Approximation of Unbounded Function by q-Bernstein-Kantorovich Operator in Locally-Global Weighted $L_{P,w}(X)$ -Space

Sahib Al-Saidy* and Ali Hussein Department of Mathematics, Collage of science, Al-Mustansiriya University, Iraq.

(Received on: 29-03-14; Revised & Accepted on: 13-04-14)

ABSTRACT

The aim of this paper is to study the approximation of unbounded function by q-Bernistein-Kantorovich operator in locally-global weighted-space $L_{P,w}(X)$ ($1 \le P < \infty$) using the weighted Ditzain-Totik modulus of smoothness.

INTRODUCTION

In the two decades interesting generalization of Bernistein polymails were proposed by Lupas [1] and by Phillips [2]. Generalizations of the Bernistein polynomials based on the q-integers was attracted alot of interest and was studied widely by a number of authors [3].

Recentely, some new generalizations of well-known positive linear operators, based on q-integers were introduced and studied by several authors [4, 5]. The purpose of this paper is to study approximation of unbounded functions by q-Bernstein-Kantorovich operators.

Before proceding to the study of second order of approximation by q-Bernistein-Kantorovich operators, it is necessary to know some definitions.

Definition: 1 Let X = [0, 1], $L_{P,w}(X)$ be the space of all unbounded continuous functions $f(1 \le P < \infty)$, which are equipped with the following norm.

 $||f||_{P,w} = \left[\left|\int_X (fw)_{(x)}\right|^p dx\right]^{\frac{1}{p}}$ where (fw) is continuous on [0,1] and w is a positive weighted function, 0 < w(x) < 1.

Definition: 2 For $f \in L_{P,w}(X), X = [0,1], 1 \le P < \infty$ let

$$||f||_{P,\delta,w} = \left[\left(\int_X \left(Sup\{|f(u)w(u)| : u \in N(x,\delta)\} \right) \right)^p dx \right]^{\frac{1}{p}} \text{ is the locally global norms of } f$$

where
$$N(x, \delta) = \{y \in X : |x - y| \le \delta\}, \delta \in \mathbb{R}^+, x \in X$$

Then we denote

$$L_{P \delta w}(X) = \{f : ||f||_{P \delta w} < \infty\}$$

Definition: 3 [8] For q>0 and $n \in N$ let $[n] = [n]_q = q^0 + q^1 + q^2 + \dots + q^{n-1}$ with [0] = 0 be the q-integer [n]. And the q-fractional [n]! is defined by [n]! = $[n]_q$! = $[1]_n + [2]_n \dots [n]_n$ with [0]!=1 and for integers $0 \le k < n$ then $[n]_n = \frac{[n]!}{[k]![n-k]!}$ Be the q-binomial coefficient

Definition: 4 [6] For $f \in c[0,1]$ let $\int_0^A f(t)d_qt = A(1-q)\sum_{n=0}^\infty f_{(Aq^n)}\cdot q^n$ (0<q<1) be the q-analouge of integration in the interval [0, A] and $B_{n,q}^*(f,x) = \sum_{k=0}^n P_{n,k}(q,x)\int_0^1 f((\frac{[k]+q^kt}{[n+1]})d_qt$ be the modificatedKantrorovich type q-Bernisteinpolynimail,

where
$$P_{n,k}(q,x) = {n\brack k} x^k (1-x)_q^{n-k}, (1-x)_q^n = \prod_{s=0}^n (1-q^s x), \ 0 \le x \le 1, \ n \in \mathbb{N}.$$

Corresponding author: Ali Hussein. E-mail: agelali11@yahoo.com Department of Mathematics, Collage of science, Al-Mustansiriya University, Iraq.

Definition: 5 For
$$f \in L_{P,w}(X)$$
, $X = [0, 1], 0 < q < 1$ let

$$\int_0^1 (fw)_{(t)} d_q t = (1-q) \sum_{n=0}^{\infty} (fw)_{(q^n)} \cdot q^n$$

be the q-analogue of integration in the interval [0, 1] and $B_{n,q}^*(f,x) = \sum_{k=0}^n P_{n,k}(q,x) \int_0^1 (fw) \left(\frac{[k]+q^kt}{[n+1]}\right) d_qt$ be the modificated Kantorovich type q-Bernstein polynomial,

where
$$P_{n,k}(q,x) = {n \brack k} x^k (1-x)_q^{n-k}, (1-x)_q^{n-k} = \prod_{s=0}^{n-k-1} (1-q^s x), n \in \mathbb{N}$$

Remark: 1 For $q \rightarrow 1$ then

 $B_{n,q}^*(f,x) = B_n^*(f,x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \int_0^1 (f w) (\frac{k+t}{n+1}) dt$, which is say the classical Kantorovich operator n=1, 2...

