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ABSTRACT 
The truncated Lévy flight (TLF) distribution is viewed as a sub-family of the bilateral tempered stable class of 
distributions and studied. The domain of variation between skewness and excess kurtosis is derived and a full 
analytical solution of the moment equations is displayed. Application to portfolio selection with CARA utility is 
considered. With the TLF as test return distribution, it is analyzed whether a recent approximate ranking function with 
cubic mean-variance-skewness-kurtosis trade-off should be preferred to the original Gaussian ranking function with 
linear mean-variance trade-off or not. Based on an appropriate ranking efficiency measure and an empirical data 
analysis, one notes a systematic efficiency increase of the approximate ranking versus the Gaussian ranking. 
Comparisons with the normal variance gamma (NVG) distribution as test return distribution are included. 
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1.   INTRODUCTION 
 
In recent years, the topic of non-Gaussian distributions has become very prominent. This is partly due to the sub-prime 
and Euro crises as well as the new regulations in the finance industry like Basel III and Solvency II, for which an 
efficient and robust modelling of non-normality plays an increasingly important role. Further financial applications to 
option pricing, risk management and portfolio optimization are numerous and equally well important. Like its 
companion paper Hürlimann (2013) the purpose of the present contribution is twofold. In the theoretical part, we aim a 
brief but comprehensive understanding of the truncated Lévy flight (TLF) distribution with regard to the skewness and 
(excess) kurtosis parameters. In particular, we display their maximum domain of variation and a simple analytical 
solution of the moment equations. The application part is directly based on the theoretical results. Due to a recent 
contribution by Di Pierro and Mosevich (2011), moment methods are particularly suited to analyze the portfolio 
selection problem within Financial Economics. For this, we use equivalent ranking functions and define an appropriate 
ranking efficiency measure as explained in Hürlimann (2013), Appendix 1. Its practical use enables taking a decision 
about whether the recent approximate ranking function with cubic mean-variance-skewness-kurtosis trade-off by Di 
Pierro and Mosevich (2011) should be preferred to the original Gaussian ranking function with linear mean-variance 
trade-off by Lévy and Markowitz (1979) or not. A more detailed account of the content follows. 
 
Section 2 starts the theoretical part with a brief taxonomy of the bilateral tempered stable distribution (BTS), which is 
defined as a shifted convolution of two one-sided tempered stable (TS) distributions. Two important members of the 
BTS are the five parameter truncated Lévy flight (TLF) and its bilateral gamma (TLF-BG) special case, which are used 
in the application part. The full analytical solution of the moment equations for the TLF-BG and TLF is presented in 
Theorem 3.1. The application to portfolio selection is presented in Section 4. The investigation of the ranking 
efficiency measure for the TLF as test return distribution is illustrated at a case study. Some real-world equity return 
data sets from the Swiss Market and Standard & Poors 500 indices are fitted to the TLF return distribution and their 
ranking efficiency measures are calculated and compared. For the convenience of the reader, a comparison with the 
alternative normal variance gamma (NVG) return distribution, which has been extensively studied in Hürlimann 
(2013), is included. The empirical data analysis shows that the approximate ranking function with cubic mean-variance-
skewness-kurtosis trade-off (4.1) should be preferred to the original linear mean-variance trade-off (4.2), at least for the 
TLF and NVG test return distributions. The numerical evaluation of the goodness-of-fit statistics encountered in the 
data analysis are done with the fast Fourier transform (FFT) approximation of a distribution with known characteristic 
function (see the Appendix for a summary of the method). 
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2.  TAXONOMY OF THE BILATERAL TEMPERED STABLE DISTRIBUTION AND SUB-FAMILIES 
 
The bilateral tempered stable (BTS) random variable is defined to be a shifted independent difference of two one-sided 
tempered stable (TS) random variables with stability parameters restricted to the interval [ )1,0 . If  ( )1,0, 21 ∈γγ   the 
cumulant generating function (cgf) of a seven parameter BTS random variable 
 

