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In this paper we define Pseudo cone metric space and then prove some extensions of fixed point theorems to cone 
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1. INTRODUCTION   

 
The concept of cone metric spaces has been introduced by Haung and Zhang [6] in 2007 by replacing real numbers 
with an ordering Banach space.  Haung and Zhang gave an example of a function which is a contraction in the category 
of cone metric spaces but not contraction if considered over metric spaces and hence proving a fixed point theorem in 
cone metric spaces having a unique fixed point. Some of the articles dealt with the extension of certain fixed point 
theorems of cone metric spaces ([1], [2]) and some other with the structure of the spaces themselves ([1], [2], [3]). 
Recently some results on fixed point theorems have been extended to cone Banach spaces ([3]). Here we will define 
Pseudo cone metric spaces.  Some known results ([4]) are extended to cone Banach spaces where the existence of fixed 
points for self mappings on cone Banach spaces are investigated.  

 
We will represent a real Banach space by E = (E, ‖. ‖ ) in this paper. Let  E  have a closed  non-empty subset P = 𝑃𝑃𝐸𝐸 . 
Then  P is called  Cone  if  ax+by ∈ P   for all  x, y ∈ P and  non-negative real numbers  a, b  where  P ∩ (−𝑃𝑃) = {0}  
and  P ≠ {0}.  
 
We define a partial ordering (represented by  ≤ or ≤𝑃𝑃 ) with respect to a given cone P by  x ≤ y if and only if y –x ∈ P. 
The  notation  x <y  indicates that  x ≤ y and  x ≠ y,  whereas  x ≪ y will show that y – x  ∈ int.P  where int. P  denotes 
the interior of P . In this paper we assume that int.P ≠ ∅ 
 
The cone P is called (N) normal  if  there  exists  a  number K ≥ 1  such that  for  all x, y ∈ E, 
 
0≤ x ≤ y ⟹ ‖𝑥𝑥‖ ≤ K ‖𝑦𝑦‖                                                                                                                                            (1.1) 

 
and (R)  regular if every bounded above increasing sequence is convergent. In other words, if {𝑥𝑥𝑛𝑛 }, n≥ 1 is a sequence  
such that 𝑥𝑥1 ≤ 𝑥𝑥2 ≤…≤ y for some y∈ E, then there exists an element x ∈𝐄𝐄 such that lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛   −  𝑥𝑥‖ = 0. 
 
In (N), the least positive integer K, satisfying (1.1) is called the normal constant of P. We have the following 
observation. 
 
Lemma 1: [3] (i) Every  regular cone is normal, (ii) There is a normal cone with normal constant K > 𝑙𝑙 for 𝑙𝑙 >1 and  
(iii) If  every bounded below decreasing sequence is convergent then the cone P is regular. 
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Now we have the following definitions.     
Definition 1: [3] Suppose 𝐗𝐗 be a non-empty set and a mapping d∶𝐗𝐗× 𝐗𝐗 →𝐄𝐄 satisfies the following four properties: 
(𝐴𝐴1)   d (x, y) ≥ 0 ∀ x,y ∈ 𝐗𝐗  
(𝐴𝐴2)   d (x, y) = 0   ⟺ x = y 
(𝐴𝐴3)   d (x, y) ≤ d (x, z) + d (z, y) for all  x, y, z ∈ 𝐗𝐗 
(𝐴𝐴4)   d (x, y) = d(y, x) for all x, y ∈ 𝐗𝐗 
 
Then the mapping d is called cone metric on 𝐗𝐗 and (𝐗𝐗, d) is said to be a cone metric space (briefly CMS). 
 
Definition 2: [3] Suppose 𝐗𝐗 be a vector space over 𝐑𝐑.  Let the mapping ‖. ‖𝑃𝑃  ∶ 𝐗𝐗 → 𝐄𝐄 satisfies the four properties as: 
(𝐵𝐵1)   ‖𝑥𝑥‖𝑃𝑃  >0 for all x ∈ 𝐗𝐗  
(𝐵𝐵2)   ‖𝑥𝑥‖𝑃𝑃  =0  ⟺ x=0 
(𝐵𝐵3)   ‖𝑥𝑥 + 𝑦𝑦‖𝑃𝑃 ≤ ‖𝑥𝑥‖𝑃𝑃 + ‖𝑦𝑦‖𝑃𝑃  for all x, y ∈ 𝐗𝐗  
(𝐵𝐵4)   ‖𝑙𝑙𝑥𝑥‖𝑃𝑃  = |𝑙𝑙| ‖𝑥𝑥‖𝑃𝑃   for all  𝑙𝑙 ∈ 𝑹𝑹 ,  then  the  mapping ‖. ‖𝑃𝑃   is called  cone  norm on 𝐗𝐗 and  ( 𝐗𝐗 , ‖. ‖𝑃𝑃  ) is said to     
         be a cone  normed  space (briefly CNS ). Here we observe that every CNS is CMS. of course d (x, y) = ‖𝑥𝑥 − 𝑦𝑦‖𝑃𝑃  
 
