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ABSTRACT 
The boundary value problem in basic enzyme reactions is discussed and approximate expressions for substrates, 
enzyme, substrate-enzyme and product concentrations are presented. He’s variational iteration method is used to give 
approximate and analytical solutions of non-liner reaction equations containing a non-linear term related to enzymatic 
reaction. The relevant analytical solutions for the substrate, enzyme, substrate-enzyme and product concentration 
profiles are discussed in terms of dimensionless reaction diffusion parameters. Numerical solutions are also presented 
using Matlab software. Our analytical results are compared with numerical solution and satisfactory agreement is 
noted. 
 
Keywords: Initial value problems, Enzyme kinetics, Non-linear reaction equations, Variational iteration method, 
Mathematical modelling.   
 
INTRODUCTION  
 
Enzyme kinetics is the study of the chemical reactions that are catalysed by enzymes. In enzyme kinetics, the reaction 
rate is measured. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role 
in metabolism, how its activity is controlled, and how a drug or an agonist might inhibit the enzyme. Enzymes are 
usually protein molecules that manipulate other molecules - the enzyme’s substrates. These target molecules bind to an 
enzyme's active site and are transformed into products through a series of steps known as the enzymatic mechanism. 
These mechanisms can be divided into single-substrate and multiple-substrate mechanisms. Kinetic studies on enzymes 
that only bind one substrate, such as triosephosphate isomerase, aim to measure the affinity with which the enzyme 
binds this substrate and the turnover rate. Some other examples of enzymes are phosphofructokinase and hexokinase, 
both of which are important for cellular respiration (glycolysis). When enzymes bind multiple substrates, such 
as dihydrofolate reductase, enzyme kinetics can also show the sequence in which these substrates bind and the 
sequence in which products are released. An example of enzymes that bind a single substrate and release multiple 
products are proteases, which cleave one protein substrate into two polypeptide products. Others join two substrates 
together, such as DNA polymerase linking anucleotide to DNA.  
 
Enzymes accelerate the rate of chemical reactions (both forward and backward) without being consumed in the process 
and tend to be very selective, with a particular enzyme accelerating only a specific reaction. Enzymes are important in 
regulating biological processes, for example, as activators or inhibitors in a reaction. To understand the role of enzyme 
kinetics, the researcher has to study the rates of reactions, the temporal behaviours of the various reactants and the 
conditions which influence the enzyme kinetics 
 
Hogan and  Woodley [1] developed a model to describe the interaction between two enzymes in a stirred vessel. Using 
the model, cofactor (NADPH) recycle has been investigated by simultaneous solution of the rate equations, solved with 
the aid of a numerical solution [1]. The theoretical analysis of the steady-state amperometric oxidase enzyme–
membrane electrode is developed. The model is based on diffusion equations containing a non-linear term related to 
Michaelis–Menten kinetics of the enzymatic reaction.  Logambal and Rajendran solved the system of coupled non-
linear diffusion equations in amperometric oxidase enzyme-membrane electrodes for the steady-state condition using 
the Homotopy perturbation method (HPM) [2]. Krishna and co- workers [3] described the mathematical model of a 
glucose sensor based on the amperometric detection of hydrogen peroxide using immobilized glucose oxidase (GOD). 
In this sensor GOD is immobilized on Stöber glass beads that are attached to a platinum electrode. The model describes 
approximate analytical solutions for the behavior of the system, which is assumed to follow the Michaelis-Menten 
scheme of reaction [3].  
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Ramin et.al [4] introduced a simple mathematical procedure for obtaining explicit overall rate expressions of 
reactants/products molecules involved in various elementary reactions. Multi-dimensional steady state and dynamic 
models for an enzymatic fuel cell are developed [5]. Karel et. al [6] applied the model of multiphase system to 
reversible mono- substrate and bi- substrate reactions catalyzed by membrane- bound enzymes. Mathematical modeling 
of enzyme reaction mechanisms are discussed in the books by Rubinow [7], Murray [8], Segel [9] and Roberts [10]. 
The purpose of this communication is to derive asymptotic approximate expressions for the substrate, product, enzyme 
and enzyme-substrate concentrations using variational iteration method for all values of dimensionless reaction 
diffusion parameters. 
 
