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ABSTRACT 
In this paper we will establish the qualitative behavior of the dynamic equation of the form 

( )τ σ∆
− − − − = ∈( ) ( ) ( ) ( ) f(x( )) 0,x t h t x t b t t t T on the time Scale T using Fixed Point Theorem Example is 

inserted to illustrate the result. 
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1. INTRODUCTION 
 
The theory of time scales, which provides new tools for exploring connections between the traditionally separated 
fields, has been developing rapidly and has received much attention. Dynamic equations can not only unify the theories 
of differential equation and difference equations, but also extend these classical cases to cases “in between”, e.g. to so-
called q-difference equations The theory of dynamic equations on time scales is an adequate mathematical apparatus 
for the stimulation of processes and phenomena observed to biotechnology, chemical technology economic, neural 
networks, physics, social science etc. [1-3]. Motivated by this observation, in this paper we are concerned with first 
order nonlinear dynamic equation using Fixed Point Theorem 
 

( )∆− − − − = ∈( ) ( ) ( ) ( ) f(x( )) 0,x t h t x t b t t t Tτ σ                                                                                  (1) 
 

Where T is a time scale.  Throughout this paper we assume the following conditions without further mention:     
                                                                           
(H1): ,τ σ  are fixed nonnegative constants such that the delay functions ( )t t tτ τ= − <  and  = − <( )t t tσ σ  satisfy    
         ( ) :t T Tτ →  and  →( ) :t T Tσ  for all  t T∈ ; 
(H2): ( )h t  is real valued rd-continuous positive functions defined on T ; 
(H3): ( )b t  is a positive and rd-continuous function on T such that ≤ <0 ( ) 1.b t  
 
By a solution of equation (1), we mean a nontrivial real- valued function which has the properties 

( ) )′ − − ∈ ∞( ) ( ) ( ,rd yx t h t x t C tτ
 
and ( ) )∆ ′ − − ∈ ∞( ) ( ) ( ) ,rd yx t h t x t C tτ , 0yt t≥  and satisfying equation (1.1) for 

all
yt t≥  .  A solution ( )x t  of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually 

negative. Otherwise it is called non oscillatory. Since we are interested in qualitative behavior of solutions, we will 
assume that the time scale T  under considerations is not bounded above and therefore the time scale is assumed in the 
form [ ) [ )0 0, ,

T
t t T∞ = ∞ 

 . 
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We note that if T =   we have ( ) , ( ) 0, ( ) '( ).t t t f t f tσ µ ∆= = =  then equation (1) becomes 

( )τ σ′− − − − = ∈( ) ( ) ( ) ( ) ( ( )) 0,x t h t x t b t f x t t   
If  T =    

 
We have ( ) 1, ( ) 1, ( ) ( ). y(n 1) y(n)n n n y n y nσ µ ∆= + = = ∆ = + −  then equation (1) becomes 

( )τ δ∆ − − − − = ∈( ) ( ) ( ( ) ( ( )) 0,x t h t x t b t f x t n 

 

If , 0,T h h= >

 we have y( ) y( )( ) , ( ) , (t) ( ).h
t h tt t h t h y t

h
σ µ ∆ + −

= + = = ∆ =  then equation (1.1) becomes 

( )τ σ∆ − − − − = ∈( ) ( ) ( ) ( ) ( ( )) 0,h x t h t x t b t f x t t h  
 

If { }: , , 1,nT q t t q n q= = = ∈ >



  we have y(q ) y( )( ) ( ), ( ) ( 1), (t) ( ).q
t tt q t t q y t

h
σ µ ∆ −

= = − = ∆ =
 

then 

equation (1) becomes the second order q-neutral difference equations. 
 

( )τ σ∆ − − − − = ∈( ) ( ) ( ( ) ( ( )) 0,q x t h t x t b t f x t t q  

If { }= = ∈2 2 : ,T t t 

  we have ( )
( )2

2
y 1 y( )

( ) 1 , ( ) 1 2 , (t) ( ).
1 2N

t t
t t t t y t

t
σ µ ∆

 + − 
 = + = + = ∆ =

+
 then 

equation (1) becomes ( )τ σ∆ − − − − = ∈ 2( ) ( ) ( ( ) ( ( )) 0,N x t h t x t b t f x t t 

 
 
