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ABSTRACT 
The concept of geodetic set was introduced by F. Buckley and F.Harary in [1] and   G.Chartrand , F.Harary and  
P.Zhang  in [2]. In [4], the geodetic number was defined by F.Harary, E.Loukakis and C.Tsouros. In this paper, we 
introduce the concept of geodetic neighbourhood(g-neighborhood)  and closed geodetic neighbourhood sets of a pair 
of vertices of a connected graph G with atleast two vertices. And, we define the geodetic number of a graph using         
g-neighbourhood sets. Further, we introduce some new concepts such as g-isolated vertices, g-independence,               
g-independence number, g-connectedness of a graph, g-independent geodetic set, g-independent geodetic number,       
g-irredundance number etc. Results connecting the above defined parameters are developed. 
 
Keywords: g-neighborhood , g-independence, g-connectedness, g-irredundance.  
 
 
I. INTRODUCTION 
 
Through out this paper, we consider only finite, undirected, connected graphs with at least two vertices and with out 
loops and multiple edges. For graph theoretic representations, we refer [5]. Let G=(V,E) be any graph and u,v ∈V(G) 
such that u≠v. d(u,v) is the length  of the shortest path connecting u and v. A u-v geodesic is a u-v path of length d(u,v). 
For a pair u,v of vertices in G, the closed interval I[x,y] is defined as I[x,y] = {x,y} ∪ {v : v is an internal vertex of an 
x-y geosic in G}. In this paper, we define the geodetic neighborhoood(g-neighborhood) set of a pair x,y of vertices in G 
as the open interval I(x,y) = {v: v is an internal vertex of an x-y geodesic in G}. We denote it by Ng(x,y).  
Correspondingly, we call I[x,y] as the closed geodetic neighborhood set of x,y and we denote it as Ng[x,y]. That is, 
Ng[x,y] = Ng(x,y) ∪ {x,y}. For S ⊆ V, I[S] is defined as I[S] = ∪

𝑥𝑥 ,𝑦𝑦∈𝑆𝑆 I[x,y] = ∪
𝑥𝑥 ,𝑦𝑦∈𝑆𝑆 Ng[x,y]. We denote it as Ng[S]. A set 

S of vertices in G is called a geodominating (or geodetic) set of G if I[S] = V. Equivalently, a set S of vertices in G is a 
geodetic set of G if  Ng[S] = V. A geodetic set of minimum cardinality is called a minimum geodetic set in [2] (or a 
geodetic basis in [1]). A geodetic set S is said to be a minimal geodetic set of G if no proper subset of S is a geodetic set 
of G. The minimum cardinality of all minimal geodetic sets of G  is the geodomination(or geodetic) number of G. It is 
denoted as g(G)[1,2,4].  
 
Definition: 1.1 Let G=(V,E) be any graph and v∈V(G). The neighborhoood of v, written as NG(v) or N(v) is defined by 
N(v)= {x∈V(G):x  is adjacent to v}. The closed neighborhood of of v is defined as N[v]=N(v) ∪{v}. 
 
Definition: 1.2 A vertex v in G is an extreme vertex of G if the sub graph induced by its neighbors is complete.   
 
Definition: 1.3 Let G=(V,E) be any graph. Then, G+ is the graph obtained from G by attaching a pendant vertex to each 
vertex of G.  
 
Definition: Generalized Hajo’s graph: 1.4[6] For k≥3, the generalized Hajos graph Hk is a graph on n=k+�𝑘𝑘2� vertices 
with vertex set V(Hk)={x1,x2,…,xk}∪{yi,j:1≤i<j≤k} where <{x1,x2,…,xk}> = Kk and each yi,j has degree two with 
N(yi,j)={xi,xj}, deg(xi)=2k-2. 
 

Corresponding author: K. Palani* 
1Department of Mathematics, A.P.C. Mahalaxmi College(W), Thoothukudi, Tamil Nadu, India. 

