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ABSTRACT 
This paper studies a fuzzy goal programming (FGP) approach for solving bi-level multi-objective linear fractional 
programming problem. This paper makes an extension work of Pramanik and Dey [International Journal of Computer 
Applications 25 (11) (2011), 34-40] which deals with bi-level linear fractional programming problem based on FGP 
approach. In proposed approach, firstly we construct the linear fractional membership functions for objective functions 
of both levels decision makers (DMs). Then we transform the linear fractional membership functions into equivalent 
linear membership functions at the individual best solution point by using first order Taylor series. Thereafter, multi-
objective decision making models are formulated for both level DMs and FGP technique is used to identify the 
satisfactory solution for each level DM. We again transform the linear fractional membership functions for objective 
functions of both level DMs into equivalent linear membership functions at the satisfactory solution point. Since the 
objectives of the DMs are conflicting in nature, the preference bounds on the decision variables under the control of 
both level DMs are considered. Finally, FGP approach is utilized to solve the problem. An illustrative numerical 
example is solved in order to clarify the proposed approach. 
 
Keywords: Bi-level multi-objective linear fractional programming; Fuzzy goal programming; Multi-objective decision 
making; Preference bounds; Taylor series 
 
AMS Subject Classification: 90C29; 90C32; 90C70. 
 
 
1. INTRODUCTION 
 
Bi-level programming (BLP) is identified as a mathematical tool for modelling decentralized planning problems. BLP 
consists of the objective of the top level decision maker (TLDM) at its top level and that of the lower level decision 
maker (LLDM) at its lower level. In the decision making context, each level decision maker (DM) independently 
controls a set of decision variables and tries to optimize his/her own objective functions over a common feasible region. 
Also, each level DM should have an intention to cooperate with each other for the sake of the benefit of the hierarchical 
organization. Candler and Townsley [3] and Fortuny – Amat and McCarl [5] studied the traditional version of bi-level 
programming problem (BLPP) in the early eighties. Pramanik et al. [11] studied BLPP in intuitionistic fuzzy 
environment. Pramanik et al. [12] discussed decentralized bi-level multi-objective programming problem with fuzzy 
parameters based on fuzzy goal programming (FGP). In 1996, Lai [7] first incorporated the concept of tolerance 
membership function of fuzzy set theory to multi-level programming problem (MLPP) for obtaining satisfactory 
solution. Shih et al. [23] extended Lai’s satisfactory solution concept and they proposed a supervised search approach 
by using non-compensatory max-min aggregation operator for MLPP. Shih and Lee [22] presented a solution 
methodology for MLPP by introducing the compensatory fuzzy operator. Sakawa et al. [20] studied interactive fuzzy 
programming (IFP) for solving MLPPs. Sinha [24, 25] proposed an alternative multi-level programming technique 
based on fuzzy mathematical programming to MLPPs. Pramanik and Roy [17] developed a FGP technique for MLPPs. 
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When the objective functions of both level DMs of a BLPP are linear fractional in nature, then the BLPP is called bi-
level linear fractional programming problem (BLLFPP). Malhotra and Arora [8] proposed an algorithm for solving 
BLLFPP through goal programming (GP) approach. Sakawa and Nishizaki [18, 19] developed IFP technique for 
solving BLLFPP as well as decentralized BLLFPP. Ahlatcioglu and Tiryaki [2] presented two new IFP approaches for 
solving decentralized BLLFPP by using analytic hierarchy process and suitable transformations. Mishra [9] studied 
weighting method for BLLFPP to obtain non-dominated solution. Toksari [26] presented Taylor series solution 
approach to BLLFPP based on the concept of Guzel and Sivri [6]. Dey and Pramanik [4] studied GP procedure to 
BLLFPP based on Taylor series approximation. Pramanik and Dey [16] also studied BLLFPP in fuzzy environment 
based on FGP approach for obtaining maximum degree of each of the membership goals by minimizing the negative 
deviational variables. Pramanik et al. [10] proposed FGP approach due to Pramanik and Roy [17] for solving 
decentralized BLLFPP with the help of Taylor series approximation. 
 
In this paper, we have considered bi-level multi-objective linear fractional programming problem (BLMOLFPP) with a 
single TLDM with multiple objectives at the top level and a single LLDM with multiple objectives at the lower level. 
The objective functions of the DMs are linear fractional functions and the system constraints are linear functions. Abo-
Sinna and Baky [1] presented a FGP model based on the method of variable change on the over - and under deviation 
variables of the membership goals to solve BLMOLFPP by utilizing linear GP methodology. Saraj and Safaei [21] 
investigated fuzzy BLMOLFPP by using Taylor series and Kuhn-Tucker conditions. 
 