Proof: For $q \to 1$ we have

$$[n]_q = [n] = q^0 + q^1 + \dots + q^{n-1} = 1 + 1_{+n-time} + \dots + 1 = n,$$

Thus

[n]=n and we get [n]! =[1] \cdot [2] \cdot ... \cdot [n] = 1 \cdot 2 \cdot ... \cdot n = n!,

Thus

Then

$$B_{n,k}^*(f,x) = \sum_{k=0}^n P_{n,k}(q,x) \int_0^1 (fw) \left(\frac{[k] + q^k t}{[n+1]}\right) d_q t$$

$$= \sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k} \int_0^1 (fw) \left(\frac{K+t}{n+1}\right) dt = B_n^*(f,x)$$

Thus

$$B_{n,q}^*(f,x) = B_n^*(f,x)$$

Definition: 6 For $f \in L_{P,w}(X)$, X = [0,1], let $\Delta_h^2(f,x) = \sum_{i=0}^2 {2 \choose i} (-1)_{2,i} f(x-h+ih)$, $x \pm h \in X$ be the difference of second order of f

Definition: 7 For $f \in L_{p,\delta,w}(X)$ let $\omega_2(f,\delta)_{P,w} = Sup_{0 < P \le \delta} \|\Delta_h^2(f,x)\|_{P,w}$, $\delta \ge 0$ is called the second usual weighted modulus of smoothness of f and $\omega_2(f,\delta)_{P,\delta,w} = Sup\|\Delta_h^2(fw,x)\|_{P,\delta,w}$ is the locally second usual weighted modulus of smoothness of f.

Definition: 8 For $f \in L_{P,\delta,w}(X)$, X = [0,1], $\delta \ge 0$ then $K_2(f,\delta^2)_{P,\delta,w} = \inf_{g \in L_{P,w}(X)} \{ \|f - g\|_{P,\delta,w} + \delta^2 \|g''\|_{P,\delta,w} \}$ is the locally K-functional of second order of f, where $g \in L_{P,w}(X)$ such that

$$(gw) \in C^{2}[0,1] = \{(gw), (gw)', (gw)'' \in C[0,1]\}$$

Remark: 2 [11] For
$$f \in L_p(X) = \left\{ f : \|f\|_p = \left[\int_X |f(x)|^p dx \right]^{\frac{1}{p}} < \infty \right\}$$
 then $\|f\|_p \le \|f\|_{p,\delta}$

Remark: 3 For $f \in L_{P,\delta,w}(X)$, X = [0,1], $\delta \ge 0$ then $K_2(f,\delta^2)_{P,\delta,w} \le C\omega_2(f,\delta)_{P,\delta,w}$ where C is a constant.

Proof: For $f, g \in C^2[0, 1]$ we get

 $K_2(f,\delta^2)_P = \inf_{g \in C^2[0,1]} \{ \|f-g\|_P + \delta^2 \|g^{''}\|_P \} \le C\omega_2(f,\delta)_P \text{ by [7] For } f,g \in L_{P,\delta,w}(X) \text{ and by definition(1) we have } (fw), (gw) \in C^2[0,1] \text{ thus}$

$$K_2(fw, \delta^2)_P = \inf_{(gw) \in C^2[0,1]} \{ \|fw - gw\|_P + \delta^2 \|(gw)^n\|_P \} \le C\omega_2(fw, \delta)_P$$

Then by remark (2) we have

$$K_{2}(fw,\delta^{2})_{P,\delta} = \inf_{(gw)\in\mathcal{C}^{2}[0,1]}\{\|fw - gw\|_{P,\delta} + \delta^{2}\|(gw)^{"}\|_{P,\delta}\} \leq \omega_{2}(fw,\delta)_{P,\delta}$$

Sahib Al-Saidy* and Ali Hussein / Approximation of Unbounded Function by q-Bernstein-Kantorovich Operator in Locally-Global Weighted $L_{P,w}(X)$ -Space / IJMA- 5(4), April-2014.

We get
$$K_2(f, \delta^2)_{P,\delta,w} = \inf_{g \in L_{P,\delta,w}(x)} \{ \|f - g\|_{P,\delta,w} + \delta^2 \|g''\|_{P,\delta,w} \} \le C\omega_2(f, \delta)_{P,\delta,w}$$

then $K_2(f, \delta^2)_{P,\delta,w} \leq C\omega_2(f, \delta)_{P,\delta,w}$

Remark: 4 For $f \in L_{P,w}(X)$. X = [0,1], $1 \le P < \infty$ then

$$||f||_{Pw} \leq ||f||_{P\delta w}$$

Proof: By remark (2) and since $(fw) \in C^2[0,1]$ by definition (1) then $||f||_P \le ||f||_{P,\delta}$ we get $||f||_{P,w} \leq ||f||_{P,\delta,w}$

Definition: 9 For $f \in L_{P,w}(X)$, X = [0,1], $\delta \ge 0$ then $\omega_2^{\phi}(f,\delta)_{P,w} = Sup_{0 < P \le \delta} \|\Delta_{h\phi}^2(fw,x)\|_{P,w}$ be the Ditzian-Totik modulus of smoothness of second order of f,

where $\phi(x) = (x(1-x))^{1/2}$ and $\omega_2^{\phi}(f,\delta)_{P,\delta,w} = Sup_{0< P \le \delta} \|\Delta_{h\phi}^2(fw,x)\|_{P,\delta,w}$ is the locally Ditzian-Totik modulus of smoothness of second order of f.