If  { }: n ,nT t= ∈   where { }nt  is the set if harmonic numbers defined by the (nth harmonic number is the sum 

of the reciprocals of the first n natural numbers) 
0 0

1

10, , ,
n

n
k

t t n
k=

= = ∈∑ 

 we have 

( )1
1( ) , ( ) , (t) y( ) 1 y( )

1n n n n n nt t t y t t n t
n

σ µ ∆
+= = = ∆ = + ∆

+
then equation (1.1) becomes 

( )τ σ∆ − − − − = ∈( ) ( ) ( ( ) ( ( )) 0,n n n n n nt x t h t x t b t f x t t T  
 
2. MAIN RESULT 
 
To prove our main results, we will use the following Theorem which called Krasnoselskii’s Fixed Point Theorem. 
 
Theorem: 2.1 ([6, 12]). (Krasnoselskii’s fixed point theorem) Let X  be a Banach Spaces. Let Ω  be a bounded closed 
convex subset of X  and Let 

1 2M ,M  be maps of Ω  into X such that  + ∈Ω1 2M x M y  for every ∈Ωx,y .  If 1M  is 

contractive and 2M  is completely continuous, then the equations  + =1 2M x M x x  has a solution in Ω  
 
Now we state and prove our main results: 
 
Theorem: 2.2.  With respected to the Dynamic Equation (1) Assume that the functions [ ) ( ]( )'

rd 0u and v C t , , 0,∈ ∞ ∞   

constants > > ≥2 1c 0,K K 0  , ≥ +1 0t t m    { }= τ σm max , such that the following conditions(2)-(4)  holds: 

≤ ≥ 0u(t) v(t), t t ,                                                                                                                                                              (2) 
 

− − + ≥ ≤ ≤1 1 0 1v(t) v(t ) u(t) u(t ) 0, t t t                                                                                                                           (3) 

( )( )
 

− + − σ ∆  − τ  
∫
0

t

1
t

1 u(t) K b(s)f v s s
u(t )

 ≤ ≤a(t) ( )( )
 

− + − σ ∆ ≤ < ≥  − τ  
∫
0

t

2 1
t

1 v(t) K b(s)f u s s c 1. t t
v(t )   (4) 

 
Then Eq. (1) has uncountably many positive solutions which are bounded by the functions u,v.   
 
Proof: Let [ )( )∞'

rd 0C t ,R  be the set of all continuous bounded functions with the nom
≥=

0t tx sup x(t) . Then 

[ )( )∞'
rd 0C t ,R

 
is a Banach Space.  We define a closed, bounded and convex subset Ω  of [ )( )∞'

rd 0C t ,R  as follows: 
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[ )( ){ }Ω = = ∈ ∞ ≤ ≤ ≥'
rd 0 0x x(t) C t ,R : u(t) x(t) v(t), t t  . 

 
For [ ]∈ 1 2K K ,K  we define two maps  [ )( )Ω → ∞'

1 2 rd 0M ,M : C t ,R  as follows  

( )( ) ( )( )
+ − τ ≥  =  ≤ ≤  

1
1 1

1 1 0 1

K h(t)x(t ), t t
M x t

M x t , t t t                                                                                                                        (5) 

( )( )
( )( )

 
− − σ ∆ ≥ 

=  
 + − ≤ ≤ 

∫
0

t

1
t2 2

2 2 1 0 1

b(s)f(s(t )) s, t t
M x t

M x t v(t) v(t ), t t t
                                                                                              

(6) 

 
We first show that for any ∈Ωx,y . , + ∈Ω1 2M x M y . In fact for every ∈Ωx,y .  and ≥ 1t t  with using eq. (4), we obtain    

( )( ) ( )( )+ = + − τ − − σ ∆∫
0

t

1 2
t

M x t M y t K h(t)x(t ) b(s)f(x(s )) s   

                                      
0

t

t

K h(t)v(t ) b(s)f(u(s )) s≤ + − τ − − σ ∆∫   

                                      ≤ + − ≤2K v(t) K v(t)  
                                   
For [ ]∈ 0 1t t ,t  we have 

( )( ) ( )( ) ( )( ) ( )( )+ = + + −1 1 2 2 1 1 2 2 1M x t M y t M x t M y t v(t) v(t )  

                                        ≤ + − =1 1v(t ) v(t) v(t ) v(t)   