MATHEMATICAL FORMULATION AND SOLUTIONS OF THE PROBLEM 
 
The enzyme kinetics in biochemical system have traditionally been modeled by ordinary differential which are based 
solely on reactions without spatial dependence of the various concentrations.  The model for an enzyme action, first 
elucidated by Michaelis and Menten suggested the binding of free enzyme to the reactant forming and enzyme-reactant 
complex. A cascade reaction is a sequence of biochemical reactions which have the property that the product of one 
reaction is reactant in the following reaction.  We will consider on a cascade scheme which consists of two enzyme-
substrate reactions described by the Michaelis-Menten kinetic models 
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Where 1E  is first enzyme, 2E  is the second enzyme, 1S  is the first substrate, 2S  is the second substrate, 1C  and 2C  

are the complexes and P is the final product, while 1k , 2k , 3k , 4k , 5k  and 6k are constant parameters which 
represent the rate of the reactions.  The concentration of the reactants in the Eq. (1) is denoted by lower case letters.  
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The differential equations governing the evolution of these concentrations are   
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The initial conditions are  
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2e     are constants. Note that the conservation laws for this system are.  
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An experimental problem involving a cascade reaction of the type in which two enzymes are immobilised on an 
electrode at the bottom of a flow cell. It is assumed that the two enzymes  fully cover the surface of the electrode and it 
is only the total concentration, e , that can be measured experimentally, rather than the individual concentrations, 0

1e  

and 0
2e . From the two conservation laws given by equations (11) to (13), and taking into account the fact that the 

product is uncoupled from all the other chemical reactants, we can reduce equations (3) to (9) to the following four 
equations.  
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The initial conditions are  
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The above system of nonlinear equations (14-17) can be solved analytically in a simple and closed form using 
variational iteration method( Appendix-A). The solutions of the above equations become  
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NUMERICAL SIMULATION 
 
The non- linear differential equations are solved by numerical methods. The function pdex4 in MATLAB/SCILAB 
software which is a function of solving the boundary value problem for differential equation is used to solve this 
equation.  Its numerical solution is compared with variational iteration method in Figures1-4. 
 
RESULTS AND DISCUSSION 
 
Equations (18) to (21) are new and simple approximate analytical expression for the concentrations of the substrate and 
the enzyme-substrate-complex calculated using variational iteration method. Fig.1 represent the concentration of the 
first substrate 1s  versus time t  for some fixed values of other parameters. From the Fig.1, it is inferred that 

concentration of substrate decreases when time increases. Also concentration of substrate 1s  increases when 1k  

increases. Fig. 2 represent the concentration of the second substrate 2s  versus time t  for some fixed values of other 
parameters. From the Fig.2, it is noted that concentration of substrate decreases when time increases. Also 
concentration of substrate 2s  increases when 4k , 01 , se   increases. Fig. 3 represent the concentration of the first 

complex 1c  versus time t  for some fixed values of other parameters. From the Fig.3, it is infored that concentration of 

substrate decreases when time increases. Also concentration of complex 1c  increases when 1k , 01, se  increases. Fig.4 

represent the concentration of the first complex 2c  versus time t  are calculated for various values of other parameters. 
From the Fig.4, it is observed that the concentration is linear with time t . 
 



M. Renuga Devi1  & L. Rajendran*2/ Mathematical modelling of enzyme kinetics reaction mechanisms and analytical / 
 IJMA- 5(1), Jan.-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                                       146   

 
CONCLUSION 
 
Approximate analytical solutions to the non-linear reaction equations are presented using variational iteration method. 
A simple, straight forward and a new method of estimating the concentrations of substrate, product, enzyme-substrate 
complex and enzyme are derived. This solution procedure can be easily extended to all kinds of system of non-linear 
equations with various complex boundary conditions in enzyme-substrate reaction diffusion processes. 
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APPENDIX: A 
 
Solution of non-linear equations using variational iteration method (VIM) 
In this appendix, the general solution of non-linear reaction using He’s variational method is derived. To illustrate the 
basic concepts of variational method (VIM), the following non-linear partial differential equation is considered.  
 