Definition: 10 Let $f \in L_{P,w}(X)$, X = [0,1], $\delta \ge 0$ then $\omega_{2,r}^{\phi}(f,\delta)_{P,w} = Sup_{0 < P \le \delta} \|\phi^r \Delta_{h\phi}^2(f,x)\|_{P,w}$ is called the r-thweighted Ditzian-Totik modulus of second order of smoothness of f, where r is a non negative integer. And $\omega_2^{\phi}(f,\delta)_{P,\delta,w} = Sup_{0< P \leq \delta} \|\phi^r \Delta_{h\phi}^2(fw,x)\|_{P,\delta,w}$ is the r-th locally weighted Ditzian-Totik modulus of smoothness of second order of f.

AUXILLARY RESULLTS

To prove the main results, we shall need the following lemmas.

Lemma: 1 [8] For all
$$n \in N, x \in [0, 1], 0 < q \le 1$$
 then
$$B_{n,q}^*(t^m, x) = \sum_{j=0}^m {m \choose j} \frac{[n]^j}{[n+1]^m [m-j+1]} \sum_{i=0}^{m-j} {m-j \choose i} (q^n - 1)^i B_{n,q}(t^{j+i}, x)$$

where $B_{n,q}(t^{j+i}, x) = \sum_{k=0}^{n} \frac{[k]^{j+i}}{[n]^{j+i}} P_{n,k}(q, x)$

Lemma: 2 Let $e_i(t) = t^i$, i = 0, 1, 2 for every $t \in [0, 1]$, $n \in \mathbb{N}$, $0 < q \le 1$ we have:

- a) $B_{n,a}^*(e_0,x)=1$
- b) $B_{n,q}^*(e_1,x) = \frac{2q[n]}{[2][n+1]}x + \frac{1}{[2][n+1]}$ c) $B_{n,q}^*(e_2,x) = \frac{q(q+2)}{[3]} \cdot \frac{q[n][n+1]}{[n+1]^2}x^2 + \frac{4q+7q^2+q^3}{[2][3]} \cdot \frac{[n]}{[n+1]^2}x + \frac{1}{[3][n+1]^2}$

Proof:

A) By using lemma (1) we have

$$B_{n,q}^*(t^m,x) = \sum_{j=0}^m {m \choose j} \frac{[n]^j}{[n+1]^m[m-j+1]} \sum_{i=0}^{m-j} {m-j \choose i} (q^n-1)^i B_{n,q}(t^{j+i},x) \text{ then for } m=0 \text{ we get}$$

$$\begin{split} B_{n,q}^*(t^0,x) &= B_{n,q}^*(e_0,x) = \sum_{j=0}^0 \binom{0}{j} \frac{[n]^j}{[n+1]^0[0-j+1]} \sum_{i=0}^{0-j} \binom{0-j}{i} (q^n-1)^i B_{n,q}(t^{j+i},x) \\ &= \binom{0}{0} \frac{[n]^0}{[n+1]^0[1]} \sum_{i=0}^0 \binom{0}{i} (q^n-1)^i B_{n,q}(t^{0+i},x) \\ &= \binom{0}{0} (q^n-1)^0 B_{n,q}(t^{0+0},x) = \sum_{k=0}^n \frac{[k]^{0+0}}{[n]} P_{n,k}(q,x) \\ &= \sum_{k=0}^n P_{n,k}(q,x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)_q^{n-k} \\ &= \sum_{k=0}^n \binom{n}{k} x^k \prod_{s=0}^{n-k-1} (1-q^s x) = 1 \end{split}$$
 Then $B_{n,q}^*(e_0,x) = 1$

Proof:

B) By using lemma (1) for m=1 we have

Sahib Al-Saidy* and Ali Hussein / Approximation of Unbounded Function by q-Bernstein-Kantorovich Operator in Locally-Global Weighted $L_{P,w}(X)$ -Space / IJMA- 5(4), April-2014.

$$\begin{split} B_{n,q}^*(t^1,x) &= B_{n,q}^*(e_1,x) = \sum_{j=0}^1 \binom{1}{j} \frac{[n]^j}{[n+1]} \sum_{i=0}^{1-j} \binom{1-j}{i} (q^n-1)^i B_{n,q}(t^{j+i},x) \\ &= \left[\binom{1}{0} \frac{[n]^0}{[n+1]} \sum_{i=0}^1 \binom{1}{i} (q^n-1)^i B_{n,q}(t^{0+i},x) \right] \\ &= \left[\binom{1}{1} \frac{[n]}{[n+1]} \sum_{i=0}^0 \binom{0}{i} (q^n-1)^i B_{n,q}(t^{1+i},x) \right] \\ &= \frac{1}{[n+1]} \frac{[1]}{[2]} \left[\binom{1}{0} (q^n-1)^0 B_{n,q}(t^{0+0},x) + \binom{1}{1} (q^n-1) B_{n,q}(t^{0+1},x) \right] \\ &+ \frac{n}{[n+1]} \binom{0}{0} (q^n-1)^0 B_{n,q}(t^{1+0},x) \\ &= \frac{1}{[n+1]} \frac{[1]}{[2]} \left[B_{n,q}(t^{0+0},x) + (q^n-1) B_{n,q}(t^{0+1},x) \right] + \frac{[n]}{[n+1]} B_{n,q}(t^{1+0},x) \\ &= \frac{1}{[n+1]} \frac{[1]}{[2]} \left[\sum_{k=0}^n P_{n,k}(q,x) + (q^n-1) \sum_{k=0}^n \frac{[k]}{[n]} P_{n,k}(q,x) \right] + \frac{[n]}{[n+1]} \sum_{k=0}^n \frac{[k]}{[n]} P_{n,k}(q,x) \\ &= \frac{1}{[2]} \frac{1}{[n+1]} + \frac{q^n-1}{[2][n+1]} + \frac{[n]}{[n+1]} x = \frac{2q[n]}{[2][n+1]} x + \frac{1}{[2][n+1]} \end{split}$$

