International Journal of Mathematical Archive-5(1), 2014, 67-74 MA Available online through www.ijma.info ISSN 2229 - 5046

CONNECTED TWO- OUT DEGREE EQUITABLE DOMINATION NUMBER IN DIFFERENT GRAPHS

M. S. Mahesh*

Department of Mathematics, Udaya School of Engineering, Kanya Kumari, India.

P. Namasivayam

PG and Research Department of Mathematics, The M.D.T. Hindu College, Tirunalveli -627010

(Received on: 07-01-14; Revised & Accepted on: 25-01-14)

ABSTRACT

Let G=(V,E) be a graph. A dominating set D in V of a graph G is called two out degree equitable dominating set if for any two vertices $u, v \in D$, $|od_D(u) - od_D(v)| \leq 2$. The minimum cardinality of a two-out degree equitable dominating set is called two-out degree equitable domination number, and is denoted by $\gamma_{2oe}(G)$. An two-out degree equitable dominating set D is said to be connected two-out degree equitable dominating set if the sub graph $\langle D \rangle$ induced by D is connected. The minimum cardinality of connected two –out degree dominating set is called connected two out degree equitable domination number and is denoted by $\gamma_{c2oe}(G)$. In this paper we introduce the connected two-out degree equitable domination number and connected two-out degree equitable domatic in graphs and its exact values for some standard graphs.

Key words: *Two-out degree equitable domination number, connected two-out degree equitable domination set, connected two-out degree equitable domination number. Connected two out degree equitable domatic Number.*

1. INTRODUCTION

By a graph G= (V, E), We mean a finite, undirected with neither loops nor multiple edges. The order and size of G are denoted by m and n respectively. For graph theoretic terminology we refer to Harray[5]. A subset D of V is called a dominating set of G if every vertex in V-D is adjacent to some vertex in D. The minimum cardinality of a dominating set of G is called domination number of G and it is denoted by $\gamma(G)$. An Excellent treatment of the fundamentals of dominion is given in the book by Haynes *et al* [8]. Various types of domination have defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes et al. [8]. Sampath Kumar and Waliker [4] introduced the concept of connected domination in graph. Let G= (V, E) be a graph and let $v \in V$ the open neighborhood and the closed neighborhood of v are denoted by N(v) and N[v]=N(v) U v respectively. If D⊆V then N(D)= $U_{v\in D}N(v)$ and N[D]= N(D) U D. If D⊆V and u ∈ D the private neighbor set of u with respect to D is defined by $P_n[u,D]=\{v: N[v] \cap D=\{u\}\}$.

A dominating set D of G is called a connected dominating set if the induced sub graph $\langle D \rangle$ is connected. The minimum cardinality of a connected dominating set of G is called the connected domination number of G and is denoted by $\gamma_c(G)$.

A subset D of V is called an equitable dominating set if for every $v \in V$ -D there exist a vertex $u \in D$ such that $uv \in E(G)$ and $|\deg(u)-\deg(v)| \leq 1$. The minimum cardinality of such an equitable dominating set is denoted by $\gamma_e(G)$ and is called the equitable domination number of G. A vertex u is said to be degree equitable with a vertex $v \in V$ if $|\deg(u)-\deg(v)| \leq 1$. An equitable set D is said to be a minimal dominating set if no proper subset of D is an equitable dominating set. . Let G = (V, E) be a graph and let $u \in V$ the equitable neighborhood of u dentoed by $N_e(u)$ is defined as $N_e(u) = \{v \in V : |v \in N(u), |\deg(u)-\deg(v)| \leq 1\}$. Let $v \in V$ the open equitable neighborhood and the closed equitable neighborhood of v are denoted by $N_e(u)$ and $N_e[u] = N_e(u)$ U v respectively. If $D \subseteq V$ then $N_e(D) = U_{v \in D}N_e(u)$ and $N_e[D] = N_e(D)$ U D. A double star is the tree obtained from two disjoint stars $K_{1,n}$ and $K_{1,m}$ by connecting their centers.

