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ABSTRACT 
This paper investigates a single server retrial queuing system with two stages heterogeneous service.Customers arrive 
in batches in accordance with compound Poisson processes. After the completion of first stage service, the second 
stage service starts with probability 1. In addition to this, the server takes Bernoulli vacation and setup times. We 
assume that the retrial time, the service time, the repair time, the vacation time and the setup time of the server are all 
arbitrarily distributed. We obtain the time dependent probability generating functions in terms of their Laplace 
transforms and the corresponding steady state results explicitly. Also we derive the average number of customers in the 
queue and the average waiting time in closed form with numerical illustration.  
 
Subject Classification: AMS 60K25, 60K30, 90B22. 
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1. INTRODUCTION 
 
Retrial queues are characterized by the feature that a customer who finds the server is busy or on vacation he/she may 
join the group of blocked customers (called orbit) for trying their demand or request after some time or leave the 
system immediately. The study of retrial queuing system in queuing theory has become an indispensable area because 
of its vast applicability in telephone switching networks, telecommunication networks and computer networks packet 
switching networks, collision avoidance star local area networks and transportation networks. Most generally in 
telecommunication networks, telephone callers may break contact when the line is busy and retry for connection later.  
In  packet switching networks,  if the bus is idle, then one packet is chosen for transmission automatically so that the 
rest are stored in buffer on the other hand,  if the bus is busy then all packets must be stored in the buffer and the station 
will try the transmission later on.  

 
There is a vast literature on retrial queuing models with many dimensions. Kulkarni (1983), Farahmand (1990) Choi 
(1990) studied queuing systems with retrials.  For recent bibliographies and survey we can refer Yang and Templeton 
(1990), Fallin and Templeton (1997) and Artalejo (1999). Artalejo and Fallin (2002) discussed a comparison between 
standard and retrial queuing models. Krishna kumar et al. (2002) studied an M/G/1 retrial queue with two phase service 
and pre emptive resume. Retrial queues with vacations has also been   concentrated by many authors include Artalejo 
(1997, 1999), Krishna kumar (2002) and Atencia (2005) and Zhou (2005). Arumuganathan (2008)  discussed  single 
server batch arrival two phases of heterogeneous service,  retrial queue under Bernoulli schedule and the same author  
(2009) performed analysis on two phase heterogenous service and different vacation policies of  an M/G/1 retrial queue 
with non-persistent calls . Wang (2008) studied repairable retrial queue with setup time and Bernoulli vacation. Yang et 
al. (1990) studied M/G/1 retrial queue with impatient customers.  Choudhry (2009) studied both single and batch 
arrival of retrial queue with two phase of service and general retrial times. Kasthuri Ramnath and Kalidass (2010) 
studied single server non-Markovian retrial queue with second optional service and different vacation policies for non-
persistent customers. The same authors (2010) extended their results for two phase service of the same model. 
Arivudainambi and   Godhandaraman (2012) studied batch arrival retrial queue with two phases of service, feedback 
and K Optional Vacations.  Sumitha and Udaya Chandrika (2012) studied about starting failure, single vacation policy 
and orbital search of M/G/1 retrial queuing model. Vishwa Nath Maurya (2013) analysed the maximum entropy of 
batch arrival two phase retrial queuing system with second phase optional service and Bernoulli vacation. 
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In this paper, a single server retrial queue with impatient customers, two stages of heterogeneous service, extended 
vacation is considered. In addition to this after the vacation is over the server must take some time to set up. By using 
supplementary variable technique, the prescribed model is analysed. The rest of the paper is organised as follows: 
section 2 describes the mathematical model, section 3 discusses the steady state of the model, section 4 gives the 
performance measures of the system, section 5 deals with numerical analysis and conclusion is given in section 6.  
 
2. MATHEMATICAL MODEL 
 
In this paper, we consider a single server retrial queuing system in which the primary customers arrive in batches 
according to Poisson process with rate λ. Let Cj, j=1, 2,…represent number of customers with probability distribution 
P(Cj=n)=cn, n=1,2,…and probability generating function C(z). If the server is available, it begins the service to one of 
the customers immediately and the remaining customers leave the service area and hence join the orbit.  Also upon 
arrival if the customer finds the server busy or on vacation joins the orbit with probability p or leaves the service area 
with probability 1-p, being impatient. The retrial time that is time between successive repeated attempts of each 
customer in orbit is assumed to be generally distributed with distribution function A(x), density function a(x), the mean 

value a, and Laplace transform ).(sa
−

 Assuming that retrial times begin either at the completion instants of service or 

setup times so that the distribution of the remaining retrial time is dxxA
a

xAe ∫
∞
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=η . The server provides two stages of 

service in succession to all customers.  Let )(1 xB , b1 (x) and )(2 xB  , b2 (x) be the distribution function and the density 
function of the service time of first and second stage respectively. The service times of both stages are independent to 
each other. Let μi(x) be the conditional probability density function of service completion of ith service during the 

interval (x, x+dx] given that the elapsed time is x, so that ( )
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=µ ; i=1,2. After the completion of second 

stage service, the server may go for a vacation with probability θ or staying back in the system to provide service to 
new customer if any, with probability 1-θ. After the completion of first phase vacation the server may extend its 
vacation by going to second phase vacation with probability r (>0) or return back to the system with probability 1-r. Let 