Proof:

$$\begin{split} B_{n,q}^*(t^2,x) &= B_{n,q}^*(e_2,x) = \sum_{j=0}^2 \binom{2}{j} \frac{[n]^j}{[n+1]^2[2-j+1]} \sum_{i=0}^{2-j} \binom{2-j}{i} (q^n-1)^i B_{n,q}(t^{j+i},x) \\ &= \binom{2}{0} \frac{[n]^0}{[n+1]^2[2-0+1]} \sum_{i=0}^{2-0} \binom{2-0}{i} (q^n-1)^i B_{n,q}(t^{0+i},x) \\ &+ \binom{2}{1} \frac{[n]^1}{[n+1]^2[2-1+1]} \sum_{i=0}^{2-1} \binom{2-1}{i} (q^n-1)^i B_{n,q}(t^{1+i},x) \\ &+ \binom{2}{2} \frac{[n]^2}{[n+1]^2[2-2+1]} \sum_{i=0}^{2-2} \binom{2-2}{i} (q^n-1)^i B_{n,q}(t^{2+i},x) \\ &= \frac{1}{[n+1]^2[3]} \left[\binom{0}{0} (q^n-1)^0 B_{n,q}(t^{0+0},x) + \binom{2}{1} (q^n-1)^1 B_{n,q}(t^{0+1},x) \right] \\ &+ \binom{2}{2} (q^n-1)^2 B_{n,q}(t^{0+2},x) \\ &+ \frac{[n]^2}{[n+1]^2[2]} \left[\binom{0}{0} (q^n-1)^0 B_{n,q}(t^{1+0},x) + \binom{1}{1} (q^n-1)^1 B_{n,q}(t^{1+1},x) \right] \\ &+ \frac{[n]^2}{[n+1]^2} \left[\binom{0}{0} (q^n-1)^0 B_{n,q}(t^{2+0},x) \right] \\ &= \frac{1}{[n+1]^2[2]} \left[B_{n,q}(t^{0+0},x) + 2(q^n-1) B_{n,q}(t^{0+1},x) + (q^n-1)^2 B_{n,q}(t^{0+2},x) \right] \\ &+ \frac{2[n]}{[n+1]^2} \left[B_{n,q}(t^{1+0},x) + (q^n-1) B_{n,q}(t^{1+1},x) \right] + \frac{[n]^2}{[n+1]^2} B_{n,q}(t^{2+0},x) \\ &= \frac{1}{[3][n+1]^2} \left[\frac{[n]^2}{[n+1]^2} + \frac{2[n](q^n-1)}{[2][n+1]^2} + \frac{(q^n-1)^2}{[3][n+1]^2} \right] \left(1 - \frac{1}{[n]} \right) x^2 \\ &+ \left[\frac{[n]^2}{[n][n+1]^2} + \frac{2[n](q^n-1)}{[2][n][n+1]^2} + \frac{2[n](q^n-1)}{[2][n][n+1]^2} + \frac{2[n](q^n-1)}{[2][n+1]^2} + \frac{2[n](q^n-1)}{[2][n+1]^2} + \frac{2[n](q^n-1)}{[2][n+1]^2} + \frac{2[n](q^n-1)}{[2][n+1]^2} \right) x \\ &= \frac{q^2+2q}{[3]} \cdot \frac{q[n]}{[n+1]^2} x^2 + \frac{(4q+7q^2+q^3)[n]}{[2][3][n+1]^2} x + \frac{1}{[3][n+1]^2} \right] x \\ &= \frac{q^2+2q}{[3]} \cdot \frac{q[n]}{[n+1]^2} x^2 + \frac{(4q+7q^2+q^3)[n]}{[2][3][n+1]^2} x + \frac{1}{[3][n+1]^2} \right] x$$

Then

$$B_{n,q}^*(e_2,x) = \frac{q^2 + 2q}{\lceil 3 \rceil} \cdot \frac{q[n][n-1]}{\lceil n+1 \rceil^2} x^2 + \frac{(4q + 7q^2 + q^3)[n]}{\lceil 2 \rceil \lceil 3 \rceil \lceil n+1 \rceil^2} x + \frac{1}{\lceil 3 \rceil \lceil n+1 \rceil^2}$$

Lemma: 4 For $f \in L_{P,\delta,w}(X) \cdot X = [0,1], 0 < q < 1$ we have $\|B_{n,q}^*(f)\|_{P,w} \le C\|f\|_{P,\delta,w}$ where C is a constant.