Corresponding author: M. S. Mahesh* Department of Mathematics, Udaya School of Engineering, Kanya Kumari, India. E-mail: gsko.2011@gmail.com

If G is connected graph, then a vertex cut of G is a subset R of V with the property that the sub graph of G induced by V-R is disconnected. If G is not complete graph, the vertex connectivity number k (G) is the minimum cardinality of a vertex cut. It is a convention that if G is complete graph k_m it is know that k(G)=m-1,

Definition: Let G=(V,E) be a graph, Let $D\subseteq V$ and v be any vertex is D. The out degree of v with respect to D denoted by $od_D(v)$, is defined as $od_D(v) = |N(v) \cap (V - D)|$.

Definition: Let D be a dominating set of a graph G = (V, E). For $v \in D$, let $od_D(v) = |N(v) \cap (V - D)|$. Then D is called an equitable dominating set of type 1 if $|od_D(u) - od_D(v)| \le 1$ for all $u, v \in D$. The minimum cardinality of such a dominating set is denoted by $\gamma_{eq1}(G)$ and is called the 1- equitable domination number of G[1].

Definition: A dominating set D in a graph G is called a two-out degree equitable dominating set if for any two vertices $u, v \in D$, $|od_D(u) - od_D(v)| \le 2$. The minimum cardinality of a two-out degree equitable dominating set is called the two-out degree equitable domination number of G, and is denoted by $\gamma_{2oe}(G)[2]$. A sub set D of V is a minimal two-out degree equitable dominating set if no proper subset of D is a two –out degree equitable dominating set.

2. CONNECTED TWO- OUT DEGREE EQUITABLE DOMINATION IN GRAPHS

Definition: Let G = (V, E) be a connected graph. A two-out degree equitable dominating set D of a graph G is called the connected two-out degree equitable dominating set if the induced sub graph $\langle D \rangle$ is connected. The minimum cardinality of a connected two-out degree equitable domination number of G and is denoted by $\gamma_{c2eq}(G)$

We supposed that G is connected because if the graph has more than one component the two out degree equitable dominating set has at least one vertex from every component of G then $\langle D \rangle$ is not connected, and conversely if G has a minimum connected two out degree equitable dominating set D and hence connected two out degree equitable domination number then $\langle D \rangle$ is connected that means G is connected according to that we state the following observation.

Theorem: 2.1 A connected two out degree equitable dominating set exist for a graph if and only if G is connected.

Example: 2.2 Let G be a graph as in the figure 1, we can find the two out degree equitable domination number & connected two out degree equitable domination number.

Fig 1:

Consider the set $D=\{2,4,5\}$ be a dominating set and $V-D=\{1,3,6,7\}$

 $od_D(2) = |N(2) \cap \{1,3,6,7\}|$

 $= |\{1,3,4\} \cap \{1,3,6,7\}| .= 2$

 $od_D(4) = |N(4) \cap \{1,3,6,7\}|$

$$= |\{2,3,5\} \cap \{1,3,6,7\}| = 1$$

 $od_D(5) = |N(5) \cap \{1,3,6,7\}|$

$$= |\{4,6,7\} \cap \{1,3,6,7\}| = 2$$

From the above any two vertices $u, v \in D$ such that $|od_D(u) - od_D(v)| \le 2$ and also induced sub graph $\langle D \rangle$ is connected. Therefore $\{2, 3, 5\}$ is connected two-out degree equitable dominating set and

Similarly D={2,3,4,5} are also connected two-out degree equitable dominating set and {2,3,5} is connected two-out degree equitable dominating set with minimum cardinality so $\gamma_{c2oe}(G) = 3$.

Remark: 2.1 Let D be the dominating set is connected two out-degree equitable dominating set if and only if D is two out-degree equitable dominating set and connected dominating set

The following theorem gives the relationship between domination number, two out degree domination number and connected two out degree domination number.

Theorem: 2.2 For any connected graph G, $\gamma(G) \leq \gamma_{2oe}(G) \leq \gamma_{c2oe}(G)$.

Proof: From the definition of connected two-out degree equitable dominating set in graph G, it is clearly that for any graph G any connected two-out degree equitable dominating set D is also an two-out degree equitable dominating set and every two-out degree equitable dominating set is also a dominating set.