Vi (x) and vi(x) be the distribution function and density function respectively and its Laplace transform is )(svi

−

.  Let 
γi(x) be the conditional probability density function of service completion of ithphase vacation during the interval         
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=γ ; i=1, 2. After   the vacation period is over, the 

server spend some time for setup and the setup time is arbitrarily distributed. Let D(x), d(x) be its distribution function, 

density function respectively and its Laplace transform is )(sd
−

respectively.  Let δ(x) be the conditional probability 

density function of setup time during the interval (x, x+dx] given that the elapsed time is x, so that ( )
)(1

)(
xD

xdx
−

=δ . 

All the stochastic processes are independent to each other. 
 
Let N (t) be denote the number of customers in the orbit at time t and C(t) be the state of the server and which is given 
by:    



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upset in  isserver   theif 5
 vacation phase secondon  isserver   theif 4

 vacationphasefirst on  isserver   theif 3
service stage secondbusy with  isserver   theif 2

service stagefirst busy with  isserver   theif 1
idle isserver   theif  0

)(tC  

 
So that the supplementary variables are introduced as Q0(t) = elapsed retrial time of the customer at the head of the 
orbit at time t, )(0 tPi = elapsed service time of the ith stage service time, )(0 tVi = elapsed vacation time of the ith phase 
vacation  j= 1,2 and S0(t) = elapsed set up time. The process {C(t), N(t), t >0} is a continuous time Markov process. 
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We define the following probability functions: 
 
Q0(t) =Pr{ N(t)= 0,C(t)=0}, 
 
Qn(x, t)dt = Pr{N(t)= n, C(t)=0}, n>0, 
 
Pn

(i)(x, t)dt = Pr{N(t)= n, C(t)=i}, n≥0; i=1,2 
 
Vn

(i)(x, t)dt = Pr{N(t)= n, C(t)=i}, n≥0; i=3,4 
 
Sn(x, t)dt= Pr{N(t)= n, C(t)=5}, n≥0 
 
2. TIME DEPENDENT SOLUTION 
 

The differential – difference equations governing the queuing model are 
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Subject to the boundary conditions, the above equations (1) - (7) could be solved 
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The initial conditions and Normalising condition are given by respectively 
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Now, Define  Laplace  transform  

∫
∞

−
−

=
0

)()( dtetfsf st

                                   (16) 

Taking Laplace transforms for equations (1) – (14) we have, 
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To solve the above equations, we define the following generating functions: 
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Multiply equations (18) – (23) by appropriate powers of z and apply the generating function defined above 
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And for boundary conditions, multiply equation (24) by appropriate powers of z and using equation (17) we get  
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We now multiply equation (47) by and ηε (x) integrate by part with respect to x 

)(),,0()(),,(
0

λη +=
−−∞ −

∫ sQszQdxxszxQ qeq                                 (53) 
 
where  

)( λ+
−

sQ is the  Laplace - Stieltjes transform of the retrial time. Multiply equations (48) and (49) by )(1 xµ and

)(2 xµ  respectively and integrate with respect to x 
 

)))(1((),,0()(),,( 1

)1(

0
1

)1(

zCpsBszPdxxszxP qq −+=
−−∞ −

∫ λµ
                              (54) 

)))(1((),,0()(),,( 2

)2(

0
2

)2(

zCpsBszPdxxszxP qq −+=
−−∞ −

∫ λµ
                              (55) 

 
 
where  

)))(1((1 zCpsB −+
−

λ and )))(1((2 zCpsB −+
−

λ  are the Laplace - Stieltjes transforms of first  stage and second 
stage service time respectively. 
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Similarly multiply (50), (51) and (52) by  
)(1 xγ , )(2 xγ  and )(xδ  respectively and integrate with respect to x, we have
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Now equation (41) becomes 
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where D (z, s)is given by 
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Sub the values for  
),,0()1( szPq  in equations (60) - (64) with help of equations (43) - (46), we get the probability generating functions of 

retial time, first stage service, second stage service, first phase vacation, second phase vacation and setup time 
respectively.

  
3. STEADY STATE DISTRIBUTION 
 
In this section we shall derive the steady state probability distribution for our model. To define the steady state 
probabilities, suppressthe argument 't' where ever it appears in the time dependent analysis. By using well known 
Tauberian property in the probability generating functions of retial time, first stage service, second stage service, first 
phase vacation, second phase vacation and setup time respectively in the transient state.  
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where  )))(1(()))(1(()( 21 zCpBzCpBzH −−=
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To find  Q0   using the normalizing condition at z = 1 
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where ρ = λ{(E(S1 ) + E(S2) + θ[(E(V1) + r E(V2) + E(D)]} 
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The necessary and sufficient condition for the stability condition is 
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4. PERFORMANCE MEASURES OF THE SYSTEM 
 