( )22211121 ,,,,,,~ ccBTSTSTSX λγλγξξ −+=  
 
takes the form (e.g. Küchler and Tappe (2012), Remark 2.8) 
 

12222111 )},){()}){()( 2211 λλλλλλξ γγγγ <<−−+⋅−−−⋅−⋅= ttctcttCX . (2.1) 
 
In general, the parameters can take the following values: [ )1,0, 21 ∈γγ  (stability parameters), 0, 21 >λλ  (tempering 

parameters), 0, 21 >cc  (scale parameters), and  ∞<<∞− ξ   (location parameter). The truncated Lévy flight 
(TLF) family is identified as the special BTS random variable with identical tempering and stability parameters. 
Therefore, the cgf of a five parameter TLF random variable  ( )21 ,,,,~ ccTLFX λγξ   is determined by ( 0=γ   
identifies with a bilateral gamma special case (TLF-BG) as observed in the Notes 2.1) 
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Notes 2.1: The BTS family with cgf (2.1) corresponds to the generalized tempered stable distributions in Rachev et al. 
(2011). Several sub-families are known from the literature. The case  21 γγ =   defines the so-called Koponen-
Boyarchenko-Levendorskii or KoBoL distribution first considered in Boyarchenko and Levendorskii (2000). In the 
special case  021 == γγ   it identifies with a bilateral gamma distribution, whose general class has been studied in 

Küchler and Tappe (2008) and Hürlimann (2013). Specializing further to  2121 ,0 cc === γγ   one obtains a special 
instance of the variance gamma (VG) distribution, often used in option pricing (e.g. Madan and Seneta (1990), Madan 
(2001) among many others). The case  2121 , cc == γγ   is the CGMY distribution by Carr et al. (2002), also called 

classical tempered stable distribution by Rachev et al. (2011). The TLF distibution  2121 , λλγγ ==   defined in (2.2) 
is another classical BTS sub-family, which has been studied by many authors. According to Imai and Kawai (2011) the 
class of tempered stable laws was first proposed by Tweedie (1984). The analytical expression for the chf of a TLF 
distribution was derived in Koponen (1995). The pioneering work of Mantegna and Stanley (1994/2000) established 
the TLF in econophysics. The origins of TLF are sketched in Figueiredo et al. (2003). Properties of tempered stable 
laws have been first revealed by Rosinski (2007). Arbitrary truncation of Lévy flights is considered in Vinogradov 
(2010). 
 
In the present work, the focus is on the TLF. It is viewed as a simple alternative to the NVG studied in Hürlimann 
(2013). The mean, variance and higher order cumulants of the TLF are obtained from (2.2) and determined by (as usual  

σµ,   denote the mean and standard deviation) 
Case 1:  0=γ  
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Case 2:  ( )1,0∈γ  
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The BTS and its TLF sub-family satisfy a number of important properties. The BTS is a finite variation process with 
infinitely many jumps in each interval of positive length (type B in Cont and Tankov (2004), Definition 11.9). 
Furthermore, the BTS is infinitely divisible, self-decomposable, absolutely continuous, and of class L. The density is 
smooth (differentiable) of class  )(RC ∞   and unimodal (e.g. Küchler and Tappe (2012), Theorem 7.8). Explicit 
analytical expressions for the density exist only for the BG (e.g. Hürlimann (2013), Appendix 4). However, numerical 
evaluation of BTS and TLF density, distribution function and related VaR and CVaR risk measures, can be performed 
with the fast Fourier approximation. 
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3.  SOLVING THE MOMENT EQUATIONS FOR THE TRUNCATED LÉVY FLIGHT DISTRIBUTION 
 
The solution of the moment equations for the truncated Lévy flight depends upon the two cases (2.3) and (2.4). The 
skewness and (excess) kurtosis parameters are denoted throughout by KS , .  
 