In the proposed approach, we construct the linear fractional membership functions for both level DMs by determining 
individual optimal solution of the objective functions. Then we linearize the linear fractional membership functions into 
equivalent linear membership functions at the individual best solution point by using first order Taylor series. We then 
construct the multi-objective decision making (MODM) models for both level DMs and apply FGP technique [13] in 
order to obtain the satisfactory solutions for both level DMs. The linear fractional membership functions of both level 
DMs are again linearized at the satisfactory solution point.  Since the objectives of TLDM and LLDM are generally 
conflicting in nature, both level DMs provide the preference upper and lower bounds on the decision variables under 
their control in the decision making process. FGP model due to Pramanik and Dey [14] is utilized to obtain the 
compromise optimal solution for BLMOLFPP. Finally, a BLMOLFPP is solved in order to demonstrate the efficiency 
of the proposed FGP approach.  
 
2. BLMOLFPP FORMULATION 
 
Suppose that there are two levels in a hierarchy structure with a TLDM at the top level and a LLDM at the lower level. 
The TLDM controls the decision vector x1 = (

11N1211 x...,,x,x )∈ 1NR and the LLDM controls the decision vector  

x2 = (
22N2221 x...,,x,x )∈ 2NR , where N = N1 + N2. 

 
The BLMOLFPP of maximization-type objective functions at each level can be presented as: 
 
[Top Level] 

1

max
x

Z1(x) = 
1

max
x

Z1(x1, x2) = 
1

max
x

(z11 (x1, x2), z12 (x1, x2), ..., 
11Mz (x1, x2))                                                             (2.1) 

 
[Lower Level] 

2

max
x

Z2(x) = 
2

max
x

Z2(x1, x2) = 
2

max
x

(z21 (x1, x2), z22 (x1, x2), ..., 
22Mz (x1, x2))                                                             (2.2) 

 
subject to 

x∈S = {x = (x1, x2) ∈ NR | A1 x1 + A2 x2 
















≤
=
≥

B, x ≥ 0, B∈ MR }                                                                                 (2.3) 

 

Where zij (x1, x2) =
ijij

ijij

β
α

+
+

xq
xp

, (i = 1, 2; j = 1, 2, ..., Mi) 

 
Here, S is the non empty convex constraint set, M1 is the number of objective functions of TLDM, M2 is the number of 
objective functions of LLDM, M is the total number of constraints of the problem. Also, Ai is the M×  Ni matrix, i = 1, 
2; ijp , ijq ∈ NR ; ijα , ijβ , (i = 1, 2; j = 1, 2, ..., Mi) are scalars. We also assume that ijij β+xq > 0, (i = 1, 2; j = 1, 2, ..., 
Mi) for all x∈S. 
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3. FORMULATION OF MEMBERSHIP FUNCTIONS FOR BOTH LEVEL DMs 
 
Let b

ijz  = ijS
max z ( )

x
x

∈
 and w

ijz  = ijS
min z ( )

x
x

∈
, (i = 1, 2; j = 1, 2, ..., Mi) be individual best and worst solutions of the 

objective functions subject to the system constraints respectively. Then the fuzzy goals of both levels are appear as 
follows: 
 

)(zij x
~
≥ b

ijz , (i = 1, 2; j = 1, 2,... Mi)                                                                                                                            (3.1) 

 
Here, 

~
≥  denotes the fuzziness of the aspiration levels. 

 
Therefore, the linear fractional membership functions for the fuzzy objective goals can be formulated as: 
 

))((zμ ijzij
x =













≥

≤≤
−

−

≤

b
ijij

b
ijij

w
ijw

ij
b
ij

w
ijij

w
ijij

z)(zif,1

z)(zzif,
zz

z)(z

z)(zif,0

x

x
x

x

, i = 1, 2; j = 1, 2, ..., Mi                                                                    (3.2)                                   

 
Here, b

ijz  and w
ijz ( i = 1, 2; j = 1, 2, ..., Mi) represent the upper and lower tolerance limits respectively of the fuzzy 

objective goals. 
 