Definition 3: Suppose (𝐗𝐗, ‖. ‖𝑃𝑃  ) be a cone normed space and x ∈ 𝐗𝐗.  Let {𝑥𝑥𝑛𝑛 }, n≥ 1 be  a  sequence in . then 
(i) the sequence {𝑥𝑥𝑛𝑛}, n≥ 1 converges to 𝑥𝑥 whenever for every c∈𝐄𝐄 with 0< 𝑐𝑐 there is a natural number N such that  

‖𝑥𝑥𝑛𝑛 − 𝑥𝑥‖𝑃𝑃  < c for all n ≥ N. We write it as  lim
𝑛𝑛→∞

 𝑥𝑥𝑛𝑛  = 𝑥𝑥  or 𝑥𝑥𝑛𝑛   → 𝑥𝑥  as n → ∞. 
(ii) the sequence {𝑥𝑥𝑛𝑛 }, n≥ 1 is a Cauchy sequence whenever for every c ∈ 𝑬𝑬 with  0< 𝑐𝑐 there  is a natural number N  

such  that ‖𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚‖𝑃𝑃 < c  ∀  n, m ≥ N. 
(iii) (𝐗𝐗, ‖. ‖𝑃𝑃  ) is a complete cone normed space if every Cauchy sequence is convergent.  
 
Complete cone normed spaces (briefly CCNS) are referred to as cone Banach spaces. We have three well known results   
given in Lemmas 2, 3 and 4 below. 
 
Lemma 2: [3] Suppose (𝐗𝐗, ‖. ‖𝑃𝑃 ) be a cone normed space (CNS) and P be a normal cone with normal constant K and  
let {𝑥𝑥𝑛𝑛 } be a sequence in  𝐗𝐗, then  
(i)   {𝑥𝑥𝑛𝑛 } converges to 𝑥𝑥  iff ‖𝑥𝑥𝑛𝑛 − 𝑥𝑥‖𝑃𝑃  → 0  as  n → ∞ 
(ii)  {𝑥𝑥𝑛𝑛 } is a Cauchy sequence iff ‖𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚‖𝑃𝑃 → 0 as  n, m → ∞ 
(iii) if {𝑥𝑥𝑛𝑛 } converges to 𝑥𝑥 and {𝑦𝑦𝑛𝑛 } converges  to 𝑦𝑦 then ‖𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛‖𝑃𝑃 → ‖𝑥𝑥 − 𝑦𝑦‖𝑃𝑃  
 
Lemma 3: [3] Suppose (𝐗𝐗, ‖. ‖𝑃𝑃) be a cone normed space (CNS) over a cone P in 𝐄𝐄, then  
(i) Int.(P)+ Int.(P) ⊆ Int.(P) and 𝜆𝜆 Int.(P) ⊆ Int.(P),  𝜆𝜆 > 0 
(ii) If c > 0  then ∃ a 𝛿𝛿 > 0 such  that ‖𝑏𝑏‖ < 𝛿𝛿  implies that b < c 
(iii) For any given c > 0 and  𝑐𝑐0  > 0,  ∃ 𝑛𝑛𝑜𝑜 ∈ 𝑁𝑁 such that  𝑐𝑐0 𝑛𝑛𝑜𝑜�  < 𝑐𝑐  
(iv) {𝑎𝑎𝑛𝑛 }, {𝑏𝑏𝑛𝑛 } are two sequences in E  s.t. 𝑎𝑎𝑛𝑛 → 𝑎𝑎 , 𝑏𝑏𝑛𝑛  → 𝑏𝑏 and  𝑎𝑎𝑛𝑛  ≤ 𝑏𝑏𝑛𝑛  ∀ 𝑛𝑛 then a ≤ 𝑏𝑏. 

 
Before mentioning Lemma 4, we have the following well known definition. 
  
