International Journal of Mathematical Archive-4(10), 2013, 266-277

NEAR Z_{4p} - MAGIC LABELING

V. L. Stella Arputha Mary^{1*} S. Navaneetha Krishnanan² and A. Nagarajan³

¹Department of Mathematics, St. Mary's College, Tuticorin-628 001, India

^{2,3}Department of Mathematics, V.O.C College, Tuticorin-628 001, Tamil Nadu, India.

(Received on: 07-10-13; Revised & Accepted on: 28-10-13)

ABSTRACT

For any non-trivial abelian group(modulo Z_4 ,+), a graph G(V,E) is said to be Z_4 -magic if there exists a function f from E(G) into Z_4 -{0} where '0' is the additive identity element of modulo Z_4 , induce a mapping f^+ from V(G) into Z_4 such that $f^+(v) = \sum f(uv)$ is a constant for all vertices $v \in V$. If $f^+(v) = \sum f(uv)$ is a constant for almost all vertices $v \in V$ and for one or atmost two vertices of v, $f^+(v)$ is not the same constant where the summation is taken over all the edges uv incident at v, then the labeling is called near Z_4 -magic labeling and the graph which admits near Z_4 -magic labeling is called near Z_4 -magic graph. At the end we generalize near Z_4 -magic labeling into near Z_{4p} -magic labeling.

Mathematics Subject Classification 2000: 05C78.

Keywords: Near Z_4 -magic labeling, near Z_4 -magic graph and near Z_{4p} –magic graph.

1. INTRODUCTION

Throughout this paper by a graph G(V,E) we mean a finite, simple, undirected graph. Magic labeling were introduced by Sedlacek in 1963 Kong, Lee and Sun[4] used the term magic labeling for the labeling of edges with non-negative integers such that for each vertex v, the sum of labels of all edges incident at v is same for all v in particular the edge labels need not be distinct. For the abelian group (modulo Z_4 , +), a graph G is said to be Z_4 -magic if there exists a labeling f of the edges of G with non-zero elements of Z_4 which induce the vertex labeling f^+ such that $f^+(v)=\sum f(uv)$ where the summation is taken over all edges uv incident at v is a constant.

In near Z_4 magic graph $f^+(v) = \sum f(uv)$ where the summation is taken over all edges uv incident at v is a constant, for almost all vertices v of G and for one or atmost two vertices of G, $f^+(v)$ is not the same constant. It is different from the anti magic labeling which was introduced in 1990 by Hartsfield and Ringel [5].

2. BASIC DEFINITIONS

Definition 2.1: A walk of a graph G is an alternating sequence of vertices and edges $v_0, e_1, v_1, e_2, ..., v_{n-1}, e_n v_n$ beginning and ending with vertices in which each edges incident with two vertices immediately proceeding and succeeding it. The number 'n' is called the length of the walk.

Definition 2.2: A Walk in which all the vertices are distinct is called a path.

Definition 2.3: If the end two vertices are same in a path it is called as a cycle. A path having 'n' vertices and n-1 length is denoted as P_n here. By C_n we mean a cycle consisting of 'n' vertices and 'n' edges.

Definition 2.4 [5]: A bipartite graph (or bigraph) G is a graph whose vertex set V can be partitioned into two subsets V_1 and V_2 such that every edge of G joins V_1 with V_2 .

Definition 2.5: If G contains every line joining V_1 and V_2 then G is called complete bipartite graph. If V_1 and V_2 have m and n vertices, we write $G = K_{m,n}$.

Corresponding author: V. L. Stella Arputha Mary^{1*} ¹Department of Mathematics, St. Mary's College, Tuticorin-628 001, India

3. MAIN RESULTS

Theorem 3.1: P_n is near Z_4 -magic graph $n \ge 4$.

Proof:

Case 1: n is even

Let $f: E(G) \to Z_4 - \{0\}$ be defined as

$$f(u_{2i-1}u_{2i})=1$$
, $1 \le i \le \frac{n}{2}$ and $f(u_{2i}u_{2i+1})=2$, $1 \le i \le \frac{n}{2}-1$

Now, $f^+: V(G) \to Z_4$

We get $f^+(u_i) = f(u_{i-1}u_i) + f(u_iu_{i+1}) \equiv 3(mod4) = 3, 2 \le i \le n-1$

$$f^+(u_1) = 1 = f^+(u_n)$$

Here, only two vertices namely u_1 and u_n get a different constant.