4. LINEARIZATION OF LINEAR FRACTIONAL MEMBERSHIP FUNCTIONS FOR BOTH LEVEL DMs 
 
Let ij0x = ( ij0

2
ij0
1 , xx ) = ( ij0

2N
ij0
22

ij0
21

ij0
1N

ij0
12

ij0
11 21

x...,,x,x,x...,,x,x ), (i = 1, 2; j = 1, 2, ..., Mi) be the individual best solution of  the 
linear fractional membership function ))((zμ ijzij

x , (i = 1, 2; j = 1, 2, ..., Mi) subject to the system constraints. We now 

transform the linear fractional membership functions into equivalent linear membership functions ))((zμ̂ ijzij
x  (i = 1, 2; j 

= 1, 2, ..., Mi) by using first order Taylor series as follows: 
 

))((zμ ijzij
x

~
= ))((zμ ij0

ijz ij
x + (x11 - ij0

11x )
ij0

ij

at

ijz
11

))((zμ
x

xx

x
=









∂
∂  + (x12 - ij0

12x ) 
ij0

ij

at

ijz
12

))((zμ
x

xx

x
=









∂
∂ + ... + (

11Nx  - ij0
1N1

x ) 

ij0

ij

1 at

ijz
1N

))((zμ
x

xx

x
=












∂
∂ +  (x21 - ij0

21x )
ij0

ij

at

ijz
21

))((zμ
x

xx

x
=









∂
∂  + (x22 - ij0

22x ) 
ij0

ij

at

ijz
22

))((zμ
x

xx

x
=









∂
∂ + ... + (

22Nx  - ij0
22Nx ) 

ij0

ij

2 at

ijz
2N

))((zμ
x

xx

x
=












∂
∂ = ))((zμ̂ ijzij

x , (i = 1, 2; j = 1, 2, ..., Mi).                                                                                  (4.1) 

 
5. SATISFACTORY SOLUTION FOR BOTH LEVEL DMs 
 
In the decision making context, the individual best solutions of the objective functions of each level DM are generally  
different. So, each level DM desires to obtain his/her own satisfactory solution. We solve the following MODM models 
for obtaining satisfactory solutions for both level DMs as follows: 
 
max ))((zμ̂ ijz ij

x , (i = 1, 2; j = 1, 2, ..., Mi)                                                                                                                  (5.1.1) 
 
subject to 

x∈S = {x = (x1, x2) ∈ NR | A1 x1 + A2 x2 
















≤
=
≥

B, x ≥ 0, B∈ MR }. 

 
Since the highest value of a membership goal is unity, so for the defined membership goal in (5.1.1), the flexible  
membership goal with aspiration level unity can be formulated as: 
 

))((zμ̂ ijzij
x + −

ijd  - +
ijd  = 1, (i = 1, 2; j = 1, 2, ..., Mi)                                                                                                    (5.1.2) 
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Here, −

ijd  ( ≥  0) and +
ijd  ( ≥  0), (i = 1, 2; j = 1, 2, ..., Mi) represent the negative deviational variable and positive 

deviational variable respectively. 
 
Now following Pramanik and Dey [14], (5.1.2) can be presented as 
 

))((zμ̂ ijzij
x + -

ijd   = 1, (i = 1, 2; j = 1, 2, ..., Mi)                                                                                                           (5.1.3) 
 
Then we solve the MODM problem by utilizing the FGP approach [14] as follows: 
min λ                                                                                                                                                                         (5.1.4) 
 
subject to 

))((zμ̂ ijzij
x + -

ijd   = 1, (i = 1, 2; j = 1, 2, ..., Mi) 

x∈S = {x = (x1, x2) ∈ NR | A1 x1 + A2 x2 
















≤
=
≥

B, x ≥ 0, B∈ MR }, 

λ ≥ −
ijd , (i = 1, 2; j = 1, 2, ..., Mi), −

ijd ∈[0, 1], i = 1, 2; j = 1, 2, ..., Mi. 
 
Let, *ix = ( *i

2N
*i

22
*i

21
*i

1N
*i

12
*i

11 21
x...,,x,x,x...,,x,x ) (i = 1, 2) be the satisfactory solution for both level DMs. Now we 

transforms the linear fractional membership function ))((zμ ijz ij
x , ( i = 1, 2; j = 1, 2, ..., Mi) into equivalent linear 

membership functions ))((zμ~ ijzij
x , ( i = 1, 2; j = 1, 2, ..., Mi) by using first order Taylor series at the point *ix = 

( *i
2N

*i
22

*i
21

*i
1N

*i
12

*i
11 21

x...,,x,x,x...,,x,x ), (i = 1, 2). 
 
