FORMULATION 

 
We consider penetrative convection via internal heating in a system consisting of an infinite horizontal fluid layer of 
thickness d overlying a layer of porous medium of thickness md  as shown in Fig.1. A Cartesian coordinate system (x, 
y, z) is chosen with the origin at the interface and the z-axis vertically upward. The gravity acts in the vertical direction 
with constant acceleration g . The top and bottom boundaries are assumed to be rigid-permeable and are maintained at 

uniform but different temperatures lT and ( )u lT T< respectively. 

 
Fig. - 1. Physical configuration 

 
The governing equations for the fluid and the porous layers are: 
 
Fluid layer: 

0V∇⋅ =


                                                    (1) 

( ) ( ) ( )0 0 01 .V V p g T T T Dρ ρ α µ   ⋅∇ = −∇ + − − +∇   
 



                                 (2) 

( ) 2
fV T T qκ⋅∇ = ∇ +



.                       (3) 

 
Porous layer: 

0mV∇⋅ =


                                          (4)

( ) ( )
0 01 0m m m

T
p g T T V

K
µ

ρ α −∇ + − − − = 




                       (5) 

( ) 2
m m m m m mV T T qκ⋅∇ = ∇ +


.                                        (6) 

 
In the above equations, ( , , )V u v w=



 is the velocity vector, p is the pressure, T is the temperature, fq  is the heat 

source in the fluid layer, the deviatoric strain tensor TD is V V∇ +∇  and κ is the thermal diffusivity, while ,mV


mp
, mT  , mq and mκ  are the corresponding quantities in the porous layer  
 
The boundary conditions are formally the same as those in Chen (1990).  At the upper boundary ,z d= uT T=  and at 

the lower boundary ,m mz d= − lT T= . At the interface 0,z =  the continuity of normal velocity, temperature, heat 
flux and the normal stress are assumed. That is,  
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mw w=                                                                                                                   (7) 

mT T=                                                                     (8) 

m
m

m

TTk k
z z

∂∂
=

∂ ∂
                                   (9)

2 m
wp p
z

µ ∂
− + = −

∂
                                      (10) 

where k and mk  are the thermal conductivities for the fluid and the porous medium, respectively. 
 
As the fifth condition, the Beavers and Joseph (1967) slip condition in which the slip in the tangential velocity is 
proportional to the vertical gradient of the tangential velocity in the fluid is used.  
 
The basic steady state is assumed to be quiescent and temperature distributions are found to be  

( ) ( )0 2
0 2 2

f fu
b

q d qT T
T z T z z

d κ κ
  −

= − − +  
   

0 z d≤ ≤                                                                                         (11) 

( ) ( )0 2
0 2 2

l m m m
mb m m m

m m m

T T q d qT z T z z
d κ κ

  −
= − − +  

   

0m md z− ≤ ≤
                                                                  (12)

 

Where 0T  is the temperature at the inter face. In order to investigate the stability of the basic solution, infinitesimal 
disturbances are introduced in the form 

( ), , ( )b bV V T T z T p p z p′ ′ ′= = + = +
 

                                                  (13) 

( ), , ( )m m m mb m m mb mV V T T z T p p z p′ ′ ′= = + = +
 

                                  (14)

    
 

where the primed quantities are the perturbations and assumed to be small. Eqs. (13) and (14)are substituted in Eqs. (1)- 
(6) and linearized in the usual manner. The pressure term is eliminated from Eqs. (2) and (5) by taking curl twice on 
these two equations and only the vertical component is retained. The variables are then nondimensionalized using 

2, / , /d d dκ κ and 0 uT T−  as the units of length, time, velocity, and temperature in the fluid layer and 
2, / , /m m m m md d dκ κ and 0lT T− as the corresponding characteristic quantities in the porous layer. Note that separate 

length scales are chosen for the two layers so that each layer is of unit depth. In this manner, the detailed flow fields in 
both the fluid and porous layers can be clearly discerned for all depth ratios md dζ = and the non-dimensional 
disturbance equations are now given by 