E-mail: kp5.6.67apcm@gmail.com 
 

 
 

http://www.ijma.info/�
mailto:kpapcmc@gmail.com�


K. Palani1* & S. Kalavathi2/ Geodomination, g-independence and g-irredundance/ IJMA- 5(1), Jan.-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                     135   

 
Definition: Peterson graph: 1.5 

 
 
2. GEODETIC NEIGHBORHOOD SETS 
 
Definition: 2.1 Let G=(V,E) be any graph and x,y∈V(G) such that x≠y. The geodetic neighborhood(g -neighborhood) 
set of the pair x,y is defined as Ng(x,y)= {v : v is an internal vertex of an x-y geodesic in G} and the closed geodetic 
neighborhood set of x,y is defined as Ng[x,y]=Ng(x,y)∪{x,y}. 
 
Remark: 2.2  
1.If x and y are adjacent, then Ng(x,y)=φ. In particular, if y∈N(x), then Ng(x,y)=φ. 
2.Let G be a complete graph. Then, Ng(x,y)=φ for every x,y∈V(G).  
 
Definition: 2.3 A pair of vertices x,y∈G is said to geodominate a vertex v∈G  if v∈Ng[x,y]. Similarly, a set S⊆V(G) is 
said to geodominate a vertex v∈V(G) if v∈Ng[x,y] for some x,y∈S.  
 
Definition: 2.4 A vertex v∈V(G) is said to be a geodetically isolated(g-isolated) vertex of G if v∉Ng(x,y) for every pair 
of vertices x,y∈G.  
Extreme  vertices are g-isolated vertices of G.  
 
Example: 2.5 

 
G Figure 2.1 

 
The vertices v5 and v6 are g-isolated vertices of G, as they do not belong to the open  g-neighborhood set of any pair of 
vertices of G.  
 
Remark: 2.6  
1.The set of all g-isolated vertices of G is denoted by Ig(G). The set of all extreme vertices of G is a subset of Ig(G). 
2.If G is a connected graph without g-isolates, then G has no extreme vertices and δ(G) ≥ 2. 
 
Proposition: 2.7 For any graph G, Ig(G) is equal to the set of all extreme vertices of G.  
 
Proof: Let S=The set of all extreme vertices of G. By Remark 2.6, S⊆Ig(G). Let x∈V-S. Then, N(x) contains at least 
two non-adjacent vertices, say, u,v. Further, the uxv geodesic from u to v contains v. So, x∉Ig(G).  Hence the result. 
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Definition: 2.8  Let S⊆V(G). A vertex v∈S is said to be a geodetically isolated(g-isolated) vertex of S if v∉Ng(x,y) for 
every pair x,y of vertices in S.  
 
That is, v is not geodominated by the vertices of S-{v}. 
 
Example: 2.9  

 
G Figure 2.2 

 
Consider S={v1,v4,v5,v7,v9}. Every vertex of S other than v4 is a g-isolated vertex of S. For S’={v2,v3,v4}, v2 and v4 are 
g-isolated vertices.     
 
Definition: 2.10 Let S⊆V(G) and v∈S. A vertex w∈V(G) is said to be a private g-neighbor of v with respect to S if    
w is geodominated by the vertices of S and it is not geodominated by the vertices of S-{v}.  
 
Definition: 2.11 Let S⊆V(G) and v∈S. The private g-neighbor set of v with respect to S is defined as pgn(v,S)={w : w 
is a private g-neighbor of v with respect to S}             
 
Example: 2.12 Condider G in figure 2.2.  Let S={v1,v5,v7,v9}. The vertices v3,v4,v6 and v7 are g-private neighbors of  
v7 and v8,v9 are g-private neighbors of v9. The vertex v1 is the unique g-private neighbor of itself. Similarly, v5  is a only 
g-private neighbor of v5. Therefore, pgn(v7,S)={v3,v4,v6,v7}, pgn(v9,S)={v8,v9}, pgn(v1,S)={v1} and pgn(v5,S)={v5}. 
 
Remark: 2.13  If v is a geodetically isolated(or g-isolated) vertex of S, then v∈pgn(v,S) and pgn(v,S)≠φ. 
 
Definition: 2.14 Let S⊆V(G). The g-private neighbour set of S denoted by pgn(S) is defined as pgn(S)={v∈S : pgn(v,S) 
≠φ}. 
 
Definition: 2.15 The g-private neighbour count of S is the cardinality of the g-private neighbour set of S. It is denoted 
as pgnc(S). That is, pgnc(S)=|pgn(S)|.  
 