Proof:
$$\|B_{n,q}^*(f)\|_{P,\delta,w} = \left\{ \int_X |B_{n,q}^*(f,x)|^P dx \right\}^{1/P}$$

= $\left\{ \int_X |\sum_{k=0}^n P_{n,q}(q,x) \int_0^1 (fw) \left(\frac{[k] + q^k t}{[n+1]} \right) d_q t \right\}^{1/P}$

And by using Jenson inquality we have

$$\begin{aligned} \left\| B_{n,q}^*(f) \right\|_{P,w} &\leq \left\{ \int_0^1 \left| (fw) \left(\frac{[k] + q^k t}{[n+1]} \right) \right|^P d_q t \right\}^{1/P} \cdot \left\{ \int_X \left| \sum_{k=0}^n P_{n,k}(q,x) \right| dx \right\} \\ &\leq \| f \|_{P,w} \cdot \sum_{k=0}^n \int_Y \left| P_{n,k}(q,x) \right| dx \leq C \| f \|_{P,w} \end{aligned}$$

Then

 $\left\|B_{n,q}^*(f)\right\|_{P,w} \le C \|f\|_{P,w}$ and by remark (4) we get

$$||B_{n,q}^*(f)||_{P,\delta,w} \le C||f||_{P,\delta,w}$$

Lemma: 5 For $f, g \in L_{P,w}(X), X = [0, 1], 0 < q \le 1$ we have

a)
$$B_{n,q}^*(f+g,x) = B_{n,q}^*(f,x) + B_{n,q}^*(g,x)$$

b)
$$B_{n,q}^*(\propto f, x) = \propto B_{n,q}^*(f, x)$$
 where \propto is a constant

Proof:

(A) Since
$$B_{n,q}^*(f,x) = \sum_{k=0}^n P_{n,k}(q,x) \int_0^1 (fw) \left(\frac{[k]+q^k t}{[n+1]} \right) d_q t$$
 then
$$B_{n,q}^*(f+g,x) = \sum_{k=0}^n P_{n,k}(q,x) \int_0^1 ((f+g)w) \left(\frac{[k]+q^k t}{[n+1]} \right) d_q t$$

$$= \sum_{k=0}^n P_{n,k}(q,x) \int_0^1 \left[(fw) \left(\frac{[k]+q^k t}{[n+1]} \right) + (gw) \left(\frac{[k]q^k t}{[n+1]} \right) \right] d_q t$$

$$= \sum_{k=0}^n P_{n,k}(q,x) \int_0^1 (fw) \left(\frac{[k]+q^k t}{[n+1]} \right) d_q t + \sum_{k=0}^n P_{n,k}(q,x) \int_0^1 (gw) \left(\frac{[k]q^k t}{[n+1]} \right) d_q t$$

$$= B_{n,q}^*(f,x) + B_{n,q}^*(g,x)$$

Proof:

(B)
$$B_{n,q}^*(\propto f, x) = \sum_{k=0}^n P_{n,k}(q, x) \int_0^1 (\propto f) w \left(\frac{[k] + q^k t}{[n+1]}\right) d_q t$$

$$= \sum_{k=0}^n P_{n,k}(q, x) \int_0^1 (fw) \left(\frac{[k] + q^k t}{[n+1]}\right) d_q t$$

$$= \propto \sum_{k=0}^n P_{n,k}(q, x) \int_0^1 (fw) \left(\frac{[k] + q^k t}{[n+1]}\right) d_q t = \alpha B_{n,q}^*(f, x)$$

Then
$$B_{n,q}^* (\propto f, x) = \propto B_{n,q}^* (f, x)$$

Thus $B_{n,q}^*$ be linear operator

Remark: 5 For every $n \in N$, 0 < q < 1 then $[n]_q = [n] \le n$

Proof: by induction for n we have

$$[n] = q^0 + q^1 + \dots + q^{n-1}$$
 then

For n=1,
$$[1] = q^{1-1} = q^0 = 1$$
 thus $[1] = 1$

For n=2,
$$[2] = q^0 + q^{2-1} = q^0 + q^1 = 1 + q^1 < 2 \text{ (0$$

Suppose it is true for n thus

$$[n] = q^0 + q^1 + \dots + q^{n-1} < n$$
 then

$$[n+1] = a^0 + a^1 + \dots + a^{(n+1)-2} + a^{(n+1)-1} = a^0 + a^1 + \dots + a^{n-1} + a^n$$

Then
$$[n+1] = q^0 + q^1 + \dots + q^{n-1} + q^n < n+q^n < n+1$$

Thus
$$[n+1] < n+1$$

Then $[n] \leq n$ for every $n \in \mathbb{N}$

Lemma: 6 Let $f \in L_{P,\delta,w}(X)$ and g_n be a polynomial such that $g_n \in \prod_n \cap L_{P,w}(X)$ where \prod_n polynomials, then

$$||f - g_n||_{P,\delta,w} \le Cn^{\frac{1}{p}} \quad \omega_{2,r}^{\phi} \left(f, \frac{1}{[n]}\right)_{P,\delta,w}$$