( ) ( ) ( )( )4 2 2 2 22 2 h h
wf z w f z f z w w R T
z

∂′ ′′∇ + ∇ + ∇ −∇ = − ∇
∂

                                 (15) 

[ ]2 1 (1 2 )T w Ns z∇ = − − −                                      (16) 

( ) ( )2 2m
m m m m m hm m

m

wf z w f z R T
z

∂′∇ + = ∇
∂

                                                                 (17) 

[ ]2 1 (1 2 )m m m m mT w Ns z∇ = − + +                                                    (18) 
 
The boundary conditions are 

0 1T ww at z
z z

∂ ∂
= = = =
∂ ∂      

                                                (19) 

0 1.m
m

m

Tw at z
z
∂

= = = −
∂       

                                               (20) 

 
At the interface (i.e., z = 0) the continuity of velocity, temperature, heat flux, normal stress and the Beavers and Joseph 
(1967) slip conditions are imposed. Accordingly, the conditions are: 

m
T

w wζ
ε

=
   

                                    (21) 
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T
mT Tε

ζ
=

   
                                    (22) 

m

m

TT
z z

∂∂
=

∂ ∂        
                                (23) 

( ) ( ) ( )
2 2 4

2 2
2 20 3 0 0 m

h h
T m

wwf f w f
z z z Da z

ζ
ε

    ∂∂ ∂ ∂′∇ + + −∇ + = −   ∂ ∂ ∂ ∂   
                                (24) 

2 3

2
m

mT

ww w
z z zDa Da

βζ βζ
ε

∂∂ ∂
= −

∂ ∂ ∂
  

                                  (25) 

 
Since the principle of exchange instabilities holds for thermal convection either in fluid layer or a porous layer. It is 
reasonable to assume that it holds good even for the present configuration as well. Then performing a normal mode 
expansion of the dependent variables in both fluid and porous layers as 

( ) ( ) ( ) ( ), , expW T W z z i lx myθ   = +         
                              (26) 

( ) ( ) ( ) ( ), , exp
mm m mW T W z z i lx myθ   = +   





    
                               (27) 

 
and substituting them in Eqs. (15) – (18), we obtain the following ordinary differential equations  

( )( ) ( )( ) ( )( )22 2 2 2 2 2 22f z D a W f z D a DW f z D a Ra′ ′′− + − + + = Θ
                            

(28) 

( ) ( )2 2 1 1 2D a W Ns z − Θ = − − −   
                                   (29) 

( )( ) ( )2 2 2
m m m m m m m m m mf z D a w f z D w a R′− + = − Θ                                   (30) 

( ) [ ]2 2 1 (1 2 )m m m m m mD a w w Ns z− = − + +                                    (31) 

 
Where W is the amplitude of perturbed vertical velocity and Θ  is the amplitude of perturbed temperature in the fluid 
layer, while mW  and mΘ are the corresponding quantities in the porous medium. In the above equations, / .D d dz=  

2 2a l m= + and 2 2
ma l m= +   are correspondingly the overall horizontal wave numbers in the fluid and porous 

layers.   
 
The boundary conditions are: 

0 1W D DW at z= Θ = = =                                                    (32) 
 

0 1m m m mW D at z= Θ = = − .                                                   (33)
    
And those at the interface as 

m
T

W Wζ
ε

=
         

                              (34) 

T
m

ε
ζ

Θ = Θ                                                       (35) 

 

m mD DΘ = Θ                                        (36) 

( ) ( )( )
4

2 2 2 2(0) 3 0 (0) m m
T

f D a DW f D a f D W
Da
ζ

ε
−′− + + =

  
                               (37) 

3
2

m m
T

D D W D W
Da Da
βζ βζ

ε
− 

− = 
 

.