( )[ ] ( )[ ] ( )xgxuNxuL =+                                                                                                                                          (A.1) 

Where L is a linear operator, N is a nonlinear operator, and )(xg  is a given continuous function According to the 
variational method, we can construct a correct functional as follows 
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Where λ  is a general Lagrange multiplier which can be identified optimally via variational theory.  
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where 4321 ,, λλλλ and are general Lagrangian multipliers, ( ) ( ) ( ) ( )02010201 ,, candcss are initial approximations 
or trial functions.  
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The above equations are called Lagrangian – Euler equations. The Lagrangian multipliers, can be identified as 
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Substituting the Lagrangian multipliers and n=0 in the iteration formula, (A.3-A.6), we obtain 
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Substituting the initial conditions 0)0( ssi = , 0)0( =is , 0)0( =ic , 0)0( =ic  for all i in the above equations, we 
obtain equations (18) to (21) in the text. Here we can consider the first iteration only. Higher order iteration may be 
considered for better accuracy.  
 
APPENDIX B: NUMERICAL PROGRAM FOR SOLVING EQUATIONS (14)-(17) 
 
MATLAB Program 
function graphmain1 
options= odeset('RelTol',1e-6,'Stats','on'); 
%initial conditions 
Xo = [1; 0; 0; 0];  
tspan = [0 3];  
tic 
[t,X]=ode45(@TestFunction,tspan,Xo,options); 
toc  
figure 
hold on 
%plot(t, X(:,1)) 
%plot(t, X(:,2))  
%plot(t, X(:,3)) 
plot(t, X(:,4)) 
legend('x1','x2','x3','x4') 
ylabel('x') 
xlabel('t')  
return  
function [dx_dt]= TestFunction(t,x) 
k1=50;k2=.1;k3=.195;k4=1.13;k5=.001;k6=.0002;e1=1;e2=1;   
dx_dt(1)=-k1*(e1-x(3))*x(1)+k5*x(3); 
dx_dt(2)=k2*x(3)-k3*(e2-x(4))*x(2)+k6*x(4); 
dx_dt(3)=k1*(e1-x(3))*x(1)-(k2+k5)*x(3); 
dx_dt(4)=k3*(e2-x(4))*x(2)-(k4+k6)*x(4); 
dx_dt = dx_dt';   
return 
 
APPENDIX C 
Nomenclature and units 

Symbol Meaning Usual dimension 

1s  Concentration of first substrate molecm-3 

2s  Concentration second substrate molecm-3 

1c  Concentration of first enzyme –substrate complex molecm-3 

2c  Concentration of second enzyme-substrate complex molecm-3 
e Concentration of  the enzyme molecm-3 
p Concentration of the product molecm-3 
s0 Bulk concentration of the substrate molecm-3 
e0 Bulk concentration of the enzyme molecm-3 

k1,k2, k3, k4, k5, k6 Reaction rate s-1 
t Time s-1 

a,b,c,d constant none 
α0…α3,β0,… β9, γ 

0… 
γ 2,δ0…δ7 

constant none 
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Fig.1.The concentrations of the first substrate 1s  versus the time t  are calculated using Eq. (18) for various values of 

1k  when 102 =k , 113 =k , 104 =k , 0001.05 =k , ,1.06 =k  1,1,1 021 === see . Dotted line represents 

numerical simulation and bold line represents analytical expression.  
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Fig.2. The concentration of the second substrate 2s versus the time t are calculated using Eq. (19) for various values of 

014 ,, sek  when ,105.01 =k ,012.02 =k ,05.03 =k 1.05 =k , 1,1.0 26 == ek . Dotted line represents numerical 
simulation and bold line represents analytical expression. 

 
 

 
Fig.3. The concentration of the first complex 1c versus the time t are calculated using Eq. (20) for various values of 

011 ,, sek  when 5.1,2.0,1.0,01.0,2.0 26543 ===== ekkkk . Dotted line represents numerical simulation 

and bold line represents analytical distance.  
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Fig.4. The concentration of the second complex 2C versus the time t are calculated using Eq. (21) for values of 

,1.0,50 21 == kk ,13.1,195.0 43 == kk ,001.05 =k 0002.06 =k   49.0,1,1 021 === see .  Dotted line 

represents numerical simulation and bold line represents analytical expression.  
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