Remark: 2.16 For S={v1,v5,v7,v9} in example 2.12, pgn(S)=S and pgnc(S)=|S|=4. 
 
Definition: 2.17 [1,2,3] A set S of vertices of G is said to be a geodominating(or geodetic) set of G if every vertex of G 
is geodominated by the vertices of S.  
 
Equivalently, a set S of vertices of G is a geodetic set of G if for every v∈V-S, v∈Ng(x,y) for some pair of vertices 
x,y∈S or V= I[S] = ∪

𝑥𝑥 ,𝑦𝑦∈𝑆𝑆 I[x,y] = ∪
𝑥𝑥 ,𝑦𝑦∈𝑆𝑆 Ng[x,y] = Ng[S].  

 
A geodetic set S is said to be a minimal geodetic set of G if no proper subset of S is a geodetic set of G.  
 
A geodetic set of minimum cardinality is called a minimum geodetic set (or a geodetic basis) of G and the minimum 
cardinality of a minimal geodetic set of G is called the geodetic number of G and it is denoted as g(G).   
 
The maximum cardinality of a minimal geodetic set of G is called its upper geodetic number and it is denoted as g+(G). 
 
Remark: 2.18 The set Ig(G) is a subset of every geodetic set of G. 
 
3. g-INDEPENDENT SETS 
 
Definition: 3.1 A subset S of V(G) is said to be a g-independent set of G if every v∈S is such that v∉Ng(x,y) for every 
x,y∈S-{v}. 
 
If S is g-independent then every vertex of S is a g-isolate of S.  
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Observation: 3.2  
1. For any graph G, every two element subset of V(G) is a g-independent set.  
2. For the complete graph G=(V,E), V(G) is a g-independent set.  
3. Let G be a non-complete connected graph. If S is a g-independent set of G, then 2≤|S|≤p-1. 
4. If G is any graph, then the set of all end vertices of G+ is a g-independent set of G+. 
 
Definition:3.3 A g-independent set S of G is said to be maximal if no super set of S is a g-independent set of G.  
 
Example: 3.4 
1. For C5, the set S={v1,v3} is a g-independent set whereas S’={v1,v3,v4} is a maximal g-independent set. 
 
Definition: 3.5 The maximum cardinality of all maximal g-independent sets of G is called its g-independence number. 
It is denoted as βg(G). A g-independent set of cardinality βg(G) is called a βg-set of G.  
 
Example: 3.6 

 
G figure 3.1 

 
1. For G, {v1,v3,v6,v8}, {v2,v4,v5,v7}, {v1,v7} and {v3,v5} are maximal g-independent sets.  
 
Observation: 3.7  
1. For a complete graph G on p vertices, βg(G)=p.  
2. For a non-complete connected graph G, 2≤βg(G)≤p-1. 
3. For n≥2, βg(Pn) = 2. 
4. For n≥4, βg(Cn) = �2   𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

3      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

5. βg(Km,n) = �
2                      𝑖𝑖𝑖𝑖 𝑚𝑚 = 𝑛𝑛 = 1
max{𝑚𝑚,𝑛𝑛}         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

� 

6. For any graph G on p vertices, βg(G+) = p. 
 
Definition: 3.8 A geodetic set S is said to be a g-independent geodetic set of G if S is g-independent. A g-independent 
geodetic set S is maximal if no super set of S is a g-independent geodetic set of G. That is, S∪{v} is not a                     
g-independent geodetic set for every v∈V-S. The minimum cardinality of all maximal g-independent geodetic sets is 
called g-independent geodetic number of G. It is denoted as gig(G). A g-independent geodetic set of cardinalilty gig(G) 
is called a gig-set of G.  
 