Case 2: n is odd

Let $f: E(G) \to Z_4 - \{0\}$ be defined as

$$f(u_{2i-1}u_{2i})=1, 1 \le i \le \frac{n-1}{2}$$
 and $f(u_{2i}u_{2i+1})=2, 1 \le i \le \frac{n-1}{2}$

Now, $f^+: V(G) \to Z_4$

We get,
$$f^+(u_i) = f(u_{i-1}u_i) + f(u_iu_{i+1}) \equiv 3(mod4) = 3, \ 2 \le i \le n-1$$

$$f^+(u_1) = 1$$
 and $f^+(u_n) = 2$

The vertices u_1 and u_n get a different constant.

Hence P_n admits near Z_4 - magic labeling and so P_n is near Z_4 - magic graph for $n \ge 4$.

Example 3.2: For n=5, 6 the near Z_4 - magic labeling of P_n are given below.

Fig – **1**: Near Z_4 – magic labeling of P_5

Fig – 2: *Near* Z_4 – magic labeling of P_6

Theorem 3.3: C_n is near Z_4 - magic for $n \equiv 1 \pmod{2}$

Proof: Let $f: E(C_n) \to Z_4 - \{0\}$ be defined as $f(u_{2i-1}u_{2i})=2, 1 \le i \le \frac{n-1}{2}$ and $f(u_{2i}u_{2i+1})=3, 1 \le i \le \frac{n-1}{2}$

 $f(u_n u_1)=2.$

Now, $f^+: V(\mathcal{C}_n) \to Z_4$

We get, $f^+(u_i) = f(u_{i-1}u_i) + f(u_iu_{i+1}) \equiv (2+3)(mod4) = 1, \ 2 \le i \le n$ $f^+(u_1) = f(u_1u_2) + f(u_nu_1) \equiv (2+2)(mod4) = 0$

V. L. Stella Arputha Mary^{1*} S. Navaneetha Krishnanan² and A. Nagarajan³/ NEAR Z_{4p} - MAGIC LABELING/ IJMA- 4(10), Oct.-2013.

Here only one vertex u_1 gets a different constant zero.

Therefore, C_n is near Z_4 - magic for $n \equiv 1 \pmod{2}$.

Note 3.4 $u_{n+1} \equiv u_1$ (here).

Fig – 3: *Near* Z_4 – magic labeling of C_7

Remark 3.6: 1. If $f(E(C_n))$ is a constant in $Z_4 - \{0\}$ then C_n is Z_4 – magic for all n. Hence Z_{4p} - magic 2. C_n , n $\equiv 0 \pmod{2}$ is a Z_4 – magic graph for the labeling given in the theorem 3.3. So it is Z_{4p} - magic

Definition3.7 [6]: The join G_1+G_2 of G_1 and G_2 consists of $G_1 \cup G_2$ and all edges joining V_1 with V_2 . The graph P_n+K_1 is called a fan and it denoted as F_n .

Theorem 3.8: F_n is near Z_4 – magic graph, $n \ge 3$

Proof:

Case 1: $n \equiv 0,2,3 \pmod{4}$

 $V(G) = \{ u \} \cup \{ v_i / 1 \le i \le n \} \text{ and } E(G) = \{ uv_i / 1 \le i \le n \} \cup \{ v_i v_{i+1} / 1 \le i \le n - 1 \}$

Let $f: E(F_n) \to Z_4 - \{0\}$ be defined as

$$f(v_i v_{i+1}) = 1, 1 \le i \le n-1 \text{ and } f(uv_i) = 1, 1 \le i \le n-1$$

$$f(uv_1) = f(uv_n) = 2.$$

- $f^+(v_i) = \text{Now } f^+: V(F) \to Z_4$
- $f^+(v_1) = f(uv_1) + f(v_1v_2)$

$$f^+(v_1) \equiv (2+1)(mod4) = 3 = f^+(v_n)$$

$$f^{+}(v_{i}) = f(v_{i}v_{i+1}) + f(v_{i-1}v_{i}) + f(uv_{i})$$

$$f^+(v_i) \equiv (1+1+1) \pmod{4} = 3, \ 2 \le i \le n-1$$

 $f^+(u) = 2$, for $n \equiv 0 \pmod{4}$

 $f^{+}(u) = 0, for \ n \equiv 2(mod4)$

$$f^{+}(u) = 1$$
, for $n \equiv 3 \pmod{4}$

Here, only one vertex u gets a different constant.

