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ABSTRACT 

We investigate numerical-closed form solution to higher order generalized difference equation to find the value of 
discrete beta series in terms of discrete gamma factorial function. Examples are inserted to illustrate our main results. 
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1. INTRODUCTION 
 
The Fractional Calculus is currently a very important research field in several different areas: physics (including 
classical and quantum mechanics and thermo dynamics), chemistry, biology, economics and control theory ([6], [7], 
[8], [9], [10]). In 1989, K.S.Miller and Ross [5] introduced the discrete analogue of the Riemann-Liouville fractional 
derivative and proved some properties of the fractional difference operator. The main definition of fractional difference 
equation (as done in [5]) is the ν  fractional sum of ( )f t  by  
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where > 0.ν  On the other hand, when = mν  is a positive integer, if we replace ( )f t  by ( )u k  and ∆  by ∆



, (as 
given in definition 2.8 of [5]) then (1) becomes  
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where ( 1)( 1) = ( 1)( 2) ( 1)mr r r r m−− − − − +  and 
k 
  

 is the integer part of 
k


which is a numerical solution 

of the generalized higher order difference equation  
 

( ) = ( ), [0, ), > 0.v k u k kν∆ ∈ ∞


                                                                                                                     (3) 
 
Now (2) is very useful to derive many interesting results in a different way, such as the sum of the thm  partial sums to 
the thn  powers and the products of n  consecutive terms of arithmetic and geometric progressions [4]. 
 
In this paper, we define the discrete beta functions and obtain the value of  beta series in terms of discrete gamma 
factorial function by numerical-closed form solution of (3).  
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2. PRELIMINARIES 
 
Before stating and proving our results, we present some notations, basic definitions and preliminary results which will 

be useful for further subsequent discussions. Throughout this paper, let > 0, [0, ), = kk j k  ∈ ∞ −   
 



 where 
k 
  

 

denotes the integer part of 
k


 and ( ) = { , 1, 2, }a a a a+ +  . 
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 , and so on are closed 

form solutions of (3) for = 1,2, , pν   respectively.   
 
Definition: 2.1 [3] For a real valued function ( ),u k the generalized difference operator ∆



 and its inverse are 
respectively defined as  

( ) = ( ) ( ), [0, ), (0, ),u k u k u k k∆ + − ∈ ∞ ∈ ∞
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                                                                                         (4) 
 
and if  ( ) = ( ),v k u k∆



 then 1( ) = ( ) jv k u k c−∆ +


                                                                                                     (5) 

where jc  is a constant for all ( )k j∈


  = { , , 2 , }j j j+ +   .     
 
Definition: 2.2 [6] For , (0, )k n∈ ∞ , the  -factorial function is defined by  
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where Γ  is the Euler gamma function and when 1= ,  ( ) ( )
1 =n nk k  and we denote ( )
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Remark: 2.3 When ( )1 ,n∈ (6) and its ∆
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is a closed form solution of (3) for ( )( ) = qu k k


.   
   

Definition: 2.5 [3] Let (1)ν ∈  and ( )u k  defined on [0, )∞  be real valued function. Then,  
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is a numerical solution of equation (3) and when = 1ν , we have  
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Theorem: 2.6 [1] Let [0, )k∈ ∞  and 1 ( ) = 0lim

k
u k−

→∞
∆


. Then,  
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Definition: 2.7 [1] For ( , ) {0}n∈ −∞ ∞ −  and [0, )k∈ ∞ , the Discrete k - Gamma Factorial Function is defined as  
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and the Discrete k - Gamma Function is defined as  
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Lemma: 2.8 [1] Let ( )u k  and ( )w k  be two real valued functions. Then,  
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is a solution of difference equation (3) for = 1ν  and by considering ( ) ( )u k w k  as ( )u k .   
 
Lemma: 2.9 [3] Let [ , )k∈ ∞ . Then,  
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 is a numerical solution of equation (3) for = 1ν . 
 
Theorem: 2.10 For > 0a  and = 1ν , the solution 1 ( )u k−∆



 of equation (3) satisfies the relation  
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which yields  
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Proof: The L.H.S of (16) is coinciding with R.H.S of (16) by taking the new variable t  as =k a t− , =k t∆ −∆ , and 
(17) follows from (10) and (16).  

  
3. MAIN RESULTS 
 
In this section, we introduce discrete (.)k β  factorial function of four types and obtain formulas on discrete (.)k β  
series by Numerical-Closed form solution of difference equation (3). 
 