Theorem 3.1: (TLF moment method). Given is a feasible skewness and kurtosis pair  ),( KS   satisfying the inequality  

22
3 .S Kγ
γ
−
−≤ Then, there exists a unique and explicitly given truncated Lévy flight distribution  ( )1 2, , , ,TLF c cξ γ λ , 

which solves the moment equations up to order four. Its parameters are fully analytical and specified as follows. 
 
Case 1:  0=γ    (TLF-BG special case) 
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Case 2:  ( )1,0∈γ  
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Proof:  According to (2.3) the equations of variance, skewness and kurtosis in Case 1 read 
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It is convenient to use the one-to-one transformation of parameters 
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Comparing the variance and kurtosis equations one obtains that 
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Inserting into the skewness equation one sees that 
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The value of the location parameter follows from the mean equation. The mathematical analysis in Case 2 is similar. 
Restating the relevant equations in (2.4) one gets 
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Comparing the variance and kurtosis equation one gets 

.)3)(2(22

K
γγσλ −−

= −  

Multiplying the variance equation by  )2( γ−   and the skewness equation by  λ   one obtains the system of 2 
equations in 2 unknowns: 
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Elimination of one parameter (addition and subtraction of the 2 equations) shows the validity of the formulas for  

21 ,cc   in (3.2). Again, the value of the location parameter follows from the mean equation. It remains to show the 

validity of the inequality  KS γ
γ

−
−≤ 3

22   between skewness and kurtosis. The BG special case  0=γ   follows from 

Hürlimann (2013), Theorem A2.2. If  ( )1,0∈γ   one notes that the parameter restriction  02 >c   is equivalent with 
the inequality 

.)2()( 222 γλσ −<S  
 
Elimination of  λσ   using the second equation in (3.2) yields the desired inequality.  ◊ 
 
Remarks 3.1: The inequality between skewness and kurtosis in case  0=γ   holds actually for the whole BG 
subfamily of the BTS, as shown in Hürlimann (2013), Theorem A2.2. The generic TLF inequality  

( )1,0,3
22 ∈≤ −
− γγ
γ KS , is more restricted than the BG inequality. However, the worst inequality  KS 2

12 ≤   in case  

1→γ is enough flexible for modelling purposes, as demonstrated in Section 4. A comparison of skewness and 
kurtosis boundaries between important families of distributions follows along the line of Hürlimann (2013), Appendix 
3. 
 
4.  APPLICATION TO THE RANKING EFFICIENCY IN PORTFOLIO SELECTION 
 
Our application to portfolio selection is based on the financial economics ranking efficiency measure defined and 
motivated in Hürlimann (2013), Appendix 1, Proposition A1.1. The investigation of this ranking efficiency measure for 
the TLF as test return distribution is illustrated with a case study. Several real-world equity return data sets from the 
Swiss Market and Standard & Poors 500 indices are fitted to the TLF return distribution and their ranking efficiency 
measures are calculated and compared. We note a systematic efficiency increase of the approximate ranking versus the 
Gaussian ranking, which is comparable in size with the observed efficiency increase for the normal variance-gamma 
(NVG) return distribution used in Hürlimann (2013) (see Table 4.3). This means that the approximate ranking function 
with cubic mean-variance-skewness-kurtosis trade-off (4.1) should be preferred to the original linear mean-variance 
trade-off (4.2), at least for the TLF and NVG test return distributions.  
     