Hence $\gamma(G) \leq \gamma_{2oe}(G) \leq \gamma_{c2oe}(G)$.

The following theorem gives the relationship between, connected two out degree domination number and connected dominating set.

Theorem: 2.3 For any connected graph G, $\gamma_c(G) \leq \gamma_{c2oe}(G)$.

Proof: Since every connected two-out degree equitable dominating set for any connected graph G is connected dominating set,

Thus $\gamma_c(G) \leq \gamma_{c2oe}(G)$.

Result: 2.4 Let G is a graph with n vertices then $2 \le \gamma_{c2oe}(G) \le n-1$

Result: 2.5 For any connected graph G, $\gamma_{c2oe}(G) = 2$ if and only if $\gamma_{2oe}(G) = 2$

3. CONNECTED TWO –OUT DEGREE EQUITABLE DOMINATION NUMBER FOR SOME STANDARD GRAPHS

Theorem: 3.1 For the complete graph k_m , the connected two –out degree equitable domination number is: $\gamma_{c2oe}(k_m) = 2$

Proof: Let $u, v \in D$. Since G is complete and $u \in V$, $N(u) = V - \{u\}$

 $od_D(u) = |N(u) \cap V - D|$

For any $u, v \in D$, $od_D(u) = m - 2$, $od_D(v) = m - 2$

So $|od_D(u) - od_D(v)| = 0 \le 2$

Therefore D forms a two degree equitable dominating set.

Since G is complete, $D=\{u, v\}$ is connected.

Hence $\gamma_{c2oe}(K_m) = 2$.

Theorem: 3.2 For the star $k_{1,m}$, the connected two –out degree equitable domination number is: $\gamma_{c2oe}(k_{1,m}) = m-2$.

Proof: Let $\{v, u_1, u_2, u_3 \dots u_m\}$ be the set of vertices in $k_{1,m}$.

Let D={ $v, u_1, u_2, u_3 \dots u_{m-2}$ } and V-D={ u_{m-1}, u_m }

By the definition of star $k_{1,m}$, N(u_i)=v for i=1,2,...m and N(u_i) \cap V-D = \emptyset .

Therefore $od_D(u) = |N(u) \cap V \cdot D| = 0$.

Then N(v)={ u_1, u_2, u_3 ----- u_m } and V-D $\subseteq N(v)$ so N(v) \cap V-D = V-D.

Therefore $od_D(u) = |N(u) \cap V \cdot D| = |V - D| = 2$.

So $|od_D(u) - od_D(v)| = 2 \le 2$.

So D is two degree equitable dominating set and induced sub graph of a D is connected.

Hence $\gamma_{c2oe}(k_{1,m}) = m-2$.

Theorem: 3.3 For the complete bipartite graph $K_{m,n}$, the connected two –out degree equitable domination number is: $\gamma_{c2oe}(K_{m,n}) = \begin{cases} 2 & if |n-m| \le 2 \\ not \ exists & Otherwise \end{cases}$

Proof: Let V_1 and V_2 be the partition of vertices in $K_{m,n}$ such that $|V_1| = m$ and $|V_2| = n$

And $V_1 = \{u_1, u_2, u_3 \dots \dots u_m\}$, $V_2 = \{v_1, v_2 v_3 \dots \dots v_n\}$ be vertices in V deg (u) = $\begin{cases} n & if \ v \in V_1 \\ m & if \ v \in V_2 \end{cases}$

Let $D = \{u_i, v_i\}$ be a dominating set and $\langle D \rangle$ is connected.

Claim D is two out degrees connected equitable dominating set.