Case 2: $n \equiv 1 \pmod{4}$ Let $f: E(F_n) \to Z_4 - \{0\}$ be defined as $f(v_{2i-1}v_{2i})=2, \ 1 \le i \le \frac{n-1}{2}$ and $f(v_{2i}v_{2i+1})=1, \ 1 \le i \le \frac{n-1}{2}$ $f(uv_i)=2, \ 2 \le i \le n-1$ $f(uv_1) = f(uv_n) = 3$ Now $f^+: V(F_n) \to Z_4$ $f^+(v_1) = f(uv_1) + f(v_1v_2)$ $f^+(v_1) \equiv (3+2) \pmod{4} = 1$ $f^+(v_i) \equiv (2+1+2) \pmod{4} = 1, \ 2 \le i \le n-1$ $f^+(v_n) \equiv (3+1) \pmod{4} = 0$ $f^+(u) = \sum_{i=1}^n f(uv_i)$ $\equiv (3+2+2+\dots+(n-2)times\ 2+3) \pmod{4} = 0$

Only two vertices v_n and u get a different constant.

Therefore, F_n admits near Z_4 – magic labeling. for $n \ge 3$.

Example 3.9: We shall verify near Z_4 -magic labeling for n=3, 4, 5.

Fig – 6: Near Z_4 – magic labeling of F_5

V. L. Stella Arputha Mary^{1*} S. Navaneetha Krishnanan² and A. Nagarajan³/ NEAR Z_{4n} - MAGIC LABELING/ IJMA- 4(10), Oct.-2013.

Definition 3.10[2]: The graph C_n+K₁ is called a wheel and it is denoted as W_n.

Theorem 3.11: W_n is near Z_4 –magic graph, $n \ge 3$.

Proof:

 $V(W_n) = \{u\} \cup [v_i/1 \le i \le n]$ $E(W_n) = \{uv_i / 1 \le i \le n\} \cup \{v_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_n v_1\}$ Case 1: $n \equiv 1 \pmod{2}$ Let $f: E(W_n) \to Z_4 - \{0\}$ be defined as $f(v_i v_{i+1}) = 1, 1 \le i \le n - 1$ $f(v_n v_1) = 1$ $f(uv_i)=2, 1 \le i \le n$ Now $f^+: V(W_n) \to Z_4$ $f^+(v_i) = f(v_i v_{i+1}) + f(uv_i) + f(v_{i-1}v_i) \quad 1 \le i \le n$ $f^+(v_i) \equiv (2 \text{ times } 1+2)(mod 4) =0, 1 \le i \le n \ (v_0 = v_n \text{ and } v_{n+1} = v_1)$ $f^+(u) = \sum_{i=1}^n f(uv_i)$ $\equiv (2 + 2 + \cdots n \text{ times } 2)(mod4) = 2$ The only vertex *u* gets a different constant in this case. **Case 2:** $n \equiv 0 \pmod{2}$ $n \geq 3$. Let $f: E(W_n) \to Z_4 - \{0\}$ be defined as

 $f(v_i v_{i+1}) = 1, \quad 1 \le i \le n-1$

 $f(v_n v_1) = 1$

 $f(uv_i)=3, 1 \le i \le n$

$$f^+: V(W_n) \to Z_4$$

We get $f^+(v_i) = f(v_i v_{i+1}) + f(uv_i) + f(v_{i-1}v_i), 1 \le i \le n$ $(v_0 = v_n \text{ and } v_{n+1} = v_1)$

 $f^+(v_i) \equiv (2 \text{ times } 1+3) \pmod{4} = 1, 1 \le i \le n$

$$f^{+}(u) = \sum_{i=1}^{n} f(uv_i)$$

$$\equiv (3 + 3 + \dots n \text{ times } 3)(mod4) = 2 \text{ for } n \equiv 2(mod4)$$

$$= 0 \text{ for } n \equiv 0(mod4)$$

Here vertex u gets a different constant .

Therefore in both the cases W_n admits near Z_4 -magic labeling.

Hence, W_n is near Z_4 –magic graph

Example 3.12:

Fig – 7: *Near* Z_4 – magic labeling of W_5

Fig – 8: *Near* Z_4 – magic labeling of W_6

Definition 3.13[6]: A Complete bigraph K_{1,n} is called a star.