   

                                                (38) 
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where /T mε κ κ=  is the ratio of thermal diffusivities, md dζ = is the ratio of fluid layer to porous layer thickness 

and β  is the Beavers-Joseph slip parameter. Thus, the problem is reduced to an eigen value problem consisting of a 
sixth order ordinary differential equation in the fluid layer and a fourth order ordinary differential equation in the 
porous layer, subject to 10 boundary conditions. If matching of the solutions in the two layers is to be possible, the 
wave numbers must be the same for the fluid and porous layers, so that we have / /m ma d a d= and hence / ma aζ =  
 
3. METHOD OF SOLUTION 
 
Since the critical wave number is exceedingly small for the assumed temperature boundary conditions (Nield and Bejan 
2006), the eigen value problem is solved using a regular perturbation technique with wave number 𝑎𝑎as a perturbation 
parameter. Accordingly, the dependent variables are expanded in powers of 𝑎𝑎2in the form 

( ) ( ) ( )2

0
, ,

N i

i i
i

W a W
=

Θ = Θ∑
       

                              (39) 

( ) ( )
2

2
0

, , .
iN

m m mi mi
i

aW W
ζ=

 
Θ = Θ 

 
∑

      

                              (40)

 
  

 
Substitution of Eqs. (39) and (40)into Eqs. (28)-(31) and the boundary conditions (31)-(37) yields a sequence of 
equations for the unknown functions ( ), ( )i iW z zΘ , ( )mi mW z  and ( )mi mzΘ for 0,1, 2,3......i = . 
 
At the leading order in 𝑎𝑎2 Eqs. (28)-(31) become, respectively, 

4 3 2
0 0 0( ) 2 ( ) ( ) 0f z D W f z D W f z D W′ ′′+ + =                                    (41) 

2
0 0( )D N z Wθ = −                                       (42) 

( ) ( )2
0 0 0 0 0m m m m m mf z D w f z D w′+ =                                     (43) 

2
0 0 ( )m m m mD W N zΘ =                                       (44) 

 
where 

[ ]( ) 1 (1 2 ) , ( ) 1 (1 2 )f m m mN z Ns z N z Ns z = − − = + +                                   (45) 

 
and the boundary conditions (32)-(38) become 

0 0 00, 0, 0 at 1W D DW z= Θ = = =                                                                  (46) 

0 00, 0 at 1m m m mW D z= Θ = = −                                                                                 (47) 

and at the interface 0,z =  

0 0m
T

W Wζ
ε

=
        

                              (48) 

0 0
T

m
ε
ζ

Θ = Θ                                       (49)

0 0m mD DΘ = Θ                                       (50) 
4

3 2
0 0 0(0) (0) (0) m m

T

f D W f D W f D W
Da
ζ
ε

′+ = −
  

                                (51) 

 

3
2

0 0 0.m m
T

D W DW D W
Da Da
βζ βζ

ε
− = −                                     (52) 

 
The solution to the zeroth order Eqs. ( )( 41) 44− is given by 

0 00, TW
ε
ζ

= Θ =                                                      (53) 

0 00, 1.m mW = Θ =
                                      

(54)
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At the first order in 2a Eqs. (28) - (31) then reduce to 

4 3 2
1 1 1 0( ) 2 ( ) ( )f z D W f z D W f z D W R′ ′′+ + = Θ                                   (55) 

2
0 0 1( )D N z Wθ θ− = −                                       (56) 

( ) ( )2
1 0 0 1 0m m m m m m m mf z D w f z D w R′+ = − Θ                                    (57) 

2
1 0 1 ( )m m m m mD W N zΘ −Θ =                                   (58) 

  
and the boundary conditions (32)-(38) become 

1 1 10, 0, 0 1W D DW at z= Θ = = =                                                                  (59) 
 

1 10, 0, 1.m m m mW D at z= Θ = = −                                                                                  (60) 

     
 

And at the interface( 𝑖𝑖. 𝑒𝑒 𝑧𝑧 = 0) 

1 1
1

m
T

W W
ζε

=
       

                               (61) 

1 13
T

m
ε
ζ

Θ = Θ
     

                                (62) 

1 12

1
m mD D

ζ
Θ = Θ

     
                               (63)

4
3 2

1 1 1(0) (0) (0) m m
T

f D W f D W f D W
Da
ζ
ε

′+ = −
                               (64)