Here $u_i \in V_1$ then $N(u_i) = V_2$ and

 $V-D=\{u_1, u_2, u_3 \dots \dots u_{i-1}, u_{i+1} \dots \dots u_m, v_1, v_2 v_3 \dots \dots v_{i-1}, v_{i+1} \dots \dots v_n\}$ $N(u_i) \cap V-D=\{v_1, v_2 v_3 \dots \dots v_{i-1}, v_{i+1} \dots \dots v_n\}$

So $od_D(u_i) = |N(u_i) \cap V-D| = n-1$

Here $v_i \in V_2$ then $N(v_i) = V_1$ and

 $V-D=\{u_1, u_2, u_3 \dots \dots u_{i-1}, u_{i+1} \dots \dots u_m, v_1, v_2 v_3 \dots \dots v_{i-1}, v_{i+1} \dots \dots v_n\}$ $N(v_i) \cap V-D=\{u_1, u_2, u_3 \dots \dots u_{i-1}, u_{i+1} \dots \dots u_m\}$

so $od_D(v_i) = |N(v_i) \cap V \cdot D| = m \cdot 1$. then

 $|od_D(u) - od_D(v)| = |n - 1 - (m - 1)| = |n - m| \le 2.$

So D is connected two out degree equitable dominating set $\gamma_{c2oe}(K_{m,n}) = 2$ if $|n - m| \le 2$.

If $|n-m| \ge 2$, we can't find a connected two out degree equitable dominating set.

Theorem: 3.4 For the Path graph P_n , the connected two –out degree equitable domination number is: $\gamma_{c2oe}(P_m) = \text{m-}2$. m ≥ 2

Proof: Since the degree of any vertex in P_m is 2 except the initial and terminal vertices.

Let D be a set except initial and terminal vertices. So V-D contains initial and terminal vertices.

Let u, v \in D, deg (u) = |N (u)|=2 and $od_D(u) = |N(u) \cap V \cdot D| \le 2$.

Therefore D is two degree equitable dominating set and <D> is connected.

 $\gamma_{c2oe}(P_m) = m-2.$

Theorem: 3.5 For the Cycle C_m , the connected two –out degree equitable domination number is : $\gamma_{c2oe}(C_m) = m-2$. $m \ge 3$.

Proof: Since the degree of any vertex in C_m is 2. And $\gamma(C_m) = m-2$. Let D be a dominating set with minimum cardinality is n-2.

We have to prove that D is connected two degree equitable dominating set.

Since the maximum degree of a vertex in C_m is 2. |N(v)|=2 for all v in G.

Therefore $od_D(u) = |N(u) \cap V \cdot D| \le 2$.

So D is two degree equitable dominating set and induced sub graph of a cycle is connected. $\gamma_{c2oe}(C_m) = m-2$. $m \ge 3$

Theorem: 3.6 For the Wheel W_m , the connected two –out degree equitable domination number is:

 $\gamma_{c2oe}(W_m) = \begin{cases} 2 & if \ m = 4,5 \\ 3 & if \ m = 6 \\ m-2 & if \ m \ge 7 \end{cases}$

Proof: Let W_m be a when with m-1 vertices on the cycle and a single vertex at the center.

Let V $(W_m) = \{v, u_1, u_2, u_3 \dots u_{m-1}\}$, where u is the center and v_i $(1 \le i \le m-1)$ is on the cycle.

Clearly deg (v_i) = for all $1 \le i \le m - 1$ and deg (u) =m-1.

Clearly $m \ge 4$. We have the following cases:

Case: 1. m=4 and 5

If m=4 then W_4 forms a complete graph then by theorem 3.1 $\gamma_{c2oe}(W_4) = 2$

Suppose n=5. Let us take D= {u, v_i ,} and since u is adjacent with v_i for all i $1 \le i \le 4$, V-D \subset N(u) so $N(u) \cap$ V-D \subset V-D

 $od_D(u) = |N(u) \cap V \cdot D| = |V \cdot D| = 3$

Now for v_i

Since deg $(v_i) = 3$ and vi is adjacent to $u \in D$ then $N(v_i) = \{u, v_j, v_k\}$ and $N(v_i) \cap V - D = \{v_i, v_k\}$

 $od_D v_i = |N(\mathbf{u}) \cap \mathbf{V} \cdot \mathbf{D}| = 2.$

 $|od_D(u) - od_D(v_i)| = 1 \le 2$ and clearly $\le D \ge \le u, v_i > is$ connected

So D is connected two degree equitable dominating set

Hence $\gamma_{c2oe}(W_n) = 2$.