6. PREFERENCE BOUNDS ON THE DECISION VARIABLES 
 
Now the satisfactory solution of the TLDM and LLDM are revealed. However these two solutions are generally 
distinct, the direct compromise solution does not occur in the decision making situation. Therefore, both level DMs 
provide preference bounds on the decision variables under their control to get compromise optimal solution [15-16]. 
 
Let L

1jt and R
1jt  , j = 1, 2, ..., N1 be the preference lower and upper bounds on the decision variable 1

1jx  ( j = 1, 2, ..., N1) 
respectively for TLDM such that 
 

*1
1jx - L

1jt  ≤ 1
1jx ≤ *1

1jx + R
1jt , j = 1, 2, ..., N1                                                                                                                          (6.1) 

 
Here, L

1jt and R
1jt  (j = 1, 2, ..., N1) are not generally equal. 

 
Similarly, let L

2jt and R
2jt  , j = 1, 2, ..., N2 be the preference lower and upper bounds on the decision variable 2

2jx  , ( j = 1, 
2, ..., N2) respectively for LLDM such that 
 

2*
2jx - L

2jt  ≤ 2
2jx ≤ 2*

2jx + R
2jt , j = 1, 2, ..., N2                                                                                                                        (6.2) 

 
Here, L

2jt and R
2jt  , (j = 1, 2, ..., N2) are not generally same. 

 
7. FGP MODEL FOR SOLVING BLMOLFPP 
 
Now in order to generate the solution for BLMOLFPP, we solve the following FGP model 
 
min ρ                                                                                                                                                                               (7.1) 
 
subject to 

))((zμ~ 1jz1j
x + −

1jd   = 1, (j = 1, 2, ..., M1) 

))((zμ~ 2jz2j
x + −

2jd   = 1, (j = 1, 2, ..., M2) 
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x∈S = {x = (x1, x2) ∈ NR | A1 x1 + A2 x2 
















≤
=
≥

B, x ≥ 0, B∈ MR }, 

ρ ≥ −
1jd , j = 1, 2, ..., M1, ρ ≥ −

2jd , j = 1, 2, ..., M2, 
−
1jd ∈[0, 1], (j = 1, 2, ..., M1), −

2jd ∈[0, 1], (j = 1, 2, ..., M2) 
*1

1jx - L
1jt  ≤ 1

1jx ≤ *1
1jx + R

1jt , (j = 1, 2, ..., N1) 
2*
2jx - L

2jt  ≤ 2
2jx ≤ 2*

2jx + R
2jt , (j = 1, 2, ..., N2) 

ijx ≥  0, (i = 1, 2; j = 1, 2, ..., Ni). 
 
8. NUMERICAL EXAMPLE FOR BLMOLFPP 
 
Consider the following BLMOLFPP in order to demonstrate the effectiveness of the proposed approach 
 
[Top Level] 

1x
max (z11 (x) =

3x2x
32x5x

21

21

+−
++ , z12 (x) =

4x4x
35x2x

21

21

++
++ ) 

 
[Lower Level] 

2x
max (z21 (x) =

1xx
3xx

21

21

++
+ , z22 (x) =

21

21

x2x
34x-x

+
++ ) 

 
subject to  
2x1 + x2 ≤  5, - x1 + 3x2 ≤  3, x1 + x2 ≥ 1, 
x1 ≥  0, x2 ≥  0. 
 
The individual best solution of the objective functions of TLDM subject to the constraints are b

11z  = 3.029 at (1.714, 
1.571) and b

12z  = 1.231 at (2.5, 0) and the individual best solution of the objective functions of LLDM subject to the 
constraints are b

21z  = 1.5 at (1.191, 1.397) and b
22z  = 3.5 at (0, 1). 

 
We also find the individual worst solution of the objective functions of TLDM subject to the constraints are w

11z  = 1.6 at 
(1, 0) and w

12z  = 1 at (0.251, 0.749) and the individual worst solution of the objective functions of LLDM subject to the 
constraints are w

21z  = 0.5 at (1, 0) and w
22z  = 0.2 at (2.5, 0). 