 

3
2

1 1 1.m m
T

D W DW D W
Da Da
βζ βζ

ε
− = −                                                                             (65) 

 
The general solution of Eqs.(55) and (57) are

 
 

( )
2

1 1 2 3 4 2 [ 1 2 ]
2

Bz Bz T zW R C C z C e C ze Exp B z
B

ε
ζ

− − 
= + + + + − − 

 
                                (66) 

( )
2

1 5 6 4 [ 1 2 ]mBz T m
m m

Da zW R C C e Exp B z
B

ε
ζ

− 
= + + − − 

     
                                       (67) 

Where 1 2 3 4 5 6, , , , andC C C C C C  are constants and they have to determined using the appropriate boundary 
conditions. 

4 22

1 22
1 32

BB
Te DaeC

L B LDa
ζ ε

ζ

−−  + −
= −  − 

, 
2

2 4 2 2
2

2 2B B B

B

Da e e B BeC
L B Daeζ ζ ζ

−  − + +
=   − − 

 

( )2
3 6

3 2
1

,
2

B
T T

T

C CeC
B L

ε ζ ε ζ
ε ζ

− +
=

           

( )22
2 5

4 2 4 ,
2

B
T

T

C CeC
B

ζ ε ζ

ε ζ

− − +
= ( )2

1
5 2

4

,
B

T T CeC
B L

ε ζ ε ζ−
=

( )2
4

6 2 2
1 4

,
2

B
T T

B

CeC
B L L B e

ε ζ ε ζ−
=

+
                     ( )2 3 2

1 5 ,TL B Da Daζ βζ ε= + +
 

( )
( )

2 2 3

2 3
,

1 B

B Da DaB
L

Da e

ζ βζ

β ζ

−
=

−
             

3
1

3 2 2 ,
T

LL L B Da
B
βζ

ε
 

= − 
 

33
3

4
T

T

B LBL
Da Da

β ζε βζ
ε

 
= −  
   

Equations (56) and (58) involving 2
1D Θ and 2

1m mD Θ respectively provide the solvability requirement which is given 
by 
1 0

1 12 2
0 1

1 1( ) ( ) .T
m mN z W dz N z W dz ε

ζ ζ ζ−

+ = +∫ ∫                                    (68) 
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The expressions for 1W  and 1mW  are back substituted into Eq. (68) and integrated to yield an expression for the critical 

Rayleigh number c
mR , which is given by 

( ) ( )

2

2 4

1 1 2 2 3 3 4 4 5 5 6 6 72

1

1

T T

c
m

Da

R
k C k C k C k C k C k C k

ε ε
ζ ζ ζ

ζ

  
+   

  =
+ + + + + − +

                                                               (69) 

where 

3
1 2

f
B

BNs
k B

e−

 
= + 
 

,  
( )
( )

2 2 2

2 2 2

5

1

B B B
ff

B

B Nse Ns e ek
B B Be

− −

−

 +  
 = + − 

−   
 

( )
( )

2 2 2

3 2 2 32

2 2 2
4 1

B B B B
ff

B

B Nse Ns e e ek
B B B Be B

− −

−

 +  
 = + − + 

− +     

( )
( )

( ) 2 2
2 3

4 5 2 3 22 2

2 42 22 6,
B B

f ff fB T
TB

B Ns B NsNs Ns e ek e k DaB
B DaB B B B BB B e

ε ε
ζ

− −
−

−

   + +  
   = + = + − + 

+ −      
 

( )
( )

( )2 3

6 2

2
,

BB
mm

B

e BB NsNs ek
B B BB e

−  −+− −  = + −
  −   

( )
7 2 3

2 15 2
5

BB B
m

eNs e ek
B B B B

−− − −
 = + + +
  

. 

 

The expression for c
mR is evaluated for different values of various physical parameters and the results are discussed in 

detail in the next section. 
 