Theorem 3.14: The star graph $K_{1,n}$ is near Z_4 –magic for $n \equiv 0,2,3 \pmod{4}$

Proof: Let *u* be the centre vertex and $v_1, v_2, ..., v_n$ be the pendent vertices of the star.

Let Let $f: E(k_{1,n}) \to Z_4 - \{0\}$ be defined as

$$f(uv_i)=1, 1 \le i \le n$$

$$f^+: V(k_{1,n}) \to Z_4$$

We get $f(v_i)=1, 1 \le i \le n$

$$f^{+}(u) = \sum_{i=1}^{n} f(uv_i)$$

$$\equiv (1 + 1 + \dots n \text{ times } 1)(mod4) = 2 \text{ for } n \equiv 2(mod4)$$

$$= 0 \quad \text{for } n \equiv 0(mod4)$$

$$= 3 \quad \text{for } n \equiv 3(mod4)$$

The only vertex u gets a different constant for different values of n.

Therefore the star graph $k_{1,n}$ is near Z_4 –magic graph.

Remark 3.15: $k_{1,n}$ is Z_4 -magic graph for $n \equiv 1 \pmod{4}$. Hence it is Z_{4p} - magic

Example 3.16: For n=4, 6, 7 the near Z_4 –magic labeling of $k_{1,n}$ are given

V. L. Stella Arputha Mary^{1*} S. Navaneetha Krishnanan² and A. Nagarajan³/ NEAR Z_{4p} - MAGIC LABELING/ IJMA- 4(10), Oct.-2013.

Fig – *9:* Near Z_4 – magic labeling of K_{1,4}

Fig – 10: Near Z_4 – magic labeling of $K_{1, 6}$

Fig – *11:* Near Z_4 – magic labeling of $K_{1,7}$

Definition 3.17[3]: A graph is called an (n, t)-kite if a path of length t attached to one vertex of the cycle C_n .

Theorem 3.18: An (n, t) - kite is near Z_4 -magic for $n \ge 3$ and $t \ge 1$

Proof: Let G be (n, t) - kite

 $V(G) = \{u_i / 1 \le i \le t\} \cup \{v_i / 1 \le i \le n\}$

 $\mathsf{E}(\mathsf{G}) = \{u_i u_{i+1} / 1 \le i \le t-1\} \cup \{v_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_n v_1\} \cup \{u_1 v_1\}$

Case 1: n is odd and t is odd

Let $f: E(G) \to Z_4 - \{0\}$ be defined as

$$f(v_{2i-1}v_{2i})=1, \ 1 \le i \le \frac{n-1}{2}$$
$$f(v_{2i}v_{2i+1})=2, \ 1 \le i \le \frac{n-1}{2}$$
$$f(v_nv_1)=1$$
$$f(v_1u_1)=1$$

$$f(u_{2i-1}u_{2i}) = 2, 1 \le i \le \frac{t-1}{2}$$

$$f(u_{2i}u_{2i+1}) = 1, 1 \le i \le \frac{t-1}{2}$$
hence $f^+: V(G) \to Z_4$
We get $f^+(u_i) = f(u_{i-1}u_i) + f(u_iu_{i+1})$

$$\equiv (1+2) (mod4) = 3, 2 \le i \le t-1$$
 $f^+(v_i) = f(v_{i-1}v_i) + f(v_iv_{i+1})$

$$\equiv (1+2)(mod4) = 3, \text{ or}$$

$$\equiv (2+1) (mod4) = 3, 2 \le i \le n \text{ (since } v_{n+1} = v_1)$$
 $f^+(v_1) = f(v_1v_2) + f(v_nv_1) + f(u_1v_1)$

$$\equiv (1+1+1)(mod4) = 3$$
 $f^+(u_1) = f(u_1v_1) + f(u_1u_2)$

$$\equiv (1+2)(mod4) = 3$$
 $f^+(u_i) = 1$

 u_t alone gets a different constant 1 and all the other vertices $v \in V(G)$ get the unique constant 3.