Definition 4: [3] P is said to be a minihedral cone if sup{x, y}exists for all x, y∈ 𝐄𝐄 and it is said to be strongly 
minihedral  if every subset of 𝐄𝐄 which is  bounded above has  a  supremum. 
 
Lemma 4: [3] Every strongly minihedral normal cone is regular. 
    
Finally we define a Pseudo cone metric space as follows. 
 
Definition 5: Consider a non-empty set 𝐗𝐗 and a mapping d∶ 𝐗𝐗 × 𝐗𝐗 →𝐄𝐄 which satisfies four properties as  
(𝐶𝐶1) d (x, y) ≥ 𝟬𝟬 for all x, y ∈ 𝐗𝐗 
(𝐶𝐶2) d (x, y) =  𝟬𝟬   if  x = y,  for x, y ∈ 𝐗𝐗 
(𝐶𝐶3) d (x, y) = d(y, x) for all x, y ∈ 𝐗𝐗 
(𝐶𝐶4) d (x, y) ≤ d (x, z) + d (z, y)  for all  x, y, z ∈ 𝐗𝐗,  then d is said to be a Pseudo cone metric on 𝐗𝐗 and (𝐗𝐗, d) is called     
        a Pseudo cone metric space. 
 
2. MAIN RESULTS 
 
Our main purpose in this paper is to prove three Theorems on fixed points. 
 
Theorem 1: Every cone metric space is a Pseudo cone metric space but converse need not be true. 
 
Proof: It is clear from the definitions of a cone metric space and a Pseudo cone metric space that every cone metric 
space is a Pseudo cone metric space. 
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To prove that the converse need no t be true, we consider the following example. 
 
Suppose 𝐄𝐄=𝑅𝑅3, P = {(x, y, z) ∈ 𝑬𝑬 ∶ x, y, z ≥ 0} and 𝐗𝐗 = 𝑹𝑹. We define a mapping d∶ 𝐗𝐗 × 𝐗𝐗 →𝐄𝐄 by d(x,𝑥𝑥�) = (𝛼𝛼|𝑥𝑥2 − 𝑥𝑥�2| 
,β|𝑥𝑥2 − 𝑥𝑥�2| , 𝛾𝛾|𝑥𝑥2 − 𝑥𝑥�2|)  where 𝛼𝛼,𝛽𝛽, 𝛾𝛾  are  non-zero positive constants. It is very easy to verify that d is a Pseudo 
cone metric space on 𝐗𝐗. 
 
Now d(x,𝑥𝑥�) = 𝟬𝟬 implies that (𝛼𝛼|𝑥𝑥2 − 𝑥𝑥�2|, β|𝑥𝑥2 − 𝑥𝑥�2| , 𝛾𝛾|𝑥𝑥2 − 𝑥𝑥�2| ) = 𝟬𝟬  which implies |𝑥𝑥2 − 𝑥𝑥�2| = 𝟬𝟬 ⇒  x = ± 𝑥𝑥�.   
 
Thus d(x, 𝑥𝑥�) = 𝟬𝟬  does not necessarily imply that x =𝑥𝑥�. Hence (𝐗𝐗, d) is a Pseudo cone metric space but not cone metric 
space. Therefore, the result follows.  

 
Theorem  2: Suppose C be a closed convex subset of a cone Banach space 𝐗𝐗 with the norm‖𝑥𝑥‖𝑃𝑃  = d(x,0) and  T: C → 
C  be a mapping which  satisfies  the  condition   
 
d(Tx, Ty)+ 𝑙𝑙 [ d(x,Tx)+ d(y,Ty)] ≤ a d(x,Ty)+ b d(y,Tx)+ c d(x,y)                                                                              (2.1) 
 
𝑓𝑓𝑜𝑜𝑓𝑓 𝑎𝑎𝑙𝑙𝑙𝑙 𝑥𝑥,𝑦𝑦 ∈ C, where a, b, c,  𝑙𝑙 ≥ 0   and  3a+b+c < 1+ 4 𝑙𝑙 ,  a+b+c < 1,   and   1+ 𝑙𝑙  > b.   
 
Then T has a unique fixed point. 
 