The following example shows that a closed form solution of equation (3) need not be coinciding with the numerical 
solution (2) of that equation.   

Example: 3.1 Taking 2,v = (2)( ) =u k k


 in (3), 
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3
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 is 

a closed form solution of (3). When = 0.8 , = 2.7k , we find that 1 
(3)3

(2) 0.8
0.8

=1

(2.7)2.27 = (2.7 0.8 ) = 2.3512
2.4r

r− ≠∑ .   

 
The closed form solution which is coincided with numerical solution of (2) can be called as Complete solution of (3).   
 
Remark: 3.2 Hereafter ( )1vt L − = set of all subsets of size t  in ascending order from the set 1 = {1,2, , 1}Lν ν− −  

and 1 1{ , , } ( )tm m t Lν −∈  is denoted as 1{ } ( )tm t Lν −∈ . 
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Theorem: 3.3 [1] Let (2)ν ∈ , (0, )∈ ∞  be fixed and [ , )k ν∈ ∞  be variable. If ( )u kν−∆
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 is any closed form 
solution of equation (3), then  
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is the complete solution of (3).   
 
Corollary: 3.4 The Numerical-Closed form relation of (3) is 
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Proof:  The proof follows by Theorem 3.3 and equating (9) and (18).  
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which is the Numerical-Complete solution of (3) for 1 1( ) = ( )m nu k k a k− −− .   
 
Proof: Applying binomial expansion to 1( )nk a −−  and then converting polynomials into polynomial factorials by 
second term of (8), we find  
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2 ( )( )1 2

1 1
1 2 ( )

=0 =0

( 1)( ) = ,
( 1) ! ( )

m n i ri in m n i
m n r

n i i r m n
i r

S kn ak a k
i r

ν
ν

ν νν

+ − − +− + − −
− − −

− + + + − −

−
∆ −

− +∑ ∑ 



 

                                                        (21) 

 
which is a closed form solution of (3) for 1 1( ) = ( )m nu k k a k− −− . Applying (21) in (18), we get a closed form 
solution mentioned in R.H.S of (20). Now the proof follows from (9) and (19).  
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Corollary: 3.6 Let 0 ,a< < , (1)m n∈  and = kj k  −   
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Proof: By using first term of (8), we have  
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Taking ν−∆



 on both sides, applying theorem 3.5 and replacing 1m −  by 1r , r  by 2r , the proof is complete.  
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Proof: By using first term of (8), we have  
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Taking ν−∆



 on both sides, applying theorem 3.5 and replacing 1n −  by 1r , r  by 2r , the proof is complete.  
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Corollary: 3.8 Let 0 ,a< < , (1)m n∈  and = kj k  −   




. Then, 

2 1 2

1 2 3

( 1) ( )( 1) 1 1
1 2

( 1)
= =1 =1 =0 =1

( ) ( 1) ( )( 1) = ( 1)
( 1)! ( ) !

k
m r r r i i i im n

n
n

r r r i r

k r r ar
a k r i

ν

ν ν

 
  − + −− − − 

−
− −

− −−
−

− − +∑ ∑∑∑ ∑










 

                                             
1 2 3

1 2 3

3

1 1 ( )

2 ( )
3

{
( )

r r im n r
r r r

i r m n

s s S k
r

ν

ν νν

+ −− − +

+ + − −×
+


 

1

=1 { } ( )1

( 1)t

t m t Lt

ν

ν

−

∈ −

+ −∑ ∑  

                                            
1

1 1

( )( )
1

( )
1

(( 1) )
( ) ( )!

mr m t

mm m t
t

m j k
r m m

ν

νν

−+

−

− +
×

+ −
 



 

( 1

( 1)1=2 1

)(( 1) ) } | .
( )!

mt i i
ki

jmi ii i i

mm j
mm m ν

−

− +−
−

−− +
× −−
∏ 







(24) 

 
Proof: By using first term of (8), we have  
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Taking ν−∆



 on both sides, applying theorem 3.5 and replacing 1m −  by 1r , 1n −  by 2r , r  by 3r , the proof is 
complete.  
 