Case: 2. m=6

In this case deg (u)=5, while deg(v_i)=3 for all i, $1 \le i \le 5$,

Let us take D={ u, v_j , v_k } i \neq j be a dominating set and since u is adjacent with v_i for all i $1 \le i \le 5$, V-D \subset N(u) so $N(u) \cap V$ -D $\subset V$ -D $od_D(u) = |N(u) \cap V$ -D| = 3

Now for v_i and v_j

If v_i and v_i is adjacent N(v_i) = {u, v_i , v_k } and N(u) \cap V-D= { v_k }

 $od_D(v_i) = |N(\mathbf{u}) \cap \mathbf{V} \cdot \mathbf{D}| = 1$

If v_i and v_j are not adjacent but v_i and v_j are adjacent with u so $N(u) \cap V$ -D contains two elements so $od_D(v_i) = |N(u) \cap V$ -D = 2

So for any elements $u, v \in D$

© 2014, IJMA. All Rights Reserved

 $|od_D(u) - od_D(v)| \le 2$ and clearly $\langle D \rangle = \langle u, v_j, v_k \rangle$ is connected

So D is connected two degree equitable dominating set

Hence $\gamma_{c2oe}(W_n)=3$

Case: 3. m≥ 7

In this case deg (u) ≥ 6 , while deg(v_i)=3 for all I, $1 \leq i \leq m - 1$,

Consider a subset D of V contains with n-2 vertices

Since u is adjacent with v_i for all $i \le i \le 5$, V-D \subset N(u) so $N(u) \cap$ V-D \subset V-D

$$od_{D}(u) = |N(u) \cap V \cdot D| = 2.$$

Let $v_i \in D$, then N(vi) $\subseteq D$ then N(u) \cap V-D=Ø

 $od_D(v_i) = |N(u) \cap V \cdot D| = 0$

If $N(v_i)$ not contains D then $N(u) \cap V$ -D contains only one vertices

 $od_D(v_i) = |N(\mathbf{u}) \cap \mathbf{V} \cdot \mathbf{D}| = 1$

So for any elements $u, v \in D$

 $|od_D(u) - od_D(v)| \le 2$ and clearly <D> is connected.

So D is connected two degree equitable dominating set.

Hence $\gamma_{c2oe}(W_m) = m-2$

Theorem: 3.7 The connected two-out degree equitable domination number of Peterson graph is 5.

Theorem: 3.8 For the double star $S_{m,n}$, the connected two –out degree equitable domination number is:

 $\gamma_{c2oe}(S_{m,n}) = \begin{cases} 2 & if |n-m| \leq 2\\ not \ exist & otherwise \end{cases}$

Proof: By the definition of double star Let $\{u, u_1, u_2, u_3 \dots u_n\}$, and $\{v, v_1, v_2v_3 \dots v_m\}$ are the vertices of $S_{m,n}$ and take D= $\{u, v\}$ connected and dominating set and then by definition $N(u) \cap V$ -D= $\{u_1, u_2, u_3 \dots u_n\}$,

 $u_m \text{ so } od_D(u) = |N(u) \cap V - D| = n \text{ and } N(v) \cap V - D = \{ v_1, v_2 v_3 \dots v_m \}, \\ \text{ so } od_D od_D(u) = |NN(uv) \cap V - D| = m$

then $|od_D(u) - od_D(v)| \le |m - n| \le 2$ therefore D={u,v} is connected two-out degree equitable dominating set.

Clearly connected two-out degree equitable dominating set is not exists if $|m - n| \ge 2$.

4. CONNECTED TWO OUT DEGREE EQUITABLE DOMATIC NUMBER

Definition: 4.1 A partition $P = \{V_1, V_2 \dots V_l\}$ of V(G) is called a connected two-out degree equitable domatic partition of V_i is a connected two-out degree equitable dominating set for every $1 \le i \le l$.

Example:

 $\{\{1, 2\}, \{3, 4\}\}$ is a connected two-out degree equitable domatic partition of G

Definition: 4.2 The connected two-out degree equitable domatic number of G is the maximum cardinality of a connected two-out degree equitable domatic partition of G and is denoted by $d_{c2oe}(G)$.