Proof: Suppose 𝑥𝑥0 be an arbitrary element in C. We define a sequence  {𝑥𝑥𝑛𝑛 } as   
𝑥𝑥𝑛𝑛+1  = 𝑥𝑥𝑛𝑛  + 𝑇𝑇𝑥𝑥𝑛𝑛

2
 ,   n=0,1,2,3,…                                                                                                                                      (2.2) 

 
Here we notice that  
(  𝑥𝑥𝑛𝑛 −  𝑇𝑇𝑥𝑥𝑛𝑛   ) = 2 { 𝑥𝑥𝑛𝑛 − (𝑥𝑥𝑛𝑛  + 𝑇𝑇𝑥𝑥𝑛𝑛

2
)} =2(𝑥𝑥𝑛𝑛 −  𝑥𝑥𝑛𝑛+1).                                                                                                  (2.3) 

 
This yields that   
d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛  )= ‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛‖𝑃𝑃  = 2 ‖𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛+1‖𝑃𝑃  = 2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 )                                                                                     (2.4) 
 
and (𝑥𝑥𝑛𝑛 −  𝑇𝑇𝑥𝑥𝑛𝑛−1) = 𝑥𝑥𝑛𝑛−1 + 𝑇𝑇𝑥𝑥𝑛𝑛−1

2
−   𝑇𝑇𝑥𝑥𝑛𝑛−1  = 𝑥𝑥𝑛𝑛−1 −  𝑇𝑇𝑥𝑥𝑛𝑛−1

2
     which  implies that          

 
d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛−1 )= ‖𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑥𝑥𝑛𝑛−1‖𝑃𝑃  = 1

2
 ‖𝑥𝑥𝑛𝑛−1 − 𝑇𝑇𝑥𝑥𝑛𝑛−1‖𝑃𝑃  = 1

2
 d(𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛−1 )                                                                  (2.5) 

 
 Therefore the triangle inequality implies that  
d(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛  ) ≤ d(𝑥𝑥𝑛𝑛 , 𝑇𝑇𝑥𝑥𝑛𝑛−1 )  + d(𝑇𝑇𝑥𝑥𝑛𝑛−1, 𝑇𝑇𝑥𝑥𝑛𝑛  ) 
 
or d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛  ) − d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛−1 ) ≤    d(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛  ) 
 
Hence by (2.4) and (2.5) we get  
 
2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) −  d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  ) ≤ d(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛  )                                                                                                                   (2.6) 
 
Now replacing x by 𝑥𝑥𝑛𝑛−1  and y by 𝑥𝑥𝑛𝑛  in (2.1) and regarding (2.4) and (2.6) we get, 
 
2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) −  d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1 ) + 𝑙𝑙 { d(𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛−1 )+ d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛  ) } ≤ a d(𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛  )+  b d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛−1 ) + c d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  ) 

                                                                                                                                                                                 (2.7) 
which further gives  
2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) −  d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1 ) + 𝑙𝑙 {2 d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  ) +2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 )} 
                                  
                                          ≤ a { d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  )+ d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛  )} + 𝑏𝑏

2
 d(𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛−1 ) + c d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  )         

 which further gives  
 
2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) −  d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1 ) + 2𝑙𝑙 { d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  ) + d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 )}  ≤ (a+b+c)   d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  )+2a d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) 
 
⟹ (2 + 2𝑙𝑙 − 2𝑎𝑎) d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) ≤ (1 − 2𝑙𝑙 + 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐) d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  )  
 
⟹  d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) ≤

(1−2𝑙𝑙+𝑎𝑎+𝑏𝑏+𝑐𝑐)
2(1+𝑙𝑙−𝑎𝑎)

  d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  ) . 
 
⟹  d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) ≤ 𝐾𝐾1 d(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛  )  where   𝐾𝐾1= (1−2𝑙𝑙+𝑎𝑎+𝑏𝑏+𝑐𝑐)

2(1+𝑙𝑙−𝑎𝑎)
  < 1 as  3a+b+c < 1 + 4𝑙𝑙  
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Therefore, the sequence {𝑥𝑥𝑛𝑛 } is a Cauchy sequence in C and thus converges to some point z ∈ C.   
 
Now we have by triangle inequality  
 
d(𝑧𝑧,𝑇𝑇𝑥𝑥𝑛𝑛  ) ≤ d(𝑧𝑧, 𝑥𝑥𝑛𝑛  )+ d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛  ) = d(𝑧𝑧, 𝑧𝑧)+2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) 
 
and by using lemma 2, (iii) we have 𝑇𝑇𝑥𝑥𝑛𝑛   → 𝑧𝑧                                                                                                               (2.8) 
 