Case 2: *n* is odd and *t* is even

Let $f: E(G) \to Z_4 - \{0\}$ be defined as $f(v_{2i-1}v_{2i})=1, 1 \le i \le \frac{n-1}{2}$ $f(v_{2i}v_{2i+1}) = 2, 1 \le i \le \frac{n-1}{2}$ $f(v_n v_1) = 1.$ $f(u_1v_1) = 1$ $f(u_{2i-1}u_{2i}) = 2, 1 \le i \le \frac{t}{2}$ $f(u_{2i}u_{2i+1}) = 1, 1 \le i \le \frac{t-2}{2}$ Then $f^+: V(G) \to Z_4$ is given by We get $f^+(u_i) = f(u_{i-1}u_i) + f(u_iu_{i+1})$ $\equiv (1+2) \pmod{4} = 3, 2 \le i \le t-1$ $f^+(v_i) = f(v_{i-1}v_i) + f(v_iv_{i+1})$ $\equiv (1+2)(mod4) = 3$ (or) $\equiv (2+1) \pmod{4} = 3, \ 2 \le i \le n \quad (\text{since } v_{n+1} = v_1)$ $f^+(v_1) = f(v_1v_2) + f(v_nv_1) + f(u_1v_1)$ $\equiv (1+1+1)(mod4) = 3$ © 2013, IJMA. All Rights Reserved

$$f^+(u_1) = f(u_1v_1) + f(u_1u_2)$$
$$\equiv (1+2)(mod4) = 3$$
$$f^+(u_t) \equiv 2(mod4)$$

 u_t alone gets a different constant 2 and all the other vertices v $\in V(G)$ get the same constant 3.

Case 3: *n* is even and *t* is odd

Let $f: E(G) \to Z_4 - \{0\}$ be defined as $f(v_{2i-1}v_{2i})=3, 1 \le i \le \frac{n}{2}$ $f(v_{2i}v_{2i+1}) = 2, 1 \le i \le \frac{n}{2}(v_{n+1} = v_1)$ $f(u_1v_1)=3,$ $f(u_{2i-1}u_{2i}) = 2, \ 1 \le i \le \frac{t-1}{2}$ $f(u_{2i}u_{2i+1}) = 3, 1 \le i \le \frac{t-1}{2}$ Then $f^+: V(G) \to Z_4$ is given by We get $f^+(u_i) = f(u_{i-1}u_i) + f(u_iu_{i+1})$ $\equiv (2+3)(mod4) = 1, 2 \le i \le t-1$ $f^+(v_i) = f(v_{i-1}v_i) + f(v_iv_{i+1}) \ 2 \le i \le n$ $\equiv (3+2)(mod4) = 1$ (or) $\equiv (2+3)(mod4) = 1, 2 \le i \le n$ (since $v_{n+1} = v_1$) $f^+(v_1) = f(v_1v_2) + f(v_nv_1) + f(u_1v_1)$ $\equiv (3+2+3)(mod4) = 0$ $f^+(u_1) = f(u_1v_1) + f(u_1u_2)$ $\equiv (3+2)(mod4) = 1$ $f^+(u_t) = 3$

In this case, two vertices namely v_1 and u_t get different constants 0 and 3. All vertices except these two get the same constant 1

Case 4: *n* is even and *t* is even

Let $f: E(G) \to Z_4 - \{0\}$ be defined as

$$f(v_{2i-1}v_{2i})=3, \quad 1 \le i \le \frac{n}{2}$$

$$f(v_{2i}v_{2i+1})=2, \ 1 \le i \le \frac{n}{2} (v_{n+1}=v_1)$$

$$f(u_1v_1)=3,$$

$$f(u_{2i-1}u_{2i})=2, 1 \le i \le \frac{t}{2}$$

$$f(u_{2i}u_{2i+1})=3, 1 \le i \le \frac{t-2}{2}$$
Then $f^+: V(G) \to Z_4$ is given by
We get $f^+(u_i) = f(u_{i-1}u_i) + f(u_iu_{i+1})$
 $\equiv (2+3)(mod4) = 1, 2 \le i \le t-1$

$$f^+(v_i) = f(v_{i-1}v_i) + f(v_iv_{i+1}) 2 \le i \le n$$
 $\equiv (3+2)(mod4) = 1$ (or)
 $\equiv (2+3)(mod4) = 1$ (since $v_{n+1}=v_1$) $2 \le i \le n$

$$f^+(v_1) = f(v_1v_2) + f(v_nv_1) + f(u_1v_1)$$
 $\equiv (3+2+3)(mod4) = 0$

$$f^+(u_1) = f(u_1v_1) + f(u_1u_2)$$
 $\equiv (3+2)(mod4) = 1$

$$f^+(u_t) = 2$$

In this case, two vertices namely v_1 and u_t get different constants 0 and 2. All vertices except these two get the same constant 1

In all the cases one or atmost two vertices get different constant(s) and all other vertices get the same constant.

