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ABSTRACT 
The unsteady MHD flow of conducting Walter’s visco-elastic fluid through porous medium in a long uniform straight 
channel of rectangular cross-section under the influence of time varying pressure gradient and uniform magneticfield 
applied perpendiculary to the flow of fluid has been studied. The exact solution for the velocity of fluid has been 
obtained by using integral transform technique. Some particular cases of pressure gradient have been discussed in 
detail. Also we have discussed the case when porous medium is withdrawn. Besides, the corresponding viscous flow 
problem has been derived as a limiting case when the relaxation time parameter tends to become zero. We have also 
derived the cases (i) when porous medium is withdrawn i.e. if K→∞ ( ii) when magnetic field is withdrawn i.e. if M→∞ 
(iii) when magnetic field and porous medium both are withdrawn i.e. M→∞, K→∞ both.                  
     
 
INTRODUCTION         
                                                        
The flow of visco-elastic fluid between two parallel plates under the influence of uniform, exponential or periodic 
pressure gradient has been discussed by Pal and Sengupta(1986) and Das (1991). Roy, Sen and Lahiri (1990),Ghosh 
and Sengupta (1996), Das (2001, 2002), Kundu and Sengupta (2001), Kumar Singh and Sharma (2009,2011) and others 
have been studied the flow problems of visco-elastic fluid through channels of various cross-sections.Sengupta and 
Banerjee (2005) studied the unsteady MHD flow of visco-elastic Rivlin-Ericksen and Walter’s fluid througha straight 
tube. Kumar, Gupta and Jain (2010) and Rajput, Mishra and Varshney (2011) have considered the flow problems 
concerned with the Walter’s fluid In the present paper, the unsteady flow of Walter’s visco-elastic fluid through porous 
medium in a long uniform rectangular channel under the influence of time dependent pressure gradient has been 
studied. Various particular cases have also been discussed in detail. We have also derived the cases. (i) when porous 
medium is withdrawn i.e. if K→∞ ( ii) when magnetic field is withdrawn i.e. if M→∞ (iii) when magnetic field and 
porous medium both are withdrawn i.e. M→∞, K→∞ both. 
 
FORMULATION OF THE PROBLEM  
       
Here we are considering the motion of conducting visco-elastic Walter’s fluid through porous medium inside a long 
uniform rectangular tube and under transverse uniform magnetic field.      
  
The boundary walls of rectangular tube considered to be the planes x=±a, y=±b. The motion is under the influence of 
time dependent pressure gradient. Let the motion of the fluid along z-axis i.e. along the axis of rectangular channel. 
 
According to the Navier-Stockes equation of motion for visco-elastic Walter’s fluid through porous medium under the 
influence of uniform magnetic field applied perpendicularly to the flow of fluid is given by                         
 
∂W
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= − 1
ρ
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∂
∂t
� �∂

2W
∂x2 + ∂2W
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2
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where W(x, y, t) is the velocity of the fluid in z-direction, μ1 the kinematical coefficient of visco-elasticity, ρ the 
density of the fluid, ν �= μ

ρ
�the  coefficient of viscosity, K the permeability of porous medium,σ the electrical 

conductivity and B0 is the magnetic inductivity. 
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Introducing the following non-dimensional quantities: 
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x
a
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ρν2 p 
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1
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In equation (1), we get(after dropping stars) 
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where M2 = B0a�
σ
μ
  (Hartmann number)           

                                                 
Here, the initial and boundary conditions are