Now considering (2.4) and (2.1), putting x = z and y =𝑥𝑥𝑛𝑛 , we get  

  
d(𝑇𝑇𝑧𝑧,𝑇𝑇𝑥𝑥𝑛𝑛  ) + 𝑙𝑙 {d(𝑧𝑧,𝑇𝑇𝑧𝑧)+ d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛  )} ≤ a d(𝑧𝑧,𝑇𝑇𝑥𝑥𝑛𝑛  )+ b d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑧𝑧) + c d(𝑧𝑧, 𝑥𝑥𝑛𝑛  ) 
 
which on further simplification gives   

 
(1 + 𝑙𝑙 − 𝑏𝑏) d(𝑇𝑇𝑧𝑧, 𝑧𝑧) ≤ 0 which  implies that  d(𝑇𝑇𝑧𝑧, 𝑧𝑧) = 0,  since  (1 + 𝑙𝑙) > 𝑏𝑏. 
 
Therefore, we   have   𝑇𝑇𝑧𝑧 = 𝑧𝑧                                                                                                                                                   (2.9) 
 
which shows that  the  mapping T: C → C has a fixed point z. 
 
Now we prove the uniqueness part of the Theorem. 
 
Uniqueness of point z 
 
If   possible, suppose p be another fixed point of  T so that Tp = p, then by (2.1) we get   
 
d(𝑇𝑇𝑧𝑧,𝑇𝑇𝑇𝑇) + 𝑙𝑙 {d(𝑧𝑧,𝑇𝑇𝑧𝑧) + d(𝑇𝑇,𝑇𝑇𝑇𝑇) } ≤ a d(𝑧𝑧,𝑇𝑇𝑇𝑇) + b d(𝑇𝑇,𝑇𝑇𝑧𝑧) + c d(𝑧𝑧, 𝑇𝑇) 
 
⟹ d(𝑧𝑧, 𝑇𝑇)  ≤ a d(𝑧𝑧, 𝑇𝑇) + b d(𝑧𝑧, 𝑇𝑇)  + c d(𝑧𝑧, 𝑇𝑇)   
 
⟹ (1 − 𝑎𝑎 − 𝑏𝑏 − 𝑐𝑐) d(𝑧𝑧, 𝑇𝑇)  ≤ 0  
 
⟹  d(𝑧𝑧, 𝑇𝑇)  = 0 (since  a + b + c < 1 )  ⟹  𝑧𝑧 = 𝑇𝑇                                                                                                       (2.10) 
 
Hence T has a unique fixed point, therefore, the proof of Theorem 2 follows completely. 
 
Now we prove one more result where a mapping T has a unique fixed point. 

 
Theorem 3: Suppose C be a closed convex subset of a cone Banach space 𝐗𝐗 with the norm  ‖𝑥𝑥‖𝑃𝑃  = d(x, 0) and T: C → 
C be a mapping which satisfies the condition     
 
d(Tx, Ty) ≤  𝑞𝑞1 d(x, Tx)+ 𝑞𝑞2 d(y,Ty)+ 𝑞𝑞3 d(x,Ty)+ 𝑞𝑞4 d(y,Tx)+ 𝑞𝑞5 d(x,y)                                                                (2.11) 
 
for all  x, y ∈ C  where  𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4, 𝑞𝑞5 ≥ 0 and 2𝑞𝑞1+2 𝑞𝑞2+3 𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5 < 1, then T has a unique fixed point. 
 
Proof: Let us again define a sequence {𝑥𝑥𝑛𝑛 } by  𝑥𝑥𝑛𝑛+1  = 𝑥𝑥𝑛𝑛  + 𝑇𝑇𝑥𝑥𝑛𝑛

2
 ,   n=0,1,2,3,….. Then we have (2.1), (2.2), (2.3), (2.4), 

(2.5) and (2.6) as in the proof of Theorem 2 above. We now claim the inequality (2.11) for   x= 𝑥𝑥𝑛𝑛−1  , y=𝑥𝑥𝑛𝑛  implies 
that  
 
d(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛  ) ≤  𝑞𝑞1 d(𝑥𝑥𝑛𝑛−1,T𝑥𝑥𝑛𝑛−1)+ 𝑞𝑞2 d(𝑥𝑥𝑛𝑛 ,T𝑥𝑥𝑛𝑛 )+ 𝑞𝑞3d(𝑥𝑥𝑛𝑛−1,T𝑥𝑥𝑛𝑛 )+ 𝑞𝑞4d(𝑥𝑥𝑛𝑛 ,T𝑥𝑥𝑛𝑛−1) + 𝑞𝑞5 d(𝑥𝑥𝑛𝑛−1,𝑥𝑥𝑛𝑛 ) 
 
 which on  simplification gives  
 
(2−2 𝑞𝑞2 −2 𝑞𝑞3) d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 )≤ ( 2𝑞𝑞1+ + 𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5 + 1) d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1 )  which  further implies that   
 
d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 )≤ ( 2𝑞𝑞1+ + 𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5+1)