In this section we give some system queuing measures of the system. 
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(2) Probability that the server is idle but the orbit is not empty= 
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(3) Probability that the server is busy with either first stage or second stage           
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(4) Probability that the server is on first phase   vacation =
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(5) Probability that the server is on second phase vacation=
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(6) Probability that the server is on setup period
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(7) The average number of customers in the orbit  
 

       

2 2 2 2

[ ]

( ( )) { ( ) 2 ( ) [ ( ) ( )] [ ( ) ( )]}
2[1 ( )(1 ( )) ]

[(1 ( )) ( ) ] [ ( )(1 ( ) ]

[1 ( )(1 ( )) ] [1 ( )(1 ( )) ]

e

e e
R

e e

q
E I p E S E S E V E D E V E D

E I Q p

Q E I p E I Q p C
E I Q p E I

L

Q p

λ θ θ
λ ρ

λ ρ λ ρ

λ ρ λ ρ

− −

− −

 + + + +
 − − − 

− − +
+ +

− − − − − −

=

                                         
(84) 

 
    Where E(S) = E(S1) + E(S2);  E(S2) = E(S1

2) + 2E(S1)E(S2) + E(S2
2); 

  
    E(V)=E(V1) + r E(V2);  E(V2)=E(V1

2)+2r E(V1)E(V2)+ r E(V2
2);  

 
    E(D)= Mean Setup time; E(D2) = second order moment of set up time  
 

(8) The expected waiting time in the orbit Wq=
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(9) The blocking probability =1 - [Q0+Q1] =
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(10) The steady state availability of the server =A =
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5. NUMERICAL ANALYSIS 
 
We present some numerical results in order to illustrate the effect of various parameters on the main performance of our 
model. The effect of parameters λ (arrival rate),θ , η(retrial rate), μ1(first stage service rate), μ2(second stage service 
rate), γ1(first phase vacation completion rate), γ2(second phase vacation completion rate),δ(set up rate)  on mean queue 
in the orbit, availability, blocking probability, and ρ have been studied numerically.  The calculations are carried out by 
considering the distributions of retrial time, service times, vacation times and setup times are exponential. By setting 
the default parameters, μ1= 7, μ2 = 8, γ1 = 5, γ2 = 7, δ= 5, η = 5, p = 0.5,  r = 0.5. The following table shows the 
computed values of server’s idle time and other queue characteristics for our model. 
 

Table: Computed values server’s idle time and other queue characteristics 
 

λ 
Arrivalrate 

Θ ρ Q0 Availability Blocking 
probability 

Lq Wq 

0.1 0.2 0.0362 0.9993 0.9907 0.0356 0.0039 0.0785 
0.1 0.4 0.0456 0.9990 0.9816 0.0446 0.0048 0.0959 
0.1 0.6 0.0551 0.9987 0.9725 0.0536 0.0057 0.1135 
0.1 0.8 0.0645 0.9983 0.9635 0.0625 0.0066 0.1314 
0.1 1 0.0739 0.9979 0.9545 0.0713 0.0075 0.1493 
0.3 0.2 0.0724 0.9972 0.9818 0.0699 0.0199 0.1326 
0.3 0.4 0.0913 0.9960 0.9639 0.0873 0.0286 0.1906 
0.3 0.6 0.1101 0.9946 0.9464 0.1044 0.0376 0.2504 
0.3 0.8 0.1290 0.9931 0.9291 0.1212 0.0468 0.3123 
0.3 1 0.1479 0.9914 0.9122 0.1377 0.0564 0.3762 
0.5 0.2 0.1086 0.9936 0.9732 0.1030 0.0487 0.1946 
0.5 0.4 0.1369 0.9909 0.9471 0.1282 0.0756 0.3024 
0.5 0.6 0.1652 0.9878 0.9216 0.1526 0.1042 0.4167 
0.5 0.8 0.1935 0.9843 0.8968 0.1764 0.1346 0.5382 
0.5 1 0.2218 0.9803 0.8727 0.1996 0.1669 0.6676 
0.7 0.2 0.1449 0.9885 0.9648 0.1351 0.0932 0.2663 
0.7 0.4 0.1826 0.9837 0.9309 0.1673 0.1527 0.4362 
0.7 0.6 0.2203 0.9781 0.8981 0.1984 0.2178 0.6224 
0.7 0.8 0.2580 0.9717 0.8664 0.2285 0.2896 0.8275 
0.7 1 0.2957 0.9646 0.8357 0.2576 0.3691 1.0545 
0.9 0.2 0.1811 0.9819 0.9568 0.1660 0.1575 0.3501 
0.9 0.4 0.2282 0.9743 0.9154 0.2048 0.2695 0.5988 
0.9 0.6 0.2754 0.9654 0.8757 0.2420 0.3973 0.8828 
0.9 0.8 0.3225 0.9553 0.8376 0.2777 0.5445 1.2100 
0.9 1 0.3696 0.9439 0.8011 0.3120 0.7160 1.5911 

 
6. CONCLUSION  
 
In this paper, a batch arrival, single server retrial queue with two stage heterogeneous services, extended server 
vacation and setup time is considered. We studied the transient state distribution and steady state analysis with 
performance measures of system.  Also numerical illustration has been given for the model. This model can be applied 
in the design of computer networks. 
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