Observation:3.9  
1. For a complete graph on p vertices, gig(G)=p, as the unique geodetic set S=V(G) is g-independent.  
2. For a non-complete connected graph G, 2≤gig(G)≤p-1. 
3. For n≥2, gig(Pn) = 2, as the set of two end vertices of Pn is a g-independent geodetic set of Pn. 
4. For n≥4, gig(Cn) = �2   𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

3      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� 

 

Proposition: 3.10 gig(Km,n) = �
2                   𝑖𝑖𝑖𝑖 𝑚𝑚 = 𝑛𝑛 = 1 
min{𝑚𝑚,𝑛𝑛}         𝑖𝑖𝑖𝑖𝑖𝑖,𝑛𝑛 ≥ 2
max{𝑚𝑚,𝑛𝑛}        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� 

 
Proof: Let U,W be the vertex partition of Km,n with |U|=m and |W|=n. 
 
When m=n=1, V(Km,n) is the unique g-independent geodetic set. So, gig(Km,n)=2. 
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If m=1 and n≥2(or n=1 and m≥2) , then W (or U) is the unique g-independent geodetic set of G. Therefore,         
gig(Km,n) = max{m,n}. 
 
When m,n ≥2,  U and W are the only minimal g-independent geodetic set. Hence, gig(Km,n) = min{m,n}. 
 
Proposition:3.11 For any graph G on p vertices, gig(G+) = p.  
 
Proof: In G+, the set of all end vertices attached to the vertices of G is the unique g-independent geodetic set. Hence the 
result. 
 
Proposition: 3.12 Let G=(V,E) be any graph. A g-independent set S of G is maximal if and only if it is g-independent 
and geodetic.  
 
Proof: Let S be a g-independent set of G. Suppose S is maximal. Then, for every v∈V-S, S∪{v} is not g-independent. 
So, for every v∈V-S, v∈Ng(x,y) for some x,y∈S. Therefore, S is a geodetic set of G. Conversely, Suppose, S is both g-
independent and geodetic. Since S is geodetic, retracing the above steps we find, S∪{v} is not g-independent for every 
v∈V-S. But, S is g-independent. Hence, S is a maximal g-independent set of G.   
 
Proposition: 3.13  Every maximal g-independent set in a graph G is a minimal geodetic set of G.  
 
Proof: Let S be a maximal g-independent set of G. Proposition 3.12 asserts that S is a geodetic set. If S is not a 
minimal geodetic set, then S-{v} is a geodetic set for some v∈S.  So, for every u∈V-(S-{v}), u∈ Ng(x,y) for some 
x,y∈S-{v}.  In particular, v∈Ng(x,y) for a pair of vertices x,y∈S-{v}. This contradicts our assumption that S is g-
independent. Therefore, S is minimal geodetic set of G.     
 
Corollary: 3.14 For any graph G, g(G) ≤ gig(G) ≤ βg(G) ≤ g+(G). 
 
Proof: We prove the theorem in three steps. 
 
(i) g(G) ≤ gig(G). 
 
Let S be a gig-set of G. Since every g-independent geodetic set is a geodetic set of G, g(G)≤|S|=gig(G). 
 
(ii) gig(G) ≤βg(G). 
 
Let S be a βg-set of G. That is, S is a maximal g-independent set. By proposition 3.13, S is a geodetic set of G.  
 
Therefore, S is a g-independent geodetic set of G.But, gig-set is a g-independent geodetic set of minimum cardinality.  
 
So, gig(G)≤ βg(G). 
 
(iii) βg(G)≤ g+(G). 
 
Let S be a  βg-set of G. By Proposition 3.13, S is a minimal geodetic set of G. Any g+-set is a minimal geodetic set of 
maximum cardinality. Therefore, βg(G) ≤ g+(G). 
 
The following theorem gives a necessary and sufficient condition for a geodetic set of a graph G to be a minimal 
geodetic set of G. 
 
Theorem: 3.15 A geodetic set D of G is a minimal geodetic set of G if every u∈D satisfies one of the following two 
conditions. 
(i) u is a g-isolated vetex of D. 
(ii) There exists at least one vertex w∈V-D such that w is geodominated by D and it is not geodominated by D-{u}.  
 
Proof: Assume that D is a minimal geodetic set of G. Then, for every vertex u∈D, D-{u} is not a geodetic set of G. 
Therefore, there exists a vertex w∈V-(D-{u}) such that w is not geodominated by the vertices of D-{u}. 
 