Let us recall briefly the definition and aim of the used ranking efficiency measure. Given is a finite set of portfolios, 
each with its own return distribution ( )xpp = , and a rational investor with utility function ( )xU . The portfolio 

selection problem consists to rank portfolios using the expected utility ranking function ∫= ∞
∞− dxxpxUpRU )()()( , 

or a function equivalent to it. Two ranking functions 1R  and 2R  are equivalent, written 21 ~ RR , if, and only if, there 

exists a monotone increasing function  ( )xh   such that )))(()( 12 pRhpR =   for all p . To fix ideas assume a 

CARA utility function ( ) )exp( mxxU CARA −−= , also called exponential utility. For portfolio selection without risk-
free asset, and assuming finite moments, Di Pierro and Mosevich (2011)  derive through a simple Taylor series 
expansion the approximate ranking equivalence such that 

72062
)(/))(ln()(~)(

43322

**
KmSmmpRmpRpRpR A

UU CARACARA

σσσµ −+−=≈−−= ,     (4.1)  

 
where the parameters  KS ,,,σµ   represent the mean, standard deviation, skewness and excess kurtosis of the 

portfolio return  p , and the approximation error is of order  )( 54σmO . For Gaussian distributed return  Gp   
equation (4.1) reduces to the exact ranking function 

2
)(

2

*
σµ mpR G −= ,      (4.2) 

 
due to Lévy and Markowitz (1979). It is important to ask whether the approximate ranking function (4.1) with cubic 
mean-variance-skewness-kurtosis trade-off should be preferred to the original ranking function with linear mean-
variance trade-off (4.2) or not. 
      
To answer this question one examines the efficiency increase/decrease obtained using  )(* pR A   instead of )(*

GpR . 
For this, let  S   be an appropriate set of test return distributions, whose ranking functions  

mpRpR U /))(log()(* −−=   can be determined exactly or to an arbitrary level of accuracy for all Sp∈ . A naive  
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approach to efficiency consists to measure the distance between two portfolio returns  1p   and  2p   through the 

ranking distance )()(),( 2*1*21
* pRpRppD −= . A meaningful ranking efficiency measure, given a test return  

Sp S ∈ , is described by the deviation of the distance measures  ),(* ppD S   and  ),(* ppD G , Lp∈∀ , relative 

to the distance  ),(* ppD G , in formula 
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which quantifies the efficiency increase (if positive) respectively decrease (if negative) of the approximate ranking 
versus the Gaussian ranking. The efficiency measure (4.3) has been shown to be consistent with a certainty equivalent 
return methodology that must be considered in financial economics (see Hürlimann (2013), Proposition A1.1). 
      
Computational evaluation of (4.3) requires formulas for the test ranking function  )(*

TLFpR   and the approximate 

ranking function  )(* pR A   defined in (4.1). For a CARA utility function one has 

)())(ln()( 11
* mCpRpR Xm

TLF
Um

TLF −−=−⋅−= , which implies by (2.2) the formulas: 
 
Case 1:  0=γ  
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Case 2:  ( )1,0∈γ  
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TLF   (4.5) 
 
To illustrate with a case study, we consider some stock market indices. Return observations stem from seven different 
Swiss Market (SMI) and Standard & Poors 500 (SP500) data sets: 
 
SMI 3Y/1D:    758 historic daily closing prices over 3 years from 04.01.2010 to 28.12.2012  
SMI 24Y/1D:  6030 historic daily closing prices over 12 years from 03.01.1989 to 28.12.2012  
SMI 24Y/1M:  288 historic end of month prices over 24 years from Jan. 1989 to Dec. 2012 
SP500 3Y/1D: 754 historic daily closing prices over 3 years from 04.01.2010 to 31.12.2012 
SP500 24Y/1D: 6049 historic daily closing prices over 12 years from 03.01.1989 to 31.12.2012  
SP500 24Y/1M:  288 historic end of month prices over 24 years from Jan. 1989 to Dec. 2012 
SP500 63Y/1M:  756 historic end of month prices over 63 years from Jan. 1950 to Dec. 2012 
 
These data sets are typical as they contain short to medium high volatile periods (recent 3 years), long term periods (24 
years) as well as very long term periods (63 years). The SMI exists only for 24.5 years. Hence, the SMI cannot be 
compared with the SP500 for longer periods. 
      