 
Now the fuzzy objective goals of both levels appear as: 
 
z11 (x) 

~
≥  3.029, z12 (x) 

~
≥  1.231, z21 (x) 

~
≥  1.5, z22 (x) 

~
≥  3.5 

 
Then the linear fractional membership functions of the fuzzy objective goals are formulated as follows: 
 

=))((zμ 11z11
x ,

3.029)(zif,1

3.029)(z1.6if,
1.63.029
1.6)(z

1.6)(zif,0

11

11
11

11










≥

≤≤
−
−

≤

x

xx
x

=))((zμ 12z12
x ,

1.231)(zif,1

1.231)(z1if,
11.231
1)(z

1)(zif,0

12

12
12

12










≥

≤≤
−
−

≤

x

xx
x

 

 

))((zμ 21z21
x = ,

1.5)(zif,1

1.5)(z0.5if,
0.51.5

0.5)(z
0.5)(zif,0

21

21
21

21










≥

≤≤
−
−

≤

x

x
x

x

    ))((zμ 22z22
x = ,

3.5)(zif,1

3.5)(z0.2if,
0.23.5

0.2)(z
0.2)(zif,0

22

22
22

22










≥

≤≤
−
−

≤

x

xx
x

 

 
The linear fractional membership functions ))((zμ 1jz1j

x , (j = 1, 2) for TLDM subject to the constraints are maximal at 

the points (1.714, 1.571) and (2.5, 0) respectively and also the linear fractional membership functions ))((zμ 2jz2j
x , (j = 

1, 2) for LLDM subject to the constraints are maximal at the points (1.191, 1.397) and (0, 1) respectively. 
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We now transform the linear fractional membership function ))((zμ ijzij

x , (i = 1, 2; j = 1, 2) into equivalent linear 

membership function ))((zμ̂ ijzij
x , (i = 1, 2; j = 1, 2) by using first order Taylor series at the maximal points. The 

transformed linear membership functions can be formulated as:  

))((zμ 11z11
x

~
=  1+ (x1 - 1.714) ×  (- 0.152) + (x2 - 1.571) ×  (0.724) = ))((zμ̂ 11z11

x , 

))((zμ 12z12
x

~
= 1+ (x1 - 2.5) ×  (0.512) + (x2 - 0) ×  (0.051) = ))((zμ̂ 12z12

x , 

))((zμ 21z21
x

~
=  1+ (x1 - 1.191) ×  (- 0.139) + (x2 - 1.397) ×  (0.418) = ))((zμ̂ 21z21

x , 

))((zμ 22z22
x

~
=  1+ (x1 - 0) ×  (- 0.682) + (x2 - 1) ×  (- 0.454) = ))((zμ̂ 22z22

x  
 
We solve the MODM model to find the satisfactory solution of TLDM as follows: 
 
min λ  
subject to 
1+ (x1 -1.714) ×  (-0.152) + (x2 -1.571) ×  (0.724) + −

11d  =1, 
1+ (x1 -2.5) ×  (0.512) + (x2 - 0) ×  (0.051) + −

12d  =1, 
2x1 + x2 ≤  5, - x1 + 3x2 ≤  3, x1 + x2 ≥  1, 
λ ≥ −

11d , λ ≥ −
12d , −

11d ∈[0, 1], −
12d ∈[0, 1], 

x1 ≥  0, x2 ≥  0. 
 
By solving the above model, we obtain the solution as follows: 
 

*
1x = 1.875, *

2x = 1.251.  
 
Now we again transform the original linear fractional membership function ))((zμ 1jz1j

x , (j = 1, 2) of TLDM into 

equivalent linear membership functions ))((zμ~ 1jz1j
x , (j = 1, 2) by using first order Taylor series at the satisfactory 

solution point (1.875, 1.251) as follows:  

))((zμ 11z11
x

~
=  0.774 + (x1 -1.875) ×  (-0.052) + (x2 -1.251) ×  (0.599) = ))((zμ~ 11z11

x , 

))((zμ 12z12
x

~
=  0.846 + (x1 - 1.875) ×  (0.320) + (x2 - 1.251) ×  (0.087) = ))x((zμ~ 1212z  

 
Again, we solve the following MODM model to get the satisfactory solution of LLDM as: 
min λ  
subject to 
1+ (x1 - 1.191) ×  (-0.139) + (x2 – 1.397) ×  (0.418) + −

21d  =1 
1+ (x1 - 0) ×  (- 0.682) + (x2 - 1) ×  (- 0.454) + −

22d  =1, 
2x1 + x2 ≤  5, - x1 + 3x2 ≤  3, x1 + x2 ≥  1, 
λ ≥ −

21d , λ ≥ −
22d , −

21d ∈[0, 1], −
22d ∈[0, 1], 

x1 ≥  0, x2 ≥  0. 
 