Proof: by using remark (5) we have for all $n \in N$, $[n] \le n$ then $\frac{1}{n} \le \frac{1}{[n]}$ we get

$$\omega_{2,r}^{\phi}\left(f,\frac{1}{n}\right)_{P,\delta,w} \leq \omega_{2,r}^{\phi}\left(f,\frac{1}{[n]}\right)_{P,\delta,w}$$

Since
$$||f - g_n||_{P,\delta,w} \le Cn^{\frac{1}{p}} \omega_{2,r}^{\phi} \left(f, \frac{1}{n}\right)_{P,\delta,w}$$
 by [9]

We get
$$||f - g_n||_{P,\delta,w} \le Cn^{\frac{1}{p}} \omega_{2,r}^{\phi} \left(f, \frac{1}{[n]}\right)_{P,\delta,w}$$

Lemma: 7 For $f, g \in L_{P,w}(X), X = [0,1] \cdot n \in N, 0 < q < 1$ we have

a.
$$f \ge 0$$
 then $B_{n,q}^*(f,x) \ge 0$

b.
$$f \le g$$
 then $B_{n,q}^*(f,x) \le B_{n,q}^*(g,x)$

Proof: A)
$$f \ge 0$$
 then $f\left(\frac{[k]+q^kt}{[n+1]}\right) \ge 0$ for $k \in N$ we have

$$\int_0^1 (fw) \left(\frac{[k] + q^k t}{[n+1]} \right) d_q t \ge 0 \text{ thus}$$

$$\sum_{k=0}^{n} P_{n,k}(q,x) \int_{0}^{1} (fw) \left(\frac{[k] + q^{k}t}{[n+1]} \right) d_{q}t \ge 0$$
 we get

$$B_{n,q}^*(f,x) \ge 0$$

Proof: B) Since $f \leq g$ thus $f\left(\frac{[k]+q^kt}{[n+1]}\right) \leq g\left(\frac{[k]+q^kt}{[n+1]}\right)$ then

$$\int_{0}^{1} (fw) \left(\frac{[k] + q^{k}t}{[n+1]} \right) d_{q}t \le \int_{0}^{1} (gw) \left(\frac{[k] + q^{k}t}{[n+1]} \right) d_{q}t \text{ we get}$$

$$= \sum_{k=0}^{n} P_{n,k}(q,x) \int_{0}^{1} (fw) \left(\frac{[k] + q^{k} t}{[n+1]} \right) d_{q} t$$

$$\leq \sum_{k=0}^{n} P_{n,k}(q,x) \int_{0}^{1} (gw) \left(\frac{[k]+q^{k}t}{[n+1]}\right) d_{q}t$$

We have $B_{n,q}^*(f, x) \le B_{n,q}^*(g, x)$

Now we need the following theorem:

Theorem: 1 [Korevkin Theorem] [10] Let L_n be a linear positive monotone operator such that

- 1. $L_n(1, x) = 1$
- 2. $L_n(t, x) = x + \infty(x)$ 3. $L_n(t^2, x) = x^2 + B(x)$

Then for any $f \in C[a, b]$

$$||L_n(f,.) - f(.)||_p \le 3W < (f, \sqrt{B(x) - 2x \propto (x)})_p$$

Lemma: 8 Let L_n be a linear positive monotone operator, which satisfies the above conditions then for any $f \in$ $L_{P,\delta,w}(X), X = [0,1]$ we have

$$||L_n(f,.) - f(.)||_{P,\delta,w} \le 3\omega_2 \left(f, \sqrt{B(x) - 2x \propto (x)} \right)_{P,\delta,w}$$

Proof: for $f \in C[0, 1]$, by using theorm (1) we get

$$||L_n(f,.) - f(.)||_P \le 3\omega \left(f, \sqrt{B(x) - 2x \propto (x)}\right)_p \le 3W_2\left(f, \sqrt{B(x) - 2x \propto (x)}\right)_p$$

Thus

$$||L_n(f,.) - f(.)||_P \le 3\omega_2 \left(f, \sqrt{B(x) - 2x \propto (x)} \right)_p$$

For $f \in L_{P,w}(X)$ and from definition (1) we get $(fw) \in C[0,1]$ and $||f||_{P,w} = \{|(fw)_{(x)}|^P dx\}^{\frac{1}{P}} < \infty$

Then

$$\|L_n(fw,.)-(fw)(.)\|_P \le 3\omega_2 (fw,\sqrt{B(x)-2x} \propto (x))_P$$
 and by remark (2) We have

$$||L_n(fw) - (fw)||_{P,\delta} \le 3\omega_2 (fw, \sqrt{B(x) - 2x} \propto (x))_{P,\delta}$$

Thus

$$||L_n(f,.) - f(.)||_{P,\delta,w} \le 3\omega_2 \left(f, \sqrt{B(x) - 2x \propto (x)} \right)_{P,\delta,w}$$