Therefore, (n, t)-kite is near Z_4 –magic

Example 3.19:

Fig – *12:* Near Z_4 – magic labeling of (7, 3) – kite

V. L. Stella Arputha Mary^{1*} S. Navaneetha Krishnanan² and A. Nagarajan³/ NEAR Z_{4p} - MAGIC LABELING/ IJMA- 4(10), Oct.-2013.

Fig – 13: Near Z_4 – magic labeling of (6, 2) - kite

Definition 3.20[2]: The corana $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 ,(Which has p_1 vertices) and p_1 copies of G_2 and then joining the ith vertex of G_1 to every vertex in the ith copy of G_2 .

The graph $P_n \mathcal{O}K_1$ is called a comb.

Theorem 3.21: The comb $P_n OK_1$ is near Z₄- magic

Proof: Let G be $P_n \mathcal{O}K_1$

Then V(G) = $\{v_i/1 \le i \le n\} \cup \{u_i/1 \le i \le n\}$

and E(G) = $\{v_i v_{i+1}/1 \le i \le n-1\} \cup \{v_i u_i/1 \le i \le n\}$

Let $f: E(G) \to Z_4 - \{0\}$ be defined as

 $f(v_i v_{i+1}) = 2, 1 \le i \le n-1$

 $f(v_i u_i) = 1, 1 \le i \le n$

 $f^+: V(G) \to Z_4$ is given by

 $f^{+}(v_{i}) = f(v_{i-1}v_{i}) + f(v_{i}v_{i+1}) + f(v_{i}u_{i}), \ 2 \le i \le n-1$

 $\equiv (2+2+1)(mod4) = 1$

$$f^+(v_1) = f(v_1v_2) + f(u_1v_1)$$

$$\equiv (2+1)(mod4) = 3$$

$$f^+(v_n) = f(v_{n-1}v_n) + f(u_nv_n)$$

$$\equiv (2+1)(mod4) = 3$$

$$f^+(u_i) = 1, 1 \le i \le n$$

Here only two vertices get different constant namely 3 and all other vertices of G get the same constant 1

Therefore, $P_n \mathcal{O}K_1$ is near Z_4 -magic

Example 3.22:

Observation 3.23: In all the theorems if we multiply the edge labeling by a positive integer p, the vertex labeling remains to be a constant and it is equal to p times the constant value we obtained, to almost all vertices except one or atmost two vertices of the graph. Hence all the above graphs admit near Z_{4p} magic labeling. Hence the graphs P_n , C_n for $n \equiv 1 \pmod{2}$, F_n , W_n , *Comb*, *Star graphs* $K_{1,n}$ ($n \equiv 0,2,3 \pmod{4}$) and (n,k)-kite graph, are all near Z_{4p} -magic graphs.

REFERENCES

- 1. S. Amutha, The existence and constructions of certain type of labeling for graphs, Ph.D. Thesis, Madurai Kamaraj University, 2006.
- 2. J.A. Galian, A dynamic survey graph labeling, Electronic Journalof Comdinatorics, 17(2010) DS6.
- 3. S.R. Kim and J.Y. Park On super edge -magic graphs, Ars Combin., 81(2006) 113-127.
- 4. M. C. Kong, S. M. Lee, and H. S. H. Sun, On magic strength of graph, Ars Combin., 45(1997)193-200.
- 5. N. Hartsfield and G. Ringel, Pearls in graph Theory, Academic Press, Inc.Boston, 1994, pp. 108-109.
- 6. T. Nicholas, Some labeling problems in graph theory, Ph.D Thesis, Manonmaniam Sundaranar University, 2001.
- V. L. Stella Arputha Mary, S. Navaneethakrishnan and A. Nagarajan, Z_{4p}-magic labeling for some special graphs, International Journal of Mathematics and Soft Computing. Vol 3,No 3 (2013) (61-70)
- 8. V. L. Stella Arputha Mary, S. Navaneethakrishnan and A. Nagarajan, Z_{4p} magic labeling for some more special graphs, International Journal of physical sciences, Ultra Scientist Vol.25(2)A, (319-326) (2013)

Source of support: Nil, Conflict of interest: None Declared