When = 1ν , Theorem 3.5, Corollaries 3.6, 3.7 and 3.8 motivate us to define the following discrete k − beta functions. 
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 (i) 1 1 1( , , ) = ( ) |m n k

k jm n a k a kβ − − −∆ −
 

   

(ii) 1 ( 1) ( 1)(( , , )) = ( ) |m n k
k jm n a k a kβ − − −∆ −

   

   

(iii) 1 ( 1) 1(( , , ) = ( ) |m n k
k jm n a k a kβ − − −∆ −

  

   

(iv) 1 1 ( 1)( , , )) = ( ) |m n k
k jm n a k a kβ − − −∆ −

  

 .  

In particular, 1 1 1 1( , ) = (1 ) |m n
jm n k kβ − − −∆ −

 

 , where 
1= 1j  −   




, is called discrete beta function.  

 
Similarly the beta factorial (( , ))m nβ



, beta left factorial (( , )m nβ


 and beta right factorial ( , ))m nβ


 functions 

are defined by putting = 1a  in (ii), (iii) and (iv) respectively.   
 
Theorem: 3.10 Let 0 ,a< < , (1)m n∈ , [ , )k a∈  . Then, 
 

2 ( 1)( )1 2

1 2
=0 =0

( 1)( , , ) = | .
( 1) ! ( 1)

m n i ri in m n i
kr

k jn i i r m n
i r

S kn am n a
i r

β
+ − − +− + − −

− + + + − −

−
− +∑ ∑ 





                                                                       (25) 

 
Proof: The proof follows by taking = 1ν  in Theorem 3.5 and then multiplying both sides by  .  
 
Corollary: 3.11 When = = 1k a , (25) becomes  
 

2 ( 1)( )1 2
1 1

2
=0 =0

( 1) ( 1)( , ) = ( 1) | .
! ( 1)

m n i ri in m n i
n r

ji r m n
i r

S knm n
i r

β
+ − − +− + − −

−
+ + − −

− −
−

+∑ ∑ 




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Example: 3.12 Since 2 2 3 3

1 2 1 3= = = = 1S S S S  and 3
2 = 3S , putting = 0.55 , = 3,m = 2n  and = 0.45j  in 

corollary 3.11, we get  
( 1)3( )1 3

10.55
0.453

=0 =0

( 1) (1)(3,2) = ( 1) | = 0.0613.
! (0.55) ( 1)

rii ii
r

i r
i r

kS
i r

β
+−−

+ −

−
−

+∑∑


 

Similarly,  
( 1)3( )2 3

10.55
0.453

=0 =0

( 1) (2)(2,3) = ( 1) | = 0.0749.
! (0.55) ( 1)

rii ii
r

i r
i r

kS
i r

β
+−−

+ −

−
−

+∑∑


 

 
Remark: 3.13 The above example shows that ( , )m nβ



 need not be equal to ( , )n mβ


.  
 
Lemma: 3.14 If 0 k a< < ≤  and k  is a multiple of  , i.e ( ) =m k , then 
 

( , , )a m n aβ


 = ( , , )a n m aβ


. 
 
In particular, when = 1a  and 1 = ( )m  , then ( , ) = ( , )m n n mβ β

 

.   
 
Proof: By Definition 3.9 (i), we have  
 

1 1 1
0( , , ) = ( ) |m n a

a m n a k a kβ − − −∆ −
 

  
 
It can be rewritten as  
 

1 1 1
0( , , ) = ( ) |m n a

a m n a k a k kβ − − −∆ − ∆
  

 
 
Taking =t a k− , we get the required result.  
 
Example: 3.15 Taking 0.5,= = 3m , = 2n  and = 0j  in corollary 3.11, 
 

(3, 2)β


 = 0.0625= (2,3)β


.   
 
Theorem: 3.16 If 0 k a< < ≤ and , (1)m n∈ , then 
 

11
1 2

2
1 2

11 ( 1)1 ( )1 1 2

21
=0 =0 =0 2

( 1)( ) (( , , ) = |
( 1) ! ( 1)

r n im rr n i i in m
r r k

k ji r m nn i
i r r

s S kn ai m n a
i r

β
+ − −− ++ − −− −

+ + − −− +

−
− +∑∑ ∑ 





  

 
1 21 1

1 2

2
1 2

11 ( 1)1 ( )1
1

21
=0 =0 =0 2

( )( ) ( , , )) = |
( 1) ! ( 1)

r i mn rr r i m i in
r r k

k ji r m nn i
i r r

s Sr a kii m n a
i r

β
− + −− +− + −−

+ + − −− +− +∑∑ ∑ 





 

 
31 22 1 2

1 2 3

3
1 2 3

( 1)( ) 1 11 1
2

21
=0 =0 =0 =0 3

( )
( ) (( , , )) = | .