4. RESULTS AND DISCUSSION 
 
The variable viscosity effects on the onset of penetrative convection via internal heating is considered in a system 
consisting of a fluid layer overlying a porous layer. In the calculation, we have chosen the value of  φ = 0.389, bC
=209.25 and 33.04 10Da −= × which correspond to 3 cm deep porous layer consisting of 3mm diameter glass beads 
(Chen(1990)). The results are discussed for different depth ratiosζ .  

 
We focus on the variable viscosity effects on the stability characteristics of the motionless fluid in the superposed 
layers configuration. The exponential model is applied because of its wider use for hydrogen-bonded liquids than the 
other models (  Stengel et al.  (1982); Chen and Pearlstein(1988) and Wooding(1957)).  The exponential model is in the 
form  

 

[ ]0( ) exp BT B B Tµ = −                                                    (70) 

where max

min

B ν
ν
 

=  
 

and BT , is the dimensionless basic state temperature. We choose 0T , the basic state temperature at 

the interface, to be the reference temperature. And the following three different cases of internal heating pattern is 
considered for discussion namely,  

 
Case - (i):   internal heat source in the porous layer alone (i.e., 0fNs = , 5)mNs =  
 
Case - (ii):  internal heat sources in both fluid and porous layers (i.e., 5fNs = , 5)mNs = and 
 
Case - (iii): internal heat source in the fluid layer alone (i.e., 5fNs = , 0mNs = ). 
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4.1. Depth Ratio 1ζ >>  
 
This is the case of a pure fluid layer and the stability characteristic of the system is measured by the Rayleigh number. 
In the absence of internal heating ( 0fNs = ) and constant viscosity ( 0B = ), we recover the known exact value 

720cR = (Sparrow et al.1964) is retrieved. It is observed that the in the absence of internal heat source ( 0fNs = ) 

the critical Rayleigh number cR  increases initially, with B  reaches maximum and then decreases with further increase 

in  the value of .B  As a result of Fig. 2 some unusual behaviours are observed namely, (i) increasing variable viscosity 
parameter shows some stabilizing effect initially and (ii) increasing internal heat source strength causes stabilizing 
effect initially. Thus B  increases, the bulk viscosity of the upper fluid layer increases relative to the fixed interfacial 
viscosity. It is known that larger viscosity makes the motionless state more stable, since viscosity is a stabilizing factor. 
 
4.2. Depth Ratio 1ζ <<  
 
This is the case of a pure porous layer and the stability characteristic of the system is measured by mR . In the absence 

of internal heating ( 0mNs = ) and constant viscosity ( 0B = ), we recover the known exact value 12c
mR = (Nield and 

Bejan 2006). It is observed that the increasing both internal heat source strength and variable viscosity parameter 
causes destabilizing effect always (see Fig.3) because the lower porous layer predominates the system by convection 
hence system becomes less stable as B  increases. 
 
4.3. Depth Ratio 0.1ζ =  
 
The stability of the system is characterized by c

mR . Figure.4 exhibit plot of c
mR as a function of B  for the above 

mentioned three cases of internal heating pattern. From Fig. 4 it is seen that for all the cases of internal heating pattern 
considered, the variable viscosity destabilizes the system because the lower porous layer predominates the system by 
convection hence system becomes less stable as B  increases. 

 
4.4. Depth Ratio 0.1ζ >   
 
The stability of the system is characterized by c

mR . Figure 5 exhibit plot of c
mR as a function of B  for the above 

mentioned three cases of internal heating pattern for ζ = 0.2. From Figs. 4, it is observed that the system is stabilizing 

when 0 0.8B≤ ≤  and 0 0.7B≤ ≤ for 5fNs = and 0mNs =  and 5fNs = and 5mNs = , respectively and for 

higher values of B the system is destabilizing. For 0fNs = and 5mNs = , the system is always destabilizing as the 

value of c
mR decreases with B . 