Case 1: w=u.  
So, u is not geodominated by the vertices of D-{u}.That is, u∉Ng[x,y] for every x,y∈D-{u}. That is, u∉Ng(x,y) for 
every x,y∈D. That is, u is a g-isolated vertex of D. So, u satisfies (i).   
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Case 2: w≠u.   
Now, w ∈V-D and it is not geodominated by the vertices of D-{u}. But, as D is a geodetic set of G, w is geodominated 
by the vertices of D. So, u satisfies (ii).  
 
Conversely, assume that every u∈D satisfies (i) or (ii). Let C1 and C2 denote the set of all vertices of D satisfying (i) 
and (ii) respectively. 
 
case a: Let u∈C1. Then, u is a g-isolated vertex of D. Therefore, u∉Ng(x,y) for every pair x,y of vertices of D. That is, 
u∈V-(D-{u})  is not geodominated by the vertices of D-{u}.  
 
Therefore, D-{u} is not a geodetic set of G.  
 
case b: Let u∈C2. Then, there exists w∈V-D such that w is not geodominated by the vertices of D-{u}. So, D-{u} is 
not a geodetic set of G. 
 
By assumption, D = C1∪C2. Therefore, D-{u} is not a geodetic set of G for every u∈D.  
Therefore, D is a minimal geodetic set of G. 
 
Corollary: 3.16 A geodetic set D of G is a minimal geodetic set of G if and only if pgn(v,S)≠φ for every v∈D. 
 
4. g-IRREDUNDANT SETS 
 
The irredundance and upper irredundance number were first defined by Cockayne, Hedetnienmi and Miller[3]. In this 
section, we extend these parameters with respect to the geodetic concept. Theorem 2.15 can be restated as “A geodetic 
set S of G is minimal if and only if for every vertex v∈S, there exists a vertex w∈V-(S-{v}) which is not geodominated 
by S-{v}---(1). That is, for every vertex v∈S, pgn(v,S)≠φ.---(2). We call a set S of vertices is g-irredundant if condition 
(2) is satisfied.  
 
Definition: 4.1 A set S⊆V(G) is said to be a g-irredundant set of G if pgn(v,S)≠φ for every v∈S. 
 
Remark: 4.2 If S is a g-irredundant set, then pgnc(S)= |S|. 
 
Proposition: 4.3 A geodetic set S is a minimal geodetic set if and only if it is geodetic and g-irredundant. 
 
Proof: Let S be a geodetic set of G. Suppose S is minimal. By corollary 3.16, S is g-irredundant. Conversely, if a set S 
is both geodetic and g-irredundant.  Let v∈S. As S is g-irredundant, pgn(v,S)≠φ. Let w∈pgn(v,S). Then, w∈V-(S-{v}) is 
not geodeominated by the vertices of S-{v}. Therefore, S-{v} is not geodetic. As v∈S is arbitrary, S is a minmal 
geodetic set of G.  
 
Definition: 4.4 A g-irredundant set S is said to be maximal g-irredundant if no super set of S is a g-irredundant set of 
G.  
 
That is, S∪{v} is not g-irredundant for every vertex v∈V-S.  
 
Remark: 4.5 By definition 4.1, S is a maximal g-irredundant set of G if and only if for every vertex w∈V-S, there 
exists a vertex v∈S∪{w} for which pgn(v,S∪{w})=φ. 
 
Proposition: 4.6 Let G=(V,E) be a connected graph and S⊆V(G) is a g-irredundant set of G. Then, the following are 
equivalent. 
(i). For every vertex w∈V-S, there exists a vertex v∈S∪{w} for which pgn(v,S∪{w})=φ. 
(ii). For every vertex w∈V-S, pgnc(S∪{w})≤pgnc(S). 
 
Proof:  (i) ⇒ (ii) 
 
By definitions 2.14 and 2.15, pgnc(S)=|pgn(S)|= |{v∈S:pgn(v,S)≠φ}| . As S is g-irredundant, by  
 
Remark 4.2, pgnc(S)=|S|.    
 
By (i), for every w∈V-S, |pgn(S∪{w})|<|S∪{w}|=|S|+1. Therefore, pgnc(S∪{w})= |pgn(S∪{w})| ≤ |S| = pgnc(S). 
 