The observed sample logarithmic returns of stock-market indices are negatively skewed and have a much higher excess 
kurtosis than is allowed by a normal distribution, at least over shorter daily and even monthly periods. One observes 
that the Bera-Jarque test statistic of normality is far beyond the critical value except for the monthly returns over 24 
years (see Table 4.2 in Hürlimann (2013)). Therefore, the normal distribution is retained for comparison for the 3 
monthly return data sets only.  The TLF distribution is fitted to the data following the moment method described in 
Theorem 3.1. If the empirical counterparts of the domains of variation of the skewness and kurtosis are big enough, a 
unique solution is obtained, which is the case here. 
      
To do so, the mean, variance, skewness and kurtosis, which are used in the moment method, must be estimated. We use 
the well-known k-statistics of Fisher (1928), which provide unbiased estimates of the cumulants as follows (assume  
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where  ,,...,1, niri = are the sample logarithmic returns (Table 4.3 lists the obtained values). 
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The goodness-of-fit (GoF) of the chosen estimation method is based on statistics, which measure the difference between 
the empirical distribution function  )(xFn   and the fitted distribution function  )(xF . We use the Cramér-von Mises 

statistic  2W   and the Anderson-Darling statistic 2A . Given the order statistics of the return data such that 

nrrr ≤≤≤ ...21 , the fitted values of the distribution function are  ( ) ,,...,1,ˆ nirF i = . Then, one has the formulas 
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The fitted values  ( )irF̂   are obtained numerically through application of the FFT approximation formulas in the 

Appendix with  122=N   disjoint subintervals. 
      
Fitting results are summarized and compared in the Table 4.1 below. Some comments are in order. Except for the SMI 
24Y/1M data set, which fits “best” the TLF with 0=γ , the TLF with  ( )1,0∈γ   always provides the smallest GoF 
statistics. In four cases the “best” fitted TLF is a TLF with  1→γ  (SMI 24Y/1D, SP500 24Y/1D, SP500 24Y/1M and 
SP500 63Y/1M). Even if the normal distribution is not rejected by the Bera-Jarque test, its fit is rather poor compared 
to the “best” TLF fit. The fitting results are compared with those of the NVG in Hürlimann (2013) and summarized in 
Table 4.2, where the GoF statistics are calculated with the FFT approximation method. We also list the mode of the 
TLF. The mode of the NVG is also computed numerically using an analytical convolution formula for the density 
similar to (A4.28) in Hürlimann (2013). Up to some VG’s (SMI 24Y/1D and SP500 24Y/1D) the two calculated modes 
almost coincide. With the exception of the SP500 24Y/1D and the SP500 3Y/1D ( 2W  statistic) the NVG fits better the 
data than the TLF in terms of the GoF statistics. 
 

Table 4.1:  Parameter estimates, mode, and GoF statistics for the TLF family 
data set mode

γ ξ λ c1 c2 FFT A² W²
SMI 3Y/1D 0 0.00227 128.68 0.70219 0.98954 79.98 1.20887 0.21035

0.68 0.00543 91.931 0.07484 0.10857 55.21 0.33983 0.04511
0.69 0.00558 91.384 0.07218 0.10477 55.06 0.33883 0.04508

0.7 0.00574 90.838 0.06970 0.10124 54.92 0.33816 0.04511
0.71 0.00592 90.291 0.06740 0.09796 54.78 0.33782 0.04520
0.72 0.00610 89.743 0.06528 0.09493 54.64 0.33783 0.04536

SP500 3Y/1D 0 0.00432 108.54 0.58644 1.02245 69.76 1.85807 0.42951
0.38 0.00596 91.290 0.31226 0.55681 52.72 1.49247 0.33659
0.39 0.00603 90.834 0.29308 0.52300 52.52 1.49216 0.33619
0.40 0.00611 90.378 0.27535 0.49172 52.33 1.49227 0.33589
0.42 0.00626 89.465 0.24373 0.43591 51.96 1.49378 0.33555
0.43 0.00634 89.009 0.22963 0.41100 51.77 1.49516 0.33552
0.44 0.00643 88.552 0.21654 0.38787 51.60 1.49695 0.33558

SMI 24Y/1D 0 0.00174 77.0290 0.36209 0.47621 252.39 84.434 16.396
0.99999 98.766 44.4731 264.79 363.56 50.606 1.82255 0.32345

0.999999 987.66 44.4728 2647.8 3635.4 50.606 1.82239 0.32342
0.9999999 9876.5 44.4727 26478 36354 50.606 1.82238 0.32342

SP500 24Y/1D 0 0.00131 71.8447 0.31002 0.38443 392.87 96.689 19.013
0.99999 69.048 41.4799 244.52 313.58 54.478 0.87274 0.15408

0.999999 690.47 41.4796 2445.1 3135.6 54.478 0.87272 0.15408
0.9999999 6904.7 41.4796 24451 31356 54.478 0.87272 0.15408

SMI 24Y/1M 0 0.06608 38.3146 0.52690 2.85564 9.9918 0.43016 0.05798
0.01 0.06649 38.1549 50.798 275.914 9.9874 0.43129 0.05805
0.02 0.06691 37.9952 24.490 133.316 9.9829 0.43244 0.05813
0.05 0.06821 37.5160 8.789 48.168 9.9696 0.43591 0.05839

0.50 2.60679 0.43223
SP500 24Y/1M 0 0.06727 44.472 0.48854 3.23731 10.775 0.71028 0.12646

0.999 41.232 25.6953 3.6052 45.007 10.341 0.57221 0.10460
0.9999 412.08 25.6780 35.843 448.10 10.340 0.57217 0.10459

0.99999 4120.6 25.6762 358.23 4479.0 10.340 0.57217 0.10459
0.50 2.19806 0.37436

SP500 63Y/1M 0 0.04012 37.304 0.59984 1.87778 12.802 1.94245 0.36893
0.999 22.856 21.5537 7.7941 30.737 11.323 0.46985 0.09274

0.9999 228.40 21.5392 77.578 306.07 11.322 0.46914 0.09259
0.99999 2283.8 21.5377 775.42 3059.4 11.300 0.46907 0.09258

0.50 3.26036 0.51397

parameter estimates FFT GoF statistics

normal distribution

normal distribution

normal distribution  
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Table 4.2:  Parameter estimates, mode, and GoF statistics for the NVG family 

data set mode mode
s υ ρ α β anal. FFT A² W²

SMI 3Y/1D 1 0.00079 0.85686 137.59 122.70 81.82 81.80 1.00069 0.16215
0.93 0.00069 0.64228 128.73 113.79 55.82 55.82 0.35449 0.04051

0.915 0.00067 0.60214 126.83 111.88 54.65 54.65 0.33591 0.03947
0.90 0.00065 0.56391 124.94 109.97 53.65 53.65 0.33907 0.04235

SP500 3Y/1D 1 0.00170 0.83167 122.17 101.43 73.74 73.70 0.44795 0.10181
0.995 0.00168 0.81544 121.65 100.90 61.16 61.16 0.38528 0.08617
0.985 0.00166 0.78370 120.61 99.83 56.52 56.52 0.36132 0.07944

0.98 0.00164 0.76818 120.10 99.30 55.15 55.15 0.37241 0.08147
SMI 24Y/1D 1 0.00075 0.42263 81.135 74.047 233.7 253.3 83.150 16.275

0.83 0.00060 0.20133 68.181 61.048 46.79 46.79 1.050 0.142
0.82 0.00059 0.19186 67.422 60.285 46.24 46.24 0.958 0.136
0.81 0.00058 0.18273 66.662 59.522 45.72 45.72 0.999 0.153

SP500 24Y/1D 1 0.00062 0.34901 74.756 69.580 316.2 386.6 94.534 18.612
0.88 0.00054 0.20961 66.186 60.997 53.16 53.16 2.997 0.355
0.87 0.00054 0.20028 65.473 60.282 52.19 52.19 2.742 0.348
0.85 0.00052 0.18254 64.046 58.853 50.50 50.50 2.917 0.454

SMI 24Y/1M 1 0.03248 2.15686 62.759 35.041 10.25 10.25 0.33470 0.04218
0.99 0.03214 2.08393 62.778 34.712 10.20 10.20 0.34726 0.04402
0.98 0.03180 2.01310 62.819 34.384 10.15 10.15 0.36013 0.04595
0.95 0.03083 1.81285 63.102 33.408 10.00 10.00 0.39936 0.05212

0.50 2.60679 0.43223
SP500 24Y/1M 1 0.03468 2.48138 78.840 40.882 10.99 10.99 0.43351 0.08095

0.93 0.03267 1.96388 81.799 38.342 10.75 10.75 0.40177 0.07393
0.92 0.03243 1.89885 82.520 37.991 10.72 10.72 0.40121 0.07381
0.91 0.03221 1.83596 83.348 37.642 10.69 10.69 0.40127 0.07382

0.50 2.19806 0.37436
SP500 63Y/1M 1 0.01915 1.40715 50.036 33.985 13.52 13.52 1.40332 0.26798

0.77 0.01478 0.54708 45.817 26.233 11.08 11.08 0.25981 0.03687
0.76 0.01462 0.52287 45.785 25.909 11.03 11.03 0.25742 0.03578

0.745 0.01440 0.48825 45.784 25.426 10.95 10.95 0.25775 0.03484
0.73 0.01419 0.45558 45.848 24.947 10.91 10.91 0.26252 0.03468
0.72 0.01405 0.43485 45.931 24.630 10.87 10.87 0.26802 0.03498

0.50 3.26036 0.51397normal distribution

parameter estimates FFT GoF statistics

normal distribution

normal distribution

 
 
Let us now return to the main application, which is the evaluation of the efficiency measure (4.3). Since the chosen 
estimation method is the moment method, the approximate ranking function )(* pR A   follows from (4.1) through direct 
insertion of the sample values. Moreover, to each solution of the TLF moment problem, the corresponding test ranking 
function )(*

TLFpR is evaluated using the formulas (4.4)-(4.5). In this way, the ranking efficiency measure is obtained. 
The numerical results of our case study are summarized in Table 4.3. We note a systematic efficiency increase of the 
approximate ranking over the Lévy-Markowitz benchmark. For each feasible value [ )1,0∈γ   the efficiency increase is 
limited to a small range of variation. The maximum efficiency increase is here attained for the TLF with  1→γ and 
the minimum for the TLF with 0.γ = The latter assertion has been verified for a finite number of 
values }99.0,9,...,1,1.0,01.0,0{ =⋅∈ kkγ . The maximum efficiency increase is a bit higher for the TLF than for 
the NVG. 

 
Table 4.3:  NVG vs. TLF efficiency measures for SMI and SP500 data sets 

data set
μ σ S K min max min max

SMI 3Y/1D 0.00004 0.01011 -0.26118 3.54668 92.83657 93.35457 93.35602 93.36398
SP500 3Y/1D 0.00031 0.01169 -0.42731 3.72928 94.78351 95.04308 95.04488 95.05577
SMI 24Y/1D 0.00026 0.01189 -0.29736 7.15740 83.64588 86.15996 86.16163 86.18644

SP500 24Y/1D 0.00027 0.01160 -0.25716 8.63988 76.13769 81.19789 81.19789 81.22844
SMI 24Y/1M 0.00530 0.04800 -0.74866 1.77381 94.14608 94.27808 94.25105 94.33978

SP500 24Y/1M 0.00546 0.04340 -0.76442 1.61037 95.35316 95.42011 95.39562 95.46018
SP500 63Y/1M 0.00586 0.04220 -0.65537 2.42167 91.77448 92.20746 92.19859 92.29538

TLF efficiencyunbiased estimates NVG efficiency
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Appendix:  Numerical approximations of the TLF distribution and related risk functions 
 
Analytically, the pdf  )(xf X    of a one-sided TS random variable  ( )cTSX ,,~ λγ   with cgf   

( ) ,0,,1,0)},){()( >∈−−⋅−= ctctCX λγλλ γγ  
 
can be represented as product of a tempering function and a stable Paretian pdf (e.g. Bauemer and Meerschaert (2010), 
Janczura and Wylomanska (2012)): 

,)}cos({),0,1,(~),(}exp{)( /1
2
1 γ

γ
γ πγδδλλ ⋅=⋅+−= cSSxfcxxf SX  

 
where  ),,( µβδγS   is a stable Paretian random variable with stability index  γ , scale parameter  δ , skewness 

parameter β , and location parameter  µ . Therefore, the TLF pdf can be represented as convolution of two such 
products. Though algorithmic calculation of the stable Paretian pdf is possible (e.g. Nolan (1997/2005)), it is usually 
not easy. On the other hand, the fast Fourier transform (FFT) approximation of the stable Paretian density cannot 
approach extreme heavy tails with 1<γ , as noted by Menn and Rachev (2006), Section 3. Therefore, it is preferable 
to apply the FFT to directly approximate the integral expression of the density in terms of the characteristic function as 
in Scherer et al. (2012) for example. However, we prefer the alternative interpolation scheme by Jelonek (2012), 
Appendix B, which has been adapted here to the mid-point rule (MPR) (instead of the left-point rule) for a higher 
accuracy. 
      
Consider a finite interval  [ ]ba,   that is divided into  N   disjoints subintervals of equal length  1)( −−= Nabh   and 

assume that the random variable  X with pdf  )(xf X   has a known chf  CzzX ∈),(φ . For  1,...,0 −= Nk   set  

hkaxk += . For N sufficiently large the constant  1−⋅= hc π   is also large and one has the pdf approximation 
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For  Nj ,...,0=   set  1

2 ))(( −−−= abju N
j   and consider the mid-points 

1,...,0,))(()( 1
2

1
12

1 −=−−=+= −−
+ Njabjuum N
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Applying the MPR to the right-hand side integral one obtains the finite sum approximation 
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Since  1−=ieπ   one has further  .)1()1( 2)()1)(())((2 21
2

1
N
j

ab
a

N
k

ab
a

N
N

h
a kijNjki ee ⋅−⋅−+−+⋅− ⋅−⋅−= −−
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 Inserted into the above 

sum, one gets the desired representation 

,))(()1()1()()(
1

0

2
2

12)()1)((1 2

∑ ⋅−⋅−⋅−⋅−≈
−

=

⋅−−
−

⋅−+− −−
N

j

kiN
abX

jN
kX

N
j

ab
a

N
k

ab
a

ejabxf ππφ  

 
which one interprets as  k -th component of a Discrete Fourier Transform (DFT) 
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An efficient software implementation of the DFT is based on the Fast Fourier Transform (FFT) algorithm by Cooley 
and Tukey (1965) (see also Schwartz (1977/78), Heideman et al. (1985), Duhamel and Vetterli (1990), Batenkov 

(2005), among others). For numerical approximation of the distribution function  ∫= ∞−
x

xX dttfxF )()(   one derives a 
similar DFT approximation in terms of the chf (e.g. Kim et al. (2010), Proposition 1) or one uses the recursive formula 

,0)(,1,...,1),()()( 011 =−=+= −− xFNkxhfxFxF XkXkXkX  
 
and a simple piecewise linear interpolation for intermediate values: 

[ ] .1,...,1,,)},()(){()()( 111
1
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Finally, we note that similar approximations can be obtained for the value-at-risk measure (VaR), the stop-loss 
transform and the related conditional value-at-risk measure (CVaR) (see Kim et al. (2010) for formulas in terms of the 
chf). They can be used for further important financial applications of the TLF in option pricing and risk management. 
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