For ≥ 1t t , we get 

( )( ) ( )( )+ ≥ + − τ − − σ ∆∫
0

t

1 2
t

M x t M y t K h(t)u(t ) b(s)f(v(s )) s  

                                     ≥ + − ≥1K u(t) K u(t)   
 
For [ ]∈ 0 1t t ,t  with regard to (3), we get  
 

− + ≥ ≤ ≤1 1 0 1v(t) v(t ) u(t ) u(t), t t t   
 
Then, for [ ]∈ 0 1t t ,t and any ∈Ωx,y . , we obtain 

( )( ) ( )( ) ( )( ) ( )( )+ = + + −1 2 1 1 2 2 1M x t M y t M x t M y t v(t) v(t )  

                                      ≥ + − ≥1 1u(t ) v(t) v(t ) u(t)  
 
Thus, we have proved that  + ∈Ω1 2M x M y  for any ∈Ωx,y . . 
 
Next we shall show that 1M  is a contraction mapping on Ω  . Indeed for any ∈Ωx,y . , and  ≤ 1t t ,  we have 

( )( ) ( )( )− = − τ − − τ ≤ −1 2M x t M y t h(t) x(t ) y(t ) c x y   

 
This implies that 
 

− ≤ −1 2M x M y c x y                                                                                                                                                    (7) 
 
Since [ ]∈ 0 1t t ,t   We conclude that 1M  is a contraction mapping on Ω  
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Now we show that 2M is completely continuous.  First, we will show that 2M  is continuous.  Let = ∈Ωk kx x (t)  be 

such that →kx (t) x(t)  as  →∞k  . Because Ω  is closed, = ∈Ωx x(t) . For ≤ 1t t , we have  

( ) ( ) [ ]− ≤ − σ − − σ ∆∫
0

t

2 k 2 k
t

M x (t) M x (t) b(s) f(x (s )) f(x(s )) s   

                                      
[ ]≤ − σ − − σ ∆∫

0

t

k
t

b(s) f(x (s )) f(x(s )) s  

and 

. 
0

t

t

b(s)f(v(s )) s− σ ∆ < ∞∫
                                                                                                                                              

(8) 

 
Since [ ]− σ − − σ →kf(x (s )) f(x(s )) 0  as →∞k , by applying the Lebesgue dominated convergence theorem, we 

conclude that  
 

( ) ( )
→∞

− =2 k 2k
lim M x (t) M x (t) 0   

 
This means that 2M  is continuous. 

We now show that 2M Ω  is relatively compact.  by (8), for x∈Ω  and any  0ε > , there exist *
1t t≥  large enough 

so that  

*t

b(s)f(x(s )) s
2

∞ ε
− σ ∆ <∫  . 

 
Then, form *

2 1x , T T t∈Ω > ≥ , we have  

2 1

2 2 2 1
T T

(M x)(T ) (M x)(T ) b(s)f(x(s )) s b(s)f(x(s )) s
2 2

∞ ∞ ε ε
− ≤ − σ ∆ + − σ ∆ < + = ε∫ ∫  . 

For *
1 1 2x , t T T t∈Ω ≤ < ≤ , we get 

{ }
2

*
1

1

T

2 2 2 1 2 1
t s t

T

(M x)(T ) (M x)(T ) b(s)f(x(s )) s max b(s)f(x(s )) (T T )
≤ ≤

− ≤ − σ ∆ ≤ − σ −∫ . 

 
Thus there exists 

1 A
ε

δ =  where { }
*

1t s t
A max b(s)f(x(s ))

≤ ≤
= − σ , such that  

2 2 2 1(M x)(T ) (M x)(T )− < ε  if 
2 1 10 T T< − < δ   

 
Finally, for any 0 1 2 1x , t T T t∈Ω ≤ < ≤ , there exists a 

2 0δ >  such that  
2

1

T

2 2 2 1 1 2
T

(M x)(T ) (M x)(T ) v(T ) v(T ) v (s) s∆− = − = ∆∫  

                                        
{ }

0 1
2 1t s t

max v (s) (T T )∆

≤ ≤
≤ − < ε  if 2 1 20 T T< − < δ . 

 
Then { }2M x : x∈Ω is uniformly bounded and equicontinous on [ )0t ,∞  and hence 2M Ω  is a relatively compact subset 

of [ )( )'
rd 0C t ,R∞ . By Theorem (2.1) there is an 

0x ∈Ω   such that 1 0 2 0 0M x M x x+ = .  We concluded that 0x (t)  is a 

positive solution of (1). 
 