Theorem: 4.3 For any graph G, $d_{c2oe}(G) \le d_c(G) \le d(G)$, where d(G), $d_c(G)$, are the domatic and connected domatic number of G respectively.

Proof: Let G=(V,E) be a graph. Since it is clear that any partition of V into connected two out degree equitable domination set is also partition of V into connected dominating set, and also any partition of V in to dominating set.

Hence $d_{c2oe}(G) \leq d_c(G) \leq d(G)$,

We now proceed to compute $d_{c2oe}(G)$ for some standard graphs.

Theorem; 4.4

- (1) For the complete graph K_m , $d_{c2oe}(K_m) = m$
- (2) For the cycle C_m , $m \ge 4$, $d_{c2oe}(C_m) = 2$
- (3) For the path P_m , $d_{c2oe}(P_m) = 2$
- (4) For the star $K_{1,m}$, $d_{c2oe}(K_{1,m}) = 2$

Theorem: 4.5 For any connected graph with m vertices and with vertex connectivity $k(G) \le m-1$, if R its vertex cut and D is the connected two out degree equitable dominating set, then $D \cap R \ne \emptyset$.

Proof: Let C_1, C_2, \dots, C_k be the component s of $\langle V-D \rangle$ and evidently $k \ge 2$.

Suppose that $D \cap R = \emptyset$.

Since $\langle D \rangle$ is connected, then $\langle D \rangle$ is a sub graph of C_i for some $i \in \{1, 2, ..., k\}$.

Let $v \in C_i$ for $j \neq i$.

The $v \in V - D$ and no vertex in D is adjacent to v.

Then D is not dominating set, which is contradiction.

Hence $D \cap R \neq \emptyset$.

Theorem: 4.6 For any graph G of order n , $d_{c2oe} \leq \frac{m}{\gamma_{c2oe}}$

Proof: Suppose that $d_{c2oe} = t$, for some positive integer t.

Let $P = \{D_1, D_2, \dots, D_k\}$ be the connected two out degree equitable domatic partial of G.

Obviously, $|V(G)| = \sum_{i=1}^{t} |D_i|$ and frp, the definition of connected two out degree equitable domination number $\gamma_{c2oe}(G)$, we have $\gamma_{c2oe} \leq |D_i|$, i=1,2,3-----t,

Hence $n = \sum_{i=1}^{t} |D_i| \ge t \gamma_{c2oe}(G)$. that implies $m \ge t \gamma_{c2oe}(G)$

Thus $d_{c2oe} \leq \frac{m}{\gamma_{c2oe}}$

5. CONCLUSION

In this paper we define new parameter called connected two-out degree equitable domination in graphs. We can extend this concept of a two-out degree equitable domination in graphs to connected neighborhood two-out degree equitable domination, non split two-out degree equitable domination etc and study the characteristic of these parameters.

ACKNOWLEDGMENTS

The authors would like to thank gratitude to the referee for reading the paper care-fully and giving voluble comments.

REFERENCE

- 1. A. Anitha, S. Arumugam, and Mustapha Chellali," Equitable Domination in Graphs" Discrete Math. Algorithm. Appl. 03, 311 (2011).
- 2. A.Sahal and V.Mathad "Two-out degree equitable domination in graphs" Transaction on combinatorics vol 2.No. 3 (2013).
- 3. Arumugam. S and Ramachandran "Invitation to graph theory"
- 4. E.Sampath Kumar and H.B. Walikar, the connected domination number of a graph, J.Math. Physics. Sci., 13 (1979), 607-613
- 5. Fred Buckley and Frank Harary, "Introduction in Graphs" 1990
- 6. Kulli .V.R "Theory of domination in graphs"
- 7. S.Siva Kumar, N.D Soner, Anwar Alwardi and G.Deepak" Connected Equitable Domination in Graphs "Pure Mathematical Science Vol 1, 2012. No.3 123-130
- 8. Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, "Fundamentals of Domination in Graphs".
- 9. V.Swaminathan and K.M Dharmalingam "Degree equitable domination on graphs" Kragujevac Journal of Mathematics 35(2011) 191-197.

Source of support: Nil, Conflict of interest: None Declared