( 1) ! ( 1)

rr r ii i m nr r r im n
r r r k

k ji r m nn i
r r i r

r a s s S k
iii m n a

i r
β

++ −− −+ −− −

+ + − −− +− +∑∑∑ ∑ 





 

  
Proof: The proof of (i), (ii) and (iii) follows by taking = 1ν  in Corollaries 3.6, 3.7 and 3.8 and then multiplying them 
both sides by  .  
 
Lemma: 3.17 ( ) ( ) ( ) ( )

0 0
(1 ) = (1 )lim limr t t rk k k k

→ →
− −

   

 

 

 
Lemma: 3.18 

0 0 0 0
(( , )) = (( , )) = ( , ) = ( , )lim lim lim limm n n m m n n mβ β β β

→ → → →
   

   
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Theorem: 3.19 Let 0 k a< < ≤ , (1)m n∈ . Then, 

[ ] ( ) 2 ( 2)1 2

( ) 1 3 (2)
=1 =0 =0

( 1)( , , ) = | .
( 1) ! ( 2)

k
i i m n i rn m n i

kr
k r jn i i r m n

r i r

n a S km n a
i r

β
+ − − +− + − −

− +− + + + − −

−
− +∑ ∑ ∑





  



                                                        (26) 

 
Proof: Taking 1−∆



 on both sides of (25) and by using third term of (8) when = 1ν , the proof is complete.  
 
Example: 3.20  When 7,a = = 6k , = 2 = m , = 3n  and = 0j , (26) gives 
 

3 ( 2)( )3 2 3
62

(6 2 ) 2 22 (2)
=1 =0 =0

6( 1) (2) 7(2,3,7) = | = 100.
! 2 ( 2)

i ri i ii
r

r i r
r i r

S
i r

β
− +−

− + −

−
+∑ ∑∑  

 
The following theorem is the relation between Discrete Beta function and Discrete Gamma Factorial function.   
 
Theorem: 3.21 Let ( ), 1m n∈ and 0 < < k a≤ , then 
 

1 ( )
( )

=0

2( )1 2
( 1)

1 2
=0 =0

( , , ) | = ( , , )

( 1)= (( 2)) ( ) .
( 1) ! ( 1) 1

k k r
k k k r

r

m n ii i kn m n i
rr

kn i i r m n
i r

m n a e m n a e

Sn a er j
i r e

β β
∞

− − ∞ − +
+

+ − − −− + − −
+

− + + + − − −

∆

 −
× Γ + + − + − 

∑

∑ ∑



   

 



 





(27) 

 
Proof: By theorem 3.10, we have 
 

2( )1 2
( 1) ( 1)

1 2
=0 =0

( 1)( , , ) = ( ) ( )
( 1) ! ( 1)

m n ii in m n i
r rr

k n i i r m n
i r

Sn am n a k j
i r

β
+ − −− + − −

+ +
− + + + − −

−  − − +∑ ∑
  



 

 
2( )1 2

1
1 2

=0 =0

( 1)( , , ) | =
( 1) ! ( 1)

m n ii in m n i
k r

k k n i i r m n
i r

Sn am n a e
i r

β
+ − −− + − −

− − ∞
− + + + − −

−
∆

− +∑ ∑
 





1 ( 1) ( 1) 1( ) ( )r k r kk e j e− + − + − − × ∆ − ∆    

   

 
The proof follows from equations (11), (12) and (15).  
 

Remark: 3.22 
0

= 1lim1
e
e

−

−
→ −









 and 
0

(( )) = ( )lim k
k

n n
→

Γ Γ




.   

 
The following corollary is the relation between Beta function and Gamma function.   
 

Corollary: 2.23 
= =0

( , ) = ( 1)
s

s
t k

s k t

m n dt e ds mβ
∞

− 
Γ + 

 
∫ ∫  

 
Proof: The proof follows by taking 0→  on theorem 3.21 and using the remark 3.22.  
 

Corollary: 3.24 
1

( )

=0=0 =0

( , ) = ( 1) ( 1)!( 1)
k n

k r r
t

rk t

m n dt e dk m n r nβ
∞ −

− 
− − + + − 

 
∑∫ ∫  

 
Proof: The proof follows by taking 0→  and then putting = 0k  in theorem 3.21.  
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