(2−2 𝑞𝑞2−2 𝑞𝑞3)
  d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1 )   

 
⟹ d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) ≤ 𝐾𝐾2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1 ) where  𝐾𝐾2 = ( 2𝑞𝑞1+ + 𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5+1)

(2−2 𝑞𝑞2−2 𝑞𝑞3)
   < 1  

 
(Since 2𝑞𝑞1+2 𝑞𝑞2+3 𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5 < 1). 
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Therefore  {𝑥𝑥𝑛𝑛 }  is a Cauchy sequence in C and hence converges to some point z∈ C. 
 
Now we have by triangle inequality that 
 
d(𝑧𝑧,𝑇𝑇𝑥𝑥𝑛𝑛  ) ≤ d(𝑧𝑧, 𝑥𝑥𝑛𝑛  ) + d(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛  ) = d(𝑧𝑧, 𝑥𝑥𝑛𝑛) +2 d(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 ) and  by using Lemma 2, (iii)   
 
We have  𝑇𝑇𝑥𝑥𝑛𝑛   → 𝑧𝑧                                                                                                                                                       (2.12) 
 
Now considering (2.4) and (2.11) putting x = z and y = 𝑥𝑥𝑛𝑛 , we get  
 
d(𝑇𝑇𝑧𝑧,𝑇𝑇𝑥𝑥𝑛𝑛  ) ≤  𝑞𝑞1 d(z,Tz) + 𝑞𝑞2 d(𝑥𝑥𝑛𝑛 ,T𝑥𝑥𝑛𝑛 ) + 𝑞𝑞3d(z,T𝑥𝑥𝑛𝑛 ) + 𝑞𝑞4d(𝑥𝑥𝑛𝑛 ,Tz)+ 𝑞𝑞5 d(z,𝑥𝑥𝑛𝑛 ) 
 
⟹d(𝑇𝑇𝑧𝑧,𝑇𝑇𝑥𝑥𝑛𝑛  ) ≤  𝑞𝑞1 d(z,Tz) + 2𝑞𝑞2 d(𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1) + 𝑞𝑞3d(z,T𝑥𝑥𝑛𝑛 ) + 𝑞𝑞4d(𝑥𝑥𝑛𝑛 ,Tz) + 𝑞𝑞5 d(z,𝑥𝑥𝑛𝑛 ) 
 
which further implies that  
 
(1 − 𝑞𝑞1 −  𝑞𝑞4)  d(𝑇𝑇𝑧𝑧, 𝑧𝑧)  ≤ 0  (as   n →  ∞) ⟹ d(𝑇𝑇𝑧𝑧, 𝑧𝑧) = 0 (𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑠𝑠 𝑞𝑞1 + 𝑞𝑞4 < 1) 
 
Hence  𝑇𝑇𝑧𝑧 == 𝑧𝑧                                                                                                                                                           (2.13) 
 
which shows that  the mapping T: C → C has a fixed point z ∈ C. 
 
Now we show the uniqueness of z in C. 
 
Uniqueness of point z  
 
If possible, suppose q be another fixed point of the mapping T, i.e, Tq = q, then by (2.11) we obtain  
 
d(Tz, Tq) ≤  𝑞𝑞1 d(z, Tz) + 𝑞𝑞2 d(q, Tq)+ 𝑞𝑞3 d(z, Tq) + 𝑞𝑞4 d(q, Tz) + 𝑞𝑞5 d(z,q) which further  implies that 
 
d(Tz, Tq) ≤  𝑞𝑞1 d(z, z) + 𝑞𝑞2 d(q,q)+ 𝑞𝑞3 d(z,q) + 𝑞𝑞4 d(q,z) + 𝑞𝑞5 d(z,q) 
 
⟹ d(z, q) ≤ (𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5) d(z,q) ⟹ 1 − (𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5) d(z,q) ≤ 0 
 
(Since (𝑞𝑞3+ 𝑞𝑞4+ 𝑞𝑞5) < 1).  Therefore, we   have d(z, q) = 0  and hence z = q . 
 
Thus the mapping T: C → C has a unique fixed point which proves Theorem 3 completely. 
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