MAIN RESULTS

Theorem: 2 For $f \in L_{P,\delta,w}(X), X = [0,1], n \in N, 0 < q < 1$ we have

$$\left\|B_{n,q}^*(f,x) - f(x)\right\|_{P,\delta,w} \le C \quad \omega_{2,r}^{\phi}\left(f,\frac{1}{[n]}\right)_{P,\delta,w}$$

Proof: Let g_n be any polynomial we have

$$\begin{split} \left\| B_{n,q}^*(f,x) - f(x) \right\|_{P,\delta,w} &= \left\| B_{n,q}^*(f) - f - B_{n,q}^*(g_n) + B_{n,q}^*(g_n) - g_n + g_n \right\|_{P,\delta,w} \\ &\leq \left\| B_{n,q}^*(f) - B_{n,q}^*(g_n) \right\|_{P,\delta,w} + \left\| B_{n,q}^*(g_n) - g_n \right\|_{P,\delta,w} + \left\| f - g_n \right\|_{P,\delta,w} \\ &\leq \left\| B_{n,q}^*(f - g_n) \right\|_{P,\delta,w} + \left\| B_{n,q}^*(g_n) - g_n \right\|_{P,\delta,w} + \left\| f - g_n \right\|_{P,\delta,w} \end{split}$$

By linearly of $B_{n,a}^*$

Then by using lemma (4) we have

$$\left\|B_{n,q}^{*}(f)-f\right\|_{P,\delta,w} \leq C_{1}\|f-g_{n}\|_{P,\delta,w} + \left\|B_{n,q}^{*}(g_{n})-g_{n}\right\|_{P,\delta,w} + \|f-g_{n}\|_{P,\delta,w}$$

and since $\lim_{n\to\infty} \|B_{n,q}^*(g_n) - g_n\|_{P\delta_w} = 0$ we have

 $\|B_{n,q}^*(f) - f\|_{P,\delta,w} \le C_2 \|f - g_n\|_{P,\delta,w}$ and by using lemma (6) we have

$$\left\| B_{n,q}^*(f) - f \right\|_{P,\delta,w} \le C_2 \|f - g_n\|_{P,\delta,w} \le C_3 \omega_{2,r}^{\phi} \left(f, \frac{1}{[n]} \right)_{P,\delta,w}$$

Theorem: 3 For
$$f \in L_{P,\delta,w}(X), X = [0,1], 1 \le P < \infty, 0 < q \le 1, n \in N$$
 we have $\lim_{n \to \infty} \|B_{n,q}^*(f) - f\|_{P,\delta,w} = 0$

Proof: by using theorem (2) we have

$$\left\|B_{n,q}^*(f) - f\right\|_{P,\delta,w} \le C\omega_{2,r}^{\phi}\left(f, \frac{1}{[n]}\right)_{P,\delta,w}$$

Then
$$\lim_{n\to\infty}\left\|B_{n,q}^*(f)-f\right\|_{P,\delta,w}\leq \lim_{n\to\infty}C\ \omega_{2,r}^\phi\left(f,\frac{1}{[n]}\right)_{P,\delta,w}$$

and since $\lim_{n\to\infty} \frac{1}{[n]} = 0$ we have

$$\lim_{n \to \infty} \|B_{n,q}^*(f) - f\|_{P,\delta,w} \le \lim_{n \to \infty} C \,\omega_{2,r}^{\phi} \left(f, \frac{1}{[n]} \right)_{P,\delta,w} = C \omega_{2,r}^{\phi}(f,0)_{P,\delta,w} = 0$$

Then
$$\lim_{n\to\infty} ||B_{n,q}^*(f) - f||_{P,\delta,w} = 0$$

Theorem: 4 For
$$f \in L_{P,w}(X)$$
, $X = [0,1]$, $0 < q < 1$, $0 < \delta < 1$ then $\|B_{n,q}^*(f) - f\|_{P,\delta,w} \le 3 \ \omega_2 (f,\delta)_{P,\delta,w}$

Proof: by using lemma (5) and lemma (7) we get $B_{n,q}^*(f,x)$ be a linear positive monotone operator and by using lemma (3) we get

$$B_{n,a}^*(1,x) = 1$$
 and

$$B_{n,q}^*(t,x) = \frac{2q[n]x}{\lceil 2\rceil \lceil n+1 \rceil} + \frac{1}{\lceil 2\rceil \lceil n+1 \rceil} = x - x + \frac{2q[n]x}{\lceil 2\rceil \lceil n+1 \rceil} + \frac{1}{\lceil 2\rceil \lceil n+1 \rceil} = x + \infty (x)$$