(ii) ⇒(i) 
Since S is g-irredundant, pgnc(S) = |S|. That is, for  every v∈S, pgn(v,S)≠φ.  
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(ii) implies for every w∈V-S, |pgn(S∪{w})|<|S∪{w}|. Therefore, for every w∈V-S, there exists atleast one vertex v in 
S∪{w} such that pgn(v,S∪{w})=φ .  
 
Hence the result.   
 
Remark: 4.7 Let G be a connected graph. A g-irredundant set S of G is a maximal g-irredundant set of G if and only if 
for every vertex w∈V-S, pgnc(S∪{w})≤pgnc(S). 
 
Definition: 4.8 Let G be a connected graph. The minimum cardinality of a maximal g-irredundant set of G is called the 
g-irredundance number of G. It is denoted as gir(G). The maximum cardinality of a mamimal g-irredundant set is called 
its upper g-irredundance number. It is denoted by GIR(G).  
 
Example: 4.9 For the graph G in figure 3.1 {v3,v6,v8} is a g-irredundant set whereas {v1,v3,v6,v8} is a maximal g-
irredundant set.  
 
Proposition: 4.10 Every minimal geodetic set in a connected graph G is a maximal g-irredundant set of G. 
 
Proof: Let S be a minimal geodetic set of G. By Proposition 4.3, S is g-irredundant. Suppose it is not maximal g-
irredundant. Then, there exists a vertex u∈V-S such that S∪{u} is g-irredundant. So, for every v∈S∪{u}, pgn(v, 
S∪{u})≠φ.  In particular, pgn(u,S∪{u})=φ. Let w∈ pgn(u,S∪{u}). Therefore, w is a private neighbor of u in S∪{u} and 
w is not geodominated by the vertices of S. This is a contradiction to S is a geodetic set of G. Hence S is a maximal g-
irredundant set of G.  
 
Theorem: 4.11 For any graph G,  
 

gir(G)≤ g(G)≤ gig(G)≤ βg(G)≤ g+(G)≤GIR(G).  
 
Proof: By Theorem 3.14, it is enough to prove gir(G) ≤ g(G) and  g+(G)≤GIR(G). 
 
(i) gir(G)≤ g(G). 
 
Let S be a g-set of G. By proposition 4.10, S is a maximal g-irredundant set of G. So, by definition of gir(G), we get 
gir(G)≤|S|=g(G). 
 
(ii) g+(G)≤GIR(G). 
 
Let S be a g+-set of G. Then, S is a minimal geodetice set of G. Therefore, by 3.10, S is a maximal g-irredundant set of 
G. Further, GIR(G) is the maximum cardinality of all maximal g-irredundant sets of G. Therefore, g+(G)≤GIR(G).  
 
Hence the result.  
 
Remark: 4.12 For a graph G, the above inequality is called the geodetic chain of G.  
 
5. g-CONNECTIVITY OF A GRAPH  
 
Definition: 5.1 A graph G=(V,E) is said to be geodetically connected(or g-connected) if every vertex u∈V(G)  is an 
internal vertex of an x-y geodesic for some x,y∈V(G).  
 
Remark: 5.2 If a graph G is g-connected then  
1. G contains no extreme vertices. 
2. δ(G)≥2. 
 
Examples: 5.3  
1. Every cycle Cp is a g-connected graph for p≥4. 
2. Peterson graph is a g-connected graph. 
 
Remark: 5.4 The following graphs are not g-connected.  
1. Any complete graph is not g-connected. 
2.The Hajo’s graphs Hk are not g-connected for k≥2.   
3. Pn is not g-connected for n≥2. 
4. Any graph G with atleast one extreme vertex is not g-connected. 
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Remark: 5.5 A graph G contains no extreme vertices is not a sufficent condition for G is g-connected.  For example, 
the generalised Hajo’s graphs Hk (see definition 1.4)contain no extreme vertices. It is not g-connected.  
 
Problem: 5.6 Find out a sufficient condition for g-connectedness of a graph.  
 
Conjecture: 5.7 Suppose G is a g-connected graph and S is a geodetic set of G with |S|≤ n/2 then V-S contains a 
geodetic set of G.    
 
Remark: 5.8 In the above conjecture, it is evident that the condition |S|≤ n/2 cannot be ommited.   
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