0 3 6 9 12

600

800

1000

1200

1400

 Ns =

 
cR

B

5

0

2

1

 

 

 
Fig. – 2. Critical Rayleigh number versus B for different values of Ns for 1ζ >>  
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Fig. – 3. Critical Rayleigh number versus B for different values of Ns for 1ζ <<  
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Fig. –  4. Critical Rayleigh number versus B  for different values of andf mNs Ns with 0.1ζ =  
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Fig. – 5. Critical Rayleigh number versus B for different values of andf mNs Ns with 0.2.ζ =  
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The findings for ζ =0.5,1,2 shown in Figs. 6, 7 and 8  for three cases of internal heating pattern are found to be similar 
to those of ζ =0.2 except the variation in the ranges of B in which the system gets stabilized.  From Fig. 6 it is seen 

that the system is stabilizing when 0 2.4B≤ ≤  and 0 1.8B≤ ≤ for 5fNs = and 0mNs =  and 5fNs = and

5mNs = , respectively and for higher values of B the system is destabilizing.  From Fig. 7, it is observed that the 

system is stabilizing when 0 5.8B≤ ≤  and 0 3.7B≤ ≤ for 5fNs = and 0mNs =  and 5fNs = and 5mNs = , 

respectively and for higher values of B the system is destabilizing. From Fig.8, it is observed that the system is 
stabilizing when 0 6.7B≤ ≤  and 0 5.8B≤ ≤ for 5fNs = and 0mNs =  and 5fNs = and 5mNs = , respectively 

and for higher values of B the system is destabilizing. For 0fNs = and 5mNs = , the system is always destabilizing 

as the value of c
mR decreases with B  for all depth ratios considered.  

 
Figure.9 depicts the perturbed vertical velocity eigen functions W  and mW  for different values of andf mNs Ns for 

1ζ = . The presence of volumetric heating has no noticeable influence on mW and the presence of internal heating in 

the fluid layer alone and both fluid and porous layers is to accelerate W  compared to its presence internal heating in 
the porous layer alone and absence of internal heating in both fluid and porous layers.  
 
Figure.10. depicts the perturbed vertical velocity eigen functions W  and mW  for 0and 0f mNs Ns= =

 
for different 

values of  B  with 1ζ = . The presence and absence of B  has no noticeable influence on mW and the small values of 

B  ( . 1 and 2)i e B B= =  is to accelerate W  compared to its 0B =   and larger values of B  ( . 5).i e B =  
 

0 2 4 6 8
0.00

0.04

0.08

0.12

 5, 0

5, 5

0, 5

f m

f m

f m

Ns Ns
Ns Ns
Ns Ns

= =

= =

= =

Rc
m

B

 

 

 
Fig. – 6. Critical Rayleigh number versus B  for different values of  andf mNs Ns  with 0.5ζ =  
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Fig.- 7. Critical Rayleigh number versus B  for different values of  andf mNs Ns  with 1.ζ =  
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Fig. – 8. Critical Rayleigh number versus B  for different values of  andf mNs Ns  with 2.ζ =  
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Fig. - 9. Perturbed velocity eigen functions W and mW for different values of andf mNs Ns  with 1.ζ =  
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Fig. - 10. Perturbed velocity eigen functions W and mW for different values of B  with 1.ζ =  

 
5. CONCLUSIONS 
 
The onset of penetrative convection via internal heating in superposed fluid and porous layers system is studied in the 
presence of a variable viscosity effects.  From the foregoing analysis, it is observed that the stability characteristics of 
the configuration depend crucially on (i) the presence of internal heating in fluid and/or porous layer, (ii) depth ratio ζ  
and (iii) variable viscosity effects. For ζ = 0.1, the system is destabilizing for all the cases of internal heating pattern 
considered. To the contrary, the system is found to be more stabilizing if the fluid layer alone is heated internally and 
least stable if the both the layers are heated internally when ζ =0.2, 0.5,1and 2. In this case, the system is destabilizing 
for porous layer heated alone.  Thus we note that the problem considered provide more precise control of thermal 
convective instability arising either in a porous layer or in a fluid layer by changing the internal heating pattern or the 
depth ratio ζ or the variable viscosity effects or considering all the effects together because both the stabilizing and 
destabilizing factors can be enhanced more in the combined porous and fluid layers system than for a single layer 
system.  
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