International Journal of Mathematical Archive-4(10), 2013, 215-220 MAAvailable online through www.ijma.info ISSN 2229 - 5046

EVEN GRACEFUL LABELING FOR DIFFERENT PATHS USING PADAVON SEQUENCE

S. Uma Maheswari*

Assistant Professor, Department of Mathematics, CMS College of Science and Commerce Coimbatore – 641049, Tamilnadu, India.

(Received on: 25-09-13; Revised & Accepted on: 15-10-13)

ABSTRACT

The even graceful labeling of a graph G with q edges means that there is an injection f: V(G) to $\{0,2,4,...,2q+2i/i=1$ to n} such that when each edge uv is assigned the label |f(u) - f(v)| the resulting edge labels are $\{2,4,6,...,2q\}$. A graph which admits an even graceful labeling is called an even graceful graph. In this paper, the even gracefulness of paths $p_1, p_2, p_{3,...}, p_{11}$ is obtained.

Keywords: Padavon sequence, vertex labeling, edge labeling, graceful labeling, even graceful labeling.

1. INTRODUCTION

By a graph, we mean a finite undirected graph without loops or multiple edges. A path on n vertices is denoted by P_n . Graph labeling, where the vertices are assigned certain values subject to some conditions, have often motivated by practical problems. In the last five decades, enormous work has been done on this subject [2].

A study of graceful graphs and graceful labeling methods was introduced by Rosa [4]. Rosa defined a β -valuation of a graph G with q edges an injection from the vertices of G to the set {0, 1... q} such that when each edge uv is assigned the label |f(u)-f(v)|, the resulting edges are distinct. β – valuation is a function that produces graceful labeling. However the term graceful labeling was not used until Golomb studied such labeling several years later [3].

2. DEFINITIONS

Definition 2.1: Graceful graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0, 1..., m\}$ such that when each edge uv is assigned the label |f(u)-f(v)| and the resulting labels are distinct. Then the graph G is graceful.

Definition 2.2: Path: A path in a graph is a sequence of vertices such that from each of its vertices there is an edge to the next vertex in the sequence. The first vertex is called the start vertex and the last vertex is called the end or terminal vertices of the path and the other vertices in the path are internal vertices.

Definition 2.3: Even graceful graph: The even graceful labeling of a graph G with q edges means that there is an injection f: V(G) to { 0,2,4,...,2q+2i/i= 1 to n} such that when each edge uv is assigned the label |f(u) - f(v)| the resulting edge labels are {2,4,6,...,2q}. A graph which admits an even graceful labeling is called an even graceful graph.

Definition 2.4: Padavon sequence:

The padavon sequence is the sequence of integers P(n) defined by the initial values P(0) = P(1) = P(2) = 1, and the recurrence relation

P(n) = P(n-2) + P(n-3).

The first few values of P(n) are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616,...

Corresponding author: S. Uma Maheswari*

Assistant Professor, Department of Mathematics, CMS College of Science and Commerce Coimbatore – 641049, Tamilnadu, India.

3. VARIOUS EVEN GRACEFUL LABELING

3.1 Even gracefulness of path P₂:

Theorem 1: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_2) = \{u_1, u_2\}$ where $V(P_2)$ is the vertex set of the path P_2 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

 $f(u_1) = 0; f(u_2) = q + 1$

The edge labeling function f^* is defined as follows.

 $f^*(u_1u_2) = q + 1$

Figure 1 shows the method of even graceful labeling of the path P₂.

This completes the proof.

Theorem 2: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_3) = \{u_1, u_2, u_3\}$ where $V(P_3)$ is the vertex set of the path P_3 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

 $f(u_1)=0;\,f(u_2)=q;\;\;f(u_3)=q+2$

The edge labeling function f^* is defined as follows.

 $f^*(u_1u_2) = q; f^*(u_2u_3) = q$

Figure 2 shows the method of even graceful labeling of the path P₃.

This completes the proof.