Where
$$\propto (x) = -x + \frac{2q[n]x}{[2][n+1]} + \frac{1}{[2][n+1]}$$

And since
$$\lim_{n\to\infty} \frac{2q[n]}{[2][n+1]} = 1$$
 we get

$$\alpha(x) = -x + x + \frac{1}{[2][n+1]} = \frac{1}{[2][n+1]}$$

Also, by using lemma (3) we get

$$B_{n,q}^{*}(t^{2},x) = \frac{q(q+2)}{[3]} \cdot \frac{q[n][n+1]}{[n+1]^{2}} x^{2} + \frac{4q+7q^{2}+q^{3}}{[2][3]} \cdot \frac{[n]}{[n+1]^{2}} x + \frac{1}{[3][n+1]^{2}}$$

$$= x^{2} - x^{2} + \frac{(q^{3}+2q^{2})[n][n+1]}{[3][n+1]^{2}} x^{2} + \frac{(4q+7q^{2}+q^{3})[n]}{[2][3][n+1]^{2}} x + \frac{1}{[3][n+1]^{2}}$$

$$= x^{2} + B(x)$$

where

$$B(x) = -x^2 + \frac{(q^3 + 2q^2)[n][n-1]}{[3][n+1]^2}x^2 + \frac{(4q + 7q^2 + q^3)[n]}{[2][3][n+1]^2}x + \frac{1}{[3][n+1]^2}$$

And since

$$\lim_{n \to \infty} \frac{(q^3 + 2q^2)[n][n-1]}{[3][n+1]^2} = 1, \lim_{n \to \infty} \frac{(4q + 7q^2 + q^3)[n]}{[2][3][n+1]^2} = 0 \text{ we get}$$

$$B(x) = -x^2 + x^2 - (0)x + \frac{1}{[3][n+1]^2} = \frac{1}{[3][n+1]^2}$$
 thus

$$B(x) = \frac{1}{[3][n+1]^2}$$

Then by using lemma (8) we get

$$\left\|B_{n,q}^*(f,.) - f(.)\right\|_{P,\delta,w} \le 3\omega_2\left(f,\sqrt{B(x) - 2x \propto (x)}\right)_{P,\delta,w}$$

$$=3\omega_2\left(f,\sqrt{\frac{1}{[3][n+1]^2}-\frac{2x}{[2][n+1]}}\right)_{P \delta w}$$

and since
$$\sqrt{\frac{1}{[3][n+1]^2} - \frac{2x}{[2][n+1]}} \le \sqrt{\frac{1}{[3][n+1]^2}} = \frac{1}{\sqrt{[3]}[n+1]}$$

Then
$$\|B_{n,q}^*(f,.)-f(.)\|_{P,\delta,w} \le 3\omega_2 \left(f,\sqrt{\frac{1}{[3][n+1]^2}-\frac{2x}{[2][n+1]}}\right)_{P,\delta,w} \le 3\omega_2 \left(f,\frac{1}{\sqrt{[3]}[n+1]}\right)_{P,\delta,w}$$

Sahib Al-Saidy* and Ali Hussein / Approximation of Unbounded Function by q-Bernstein-Kantorovich Operator in Locally-Global Weighted $L_{P,w}(X)$ -Space / IJMA- 5(4), April-2014.

Let
$$\delta = \frac{1}{\sqrt{[3][n+1]}}$$
 we have

$$\left\|B_{n,q}^{*}(f,.) - f(.)\right\|_{P,\delta,w} \le 3\omega_{2}\left(f, \frac{1}{\sqrt{[3]}[n+1]}\right)_{P,\delta,w} = 3\omega_{2}(f,\delta)_{P,\delta,w}$$

Thus
$$\|B_{n,q}^*(f,.) - f(.)\|_{P,\delta,w} \le 3\omega_2(f,\delta)_{P,\delta,w}$$

REFERENCES

- [1] A. Lupas, A q-analogue of the Bernstein operator, seminar on Numerical and Statistical Calculus, University of Cluj-Napoca:85-92, (1987).
- [2] G. M. Phillips, Bernistein Polynomials based on the q-integers, Ann. Numer Math. 4:511-518, (1997).
- [3] S. Ostrovska, The first decade of the q-Bernstein polynomials and prospectives, Journal of Mathematical Analysis and Approximation Theory 2:35-51, (2007).
- [4] T. Trif, Meyer Konig and Zeller operators based on the q-integers, Rev. Anal. Numer. Theor. Approx., 29:221-229, (2000).
- [5] A. Aral, V. Gupta, on the Durrmeyer type modification of the q-Baskakov type operators, nonlinear analysis, 72:1171-1180, (2010).
- [6] V. Kac, P. Cheung, Quantum Calculus, Unveristxt, Springer-Verlag, New York, (2002).
- [7] Z. Ditzian, V. Totik, Moduli of smoothness, Springer-Verlag, New York, (1987).
- [8] N. I. Mahmudov, P. Sabancig, "Approximation Theorems for q-Bernstein-Kantorovich operators", Published by Faculty of Sciences and Mathematices, University of Nis, Serbia, (2013).
- [9] H. Ali, K. Sahib, "Approximation of Unbounded Functions by Trigonometric Polynomials in Locally-Global Weighted $L_{P,S,y}(X)$ Spaces", Al-Mustansiriyah J. Sci., Accepted and under publish.
- [10] BlagovestSendovVasil, A. Pepev, "The Averaged Moduli of Smoothness", Bulgarian Academy of Sciences: 75-79, (1988).
- [11] A. K. Jassim, "Best One-Sided Approximation with Algebraic Polynomials", Serdica Bulgarica Math. Publications Vol. (16):263-269, (1991).

Source of support: Nil, Conflict of interest: None Declared