Next we show that Eq.(1) has uncountably many bounded positive solutions in Ω .  Let the constant  [ ]1 2K K ,K∈  be 

such that K K≠  . We infer similarly that there exist mappings  

1 2M ,M  satisfying (5), (6), where  1 2K,M ,M  are replaced 

by    

1 2K,M ,M  respectively.  We assume that  

1 2 1 2x,y , M x M x x, M y M y y,∈Ω + = + =  which are the bounded positive 
solutions of Equation (1)   that is  
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1t

1
t

x(t) K h(t)x(t ) b(s)f(x(s )) s, t t= + − τ − − σ ∆ ≥∫  . 



1t

1
t

y(t) K h(t)y(t ) b(s)f(y(s )) s, t t= + − τ − − σ ∆ ≥∫  

 
From condition (8) it follows that there exists as 

2 1t t> , satisfying 

[ ] 

1t

t

b(s) f(x(s )) f(y(s )) s K K− σ + − σ ∆ < −∫ .                                                                                                               (9) 

 
In order to prove that the set of bounded positive solutions of Eq. (1) is uncountable, it is sufficient to verify that x y≠  
for 2t t≥  we get 



2 2t t

t t

x(t) y(t) K h(t)x(t ) b(s)f(x(s )) s K h(t)y(t ) b(s)f(y(s )) s− = + − τ − − σ ∆ − − − τ + − σ ∆∫ ∫  

                     

 [ ] [ ]
2t

t

K K h(t) x(t ) y(t ) b(s) f(x(s )) f(y(s )) s≥ − + − τ − − τ − − σ + − σ ∆∫  

                     

 [ ]
2t

t

K K h(t) x y b(s) f(x(s )) f(y(s )) s≥ − − − − − σ + − σ ∆∫  

                     

 [ ]
2t

t

K K C x y b(s) f(x(s )) f(y(s )) s≥ − − − − − σ + − σ ∆∫  

Thus we have  

( )  [ ]
2t

2
t

1 C x y K K b(s) f(x(s )) f(y(s )) s , t t+ − ≥ − − − σ + − σ ∆ ≥∫  

 
From eq.(9) we get that x y≠ . Since the interval  [ ]1 2K K ,K∈  contains uncountably man constants, the Eq. (1) has 
uncountably many positive solutions which are bounded by the functions u(t),v(t). This completes the proof. 
 
Corollary: 2.3. With respected to the Dynamic Equation (1) Assume that the functions [ ) ( ]( )'

rd 0u and v C t , , 0,∈ ∞ ∞  

constants > > ≥2 1c 0,K K 0  , ≥ +1 0t t m    { }= τ σm max , such that: 

0 1v (t) u (t) 0, t t t∆ ∆− ≤ ≤ ≤                                                                                                                                             (10) 
 
Then Eq.(1) has uncountably many positive solutions which are bounded by the functions u,v.   
 
Proof: We need to prove that condition (10) implies (3).  Let [ ]∈ 0 1t t ,t   and set 1 1H(t) v(t) v(t ) u(t) u(t )= − − +  
 
Then, from eq. (10) it follows that  

∆ ∆= − ≤ ≤ ≤0 1H(t) v (t) u (t) 0,t t t  Since 
1H(t ) 0=  and H (t) 0∆ ≤  for [ ]∈ 0 1t t ,t  

 
This implies that  
 1 1 0 1H(t) v(t) v(t ) u(t) u(t ) 0, t t t= − − + ≥ ≤ ≤  
 
Thus all the conditions of Theorem 2.2 are satisfied. 
 
Examples:  Consider the nonlinear dynamic equation 
[ ] 3

0x(t) h(s)x(t 2) b(t)x (t 1), t t∆
− − = − ≥  ,                                                                                                           (11) 

 
where tp(t) e−= .  We will show that the conditions of corollary 2.3 satisfied.  The function u(t) 0.5, v(t) 2= =   
satisfy (2) and also condition (10) for [ ] [ ]0 1t t ,t 0,4∈ = .  
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For the constants 1 2K 0.5, K 1,= = condition (4) has the form 

− −≤ ≤ + ≥ =t t
1

1 116e h(t) e , t t 4
2 16

                                                                                                                               (12) 

 
If the function h(t) satisfies (12), Then Eq. (1) has uncountably many positive solutions which are bounded by the 
functions u,v.   
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