Theorem 3: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_4) = \{u_1, u_2, u_3, u_4\}$ where $V(P_4)$ is the vertex set of the path P_4 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

 $f(u_1) = 0; f(u_2) = q - 1; f(u_3) = q + 3; f(u_4) = q + 1$

The edge labeling function f* is defined as follows.

 $f^*(u_1u_2) = f^*(u_3u_4) = q - 1; \ f^*(u_2u_3) = q + 1$

Figure 3 shows the method of even graceful labeling of the path P_4 .

This completes the proof. *© 2013, IJMA. All Rights Reserved*

Theorem 4: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_5) = \{u_1, u_2, u_3, u_4, u_5\}$ where $V(P_5)$ is the vertex set of the path P_5 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

 $f(u_1)=0;\,f(u_2)=3q;\,\,f(u_3)=2q;\,f(u_4)=q+2;\,f(u_5)=q;$

The edge labeling function f* is defined as follows.

 $f^*(u_1u_2) = 3q$; $f^*(u_2u_3) = q$; $f^*(u_3u_4) = q - 2 = f^*(u_4u_5)$

Figure 4 shows the method of even graceful labeling of the graph P₅.

This completes the proof.

Theorem 5: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_6) = \{u_1, u_2, u_3, u_4, u_5, u_6\}$ where $V(P_6)$ is the vertex set of the path P_6 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

$$f(u_1) = 0; f(u_2) = 3q + 1; f(u_3) = q - q; f(u_4) = q - 3;$$

 $f(u_5) = q + 1; f(u_6) = q + 3$

The edge labeling function f* is defined as follows.

 $f^*(u_1u_2)=\ 3q+1;\ f^*(u_2u_3)=2q+2;\ f^*(u_3u_4)=f^*(u_5u_6)=q\ -3;$

$$f^*(u_4u_5) = q - 1$$

Figure 5 shows the method of even graceful labeling of the path P_{6} .

This completes the proof.

Fig. - 5

Theorem 6: P_n is padavon graceful for every integer $n \ge 2$.

Proof: Let $V(P_7) = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\}$ where $V(P_7)$ is the vertex set of the path P_7 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

$$f(u_1) = 0; f(u_2) = 5q-2; f(u_3) = 2q; f(u_4) = 3q-2;$$

 $f(u_5) = q + 2 \ ; \ f(u_6) = q; \ f(u_7) = q + 2$

The edge labeling function f* is defined as follows.

 $f^*(u_1u_2) = 5q - 2; f^*(u_2u_3) = 3q - 2; f^*(u_3u_4) = q -2;$

 $f^*(u_4u_5) = 2q; f^*(u_5u_6) = q - 4 = f^*(u_6u_7)$

Figure 6 shows the method of even graceful labeling of the path P_{7} .

This completes the proof.

Fig. - 6

Theorem 7: P_n is padavon graceful for every integer $n \ge 2$.

Proof: Let $V(P_8) = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$ where $V(P_8)$ is the vertex set of the path P_8 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

 $f(u_1) = 0; f(u_2) = 12q + 2; f(u_3) = 8q + 2; f(u_4) = 5q-3;$

 $f(u_5) = 4q + 2; f(u_6) = 4q-2; f(u_7) = 3q+3; f(u_8) = 3q+1$

The edge labeling function f* is defined as follows.

 $f^*(u_1u_2)=\!\!12q+2 \ ; \ f^*(u_2u_3)=4q; \ \ f^*(u_3u_4)=2q \ +2;$

 $f^*(u_4u_5) = 2q - 2; f^*(u_5u_6) = q-3; f^*(u_6u_7) = q - 5 = f^*(u_7u_8)$

Figure 7 shows the method of even graceful labeling of the path P_{8} .

This completes the proof.

Fig. - 7

Theorem 8: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_9) = \{u_{1,}, u_{2,}, u_{3,}, u_{4,}, u_{5,}, u_{6,}, u_{7,}, u_{8,}, u_9\}$ where $V(P_9)$ is the vertex set of the path P_9 . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

$$f(u_1) = 0; f(u_2) = 14q + 2; f(u_3) = 3q + 4; f(u_4) = q + 4;$$

 $f(u_5) = 5q; f(u_6) = 4q + 4; f(u_7) = 3q; f(u_8) = 3q - 2; f(u_9) = 2q + 4$

The edge labeling function f* is defined as follows.