By solving the above MODM model, we get the solution as follows: 
 

*
1x = 0, *

2x = 1.  
 
Now we again transform the linear fractional membership function ))((zμ 2jz2j

x , (j = 1, 2) of LLDM into equivalent 

linear membership functions ))((zμ~ 2jz2j
x , (j = 1, 2) by using first order Taylor series at the satisfactory solution point (0, 

1) as follows: 

))((zμ 21z21
x

~
=  1+ (x1 - 0) ×  (- 0.25) + (x2 -1) ×  (0.75) = ))((zμ~ 21z21

x , 

))((zμ 22z22
x

~
=  1+ (x1 - 0) ×  (- 0.682) + (x2 -1) ×  (- 0.454) = ))((zμ~ 22z22

x  
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Let, the preference upper and lower bounds assigned by the TLDM on the decision variable x1 be 1.4 ≤  x1 ≤  1.8. 
 
Also, the preference upper and lower bounds provided by the LLDM on the decision variable x2 be 1.09 ≤  x2 ≤  1.2 
 
Finally, the proposed FGP model for BLMOLFPP is presented as follows: 
 
min ρ  
subject to 
0.774 + (x1 -1.875) ×  (- 0.052) + (x2 - 1.251) ×  (0.599) + −

11d  = 1, 
0.846 + (x1 - 1.875) ×  (0.320) + (x2 - 1.251) ×  (0.087) + −

12d  = 1, 
1+ (x1 - 0) ×  (- 0.25) + (x2 -1) ×  (0.75) + −

21d  =1, 
1+ (x1 - 0) ×  (- 0.682) + (x2 -1) ×  (- 0.454) + −

22d  =1, 
2x1 + x2 ≤  5, - x1 + 3x2 ≤  3, x1 + x2 ≥ 1, 
ρ ≥ −

11d , ρ ≥ −
12d , 

ρ ≥ −
21d , ρ ≥ −

22d ,  
−
11d ∈[0, 1], −

12d ∈[0, 1], 
−
21d ∈[0, 1], −

22d ∈[0, 1], 
1.4 ≤  x1 ≤  1.8, 
1.09 ≤  x2 ≤  1.2, 
x1 ≥  0, x2 ≥  0. 
 
By solving the above FGP model, the compromise optimal solution of the BLMOLFPP is shown in Table 1. 
 

Table 1: Compromise optimal solution of BLMOLFPP 

Optimal 
solution 

Decision 
variables 

x1, x2 

Objective functions 
of TLDM 

z11, z12 

Objective functions 
of LLDM 

z21, z22 

Membership values 
)(zμ 11z11

, )(zμ 12z12
, )(zμ 21z21

, )(zμ 22z22
 

 

ρ = 0.99566 
 

x1 = 1.4, 
x2 = 1.09 

z11 = 2.586, 
z12 = 1.153 

z21 = 1.338, 
z22 = 1.665 

)(zμ 11z11
 = 0.69, )(zμ 12z12

 = 0.661, 
)(zμ 21z21

 = 0.838, )(zμ 22z22
 = 0.444. 

 
  
 
Note: All the solutions of the problem are obtained by using the software Lingo, version 6.0. 
 
9. CONCLUSIONS 
 
This paper has proposed a FGP approach for solving BLMOLFPP to produce compromise optimal solution. In 
proposed approach, firstly the linear fractional membership functions associated with linear fractional objective 
functions are transformed into equivalent linear membership functions by using first order Taylor series at the 
individual best solution point. MODM models are formulated in order to obtain satisfactory solution for each level DM. 
The linear fractional membership functions are transformed once again into equivalent linear membership functions at 
the satisfactory solution point. Each level DM assigns preference upper and lower bounds on the decision variables 
under his/her control for smooth functioning of the hierarchical organization. Finally, FGP model for BLMOLFPP is 
developed. Then the model is solved by minimizing the negative deviational variables in search of compromise optimal 
solution of BLMOLFPP. In addition, an illustrated numerical example is solved in order to clarify the proposed FGP 
approach. However, we hope that the proposed approach can be effective in dealing with the area of multi-level 
optimization problems such as decentralized BLMOLFPP, three level multi-objective linear fractional programming 
problems, BLMOLFPP with fuzzy parameters, etc.   
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