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ABSTRACT 
Diophantine equation are fascinating to analyze and realize the study of Diophantine equation and to find their 
solutions would continue to puzzle both mathematicians and amateurs alike . we consider the equation      
(1) 0312 22 =+− yx   with *, Nba ∈  and *zc∈  
 
It is a particular case of Pell‘s equation: 122 =− Dyx . Here, we show that: if the equation has an integer solution 
and 1.12=12 is not a perfect square, then (1) has infinitude of integer solution, in this case we find a closed expression 
for )( , nn yx ,the general positive  integer solution ,by an original method. more, we generalize it for any Diophantine 
equation of second degree and with two unknowns. 
 
 
METHOD TO SOLVE: Let )( 0,0 yx  and )( 1,1 yx  be the smallest positive integer solution for  

(1)  with 100 xx <≤  we construct recurrent sequences 
 
(2)  nnn yxx βα +=+1  

       nnn yxy δγ +=+1                      
 
Putting the condition (2) verify (1), it results  
(3)    γδαβ 12=  

(4)    112 22 =− γα  

(5)    1212 22 −=− δβ  
 
Having unknown  δγβα ,,,  
 
We pull out 22 ,βα  from (4) and (5) respectively and replace them in (3) at  the sequence it obtains 
 

2 2(6) 12 1δ γ− =  
 
Subtract (6) from (4) and find  
 
(7) α δ= ±  
 
Replacing (7) in (3) it obtains 

          
γβ

1
12

±=  

 
(8) 12β γ= ±  
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Afterwards replacing (7) in (4) and (8) in (5) if find the same sequence  
 

2 2(9) 12 1α γ− =  
 
because we work with positive solutions only we take 

nnn yxx 001 12γα +=+  

nnn yxy 001 αγ +=+  
 
Where ),( 00 γα  is the smallest positive integer solution of (9) such that 000 ≠γα  
 
So the 2,7 00 == γα  and 7.2 = 014 ≠  
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Of course if (x’, y’) is an integer solution for (1) then A 
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A are another ones-where 1−A  is the inverse 

matrix of A hence, if (1) has an integer solution it has an infinite ones )(2
1 ZMA ∈−  

 
The general positive integer solutions of the equation (1) 
 

),( ''
nn yx  = (IxnI, IynI) 
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Where by conversion IA =0  and A-n =A-1………A-1 of n time In problem it is better to write general solution (GS) as 
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(GS2) and  
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We proof by reduction ad absurdum (GS2) is a general positive integer solution for (1) let (u, v) be a positive integer 

particular solution for (1) if ∃ Nk ∈0 :  (u, v) = 
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Ak or ∃ *
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 then (u, v) ∈(GS2)  

Contrary to this, we calculate 

(ui+1,vi+1) = 






−

i

i

v
u

A 1     for i=0, 1, 2…………….. 

Where u0 = u , v0 = v clearly ui+1 < ui for all I after  a certain rank x0<ui0 <x1 for all I it finds either 0<ui0<x0  but that is 
absured 
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