 $f^*(u_1u_2) = 14q + 2; f^*(u_2u_3) = 11q - 2; f^*(u_3u_4) = 2q;$

 $f^*(u_4u_5) = 3q + 4; \ f^*(u_5u_6) = q - 4; \ f^*(u_6u_7) = q + 4; \ f^*(u_7u_8) = q - 6 = f^*(u_8u_9)$

Figure 8 shows the method of even graceful labeling of the path P₉.

This completes the proof.

Theorem 9: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_{10}) = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}\}$ where $V(P_{10})$ is the vertex set of the path P_{10} . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

 $f(u_1) = 0; f(u_2) = 22q + 2; f(u_3) = 9q + 5; f(u_4) = 8q - 2;$

 $f(u_5) = 17q + 3$; $f(u_6) = 14q + 2$; $f(u_7) = 13q + 1$; $f(u_8) = 13q - 5$;

 $f(u_9) = 12q + 2; f(u_{10}) = 12q - 2;$

The edge labeling function f^* is defined as follows.

$$f^*(u_1u_2) = 22q + 2; f^*(u_2u_3) = 13q - 3; f^*(u_3u_4) = 2q - 2;$$

$$f^*(u_4u_5) = 9q + 5$$
; $f^*(u_5u_6) = 3q + 1$; $f^*(u_6u_7) = q + 3$;

 $f^*(u_7u_8) = q - 5; \, f^*(u_8u_9) = q - 7 = f^*(u_9u_{10})$

Figure 9 shows the method of even graceful labeling of the path P_{10} .

This completes the proof.

Theorem 10: P_n is even graceful for every integer $n \ge 2$.

Proof: Let $V(P_{11}) = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}, u_{11}\}$ where $V(P_{11})$ is the vertex set of the path P_{11} . For every vertex u_i , the even graceful labeling functions $f(u_i)$ is defined as follows.

$$f(u_1) = 0; f(u_2) = 62q-4; f(u_3) = 42q - 4; f(u_4) = 30q + 2;$$

 $f(u_5) = 21q + 6; \ f(u_6) = 19q - 2; \ f(u_7) = 17q + 2; \ f(u_8) = 16q;$

 $f(u_9) = 16q - 4; f(u_{10}) = 15q + 4; f(u_{11}) = 15q + 2.$

The edge labeling function f^* is defined as follows.

 $f^*(u_1u_2) = 62q - 4; f^*(u_2u_3) = 20q ; f^*(u_3u_4) = 11q + 4;$

 $f^*(u_4u_5) = 8q + 6; f^*(u_5u_6) = 3q - 2; f^*(u_6u_7) = 2q - 4;$

$$f^{*}(u_{7}u_{8}) = q + 2; f^{*}(u_{8}u_{9}) = q - 6; f^{*}(u_{9}u_{10}) = q - 8 = f^{*}(u_{10}u_{11})$$

Figure 10 shows the method of even graceful labeling of the pathgraph P₁₁.

This completes the proof.

CONCLUSION

In all the above paths, we can see that both the edges and vertices are labeled with even numbers and hence even graceful graph.

REFERENCES

- 1. R.B. Gnanajothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, 1991.
- 2. G. J. Gallian, A dynamic survey of graph labeling, The electronic journal of combinatorics, 16 (2009), #DS6.
- 3. W. Golomb, How to number a graph in graph theory and computing, R.C. Read, ed., Academic Press, New York (1972), 23-37.
- 4. A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs(International Symposium, Rome), July (1966).
- 5. Uma Maheswari, Graceful Labeling of the paths using padavon sequence, International Journal of Mathematical Archive-4(4), 013, 66-71.

Source of support: Nil, Conflict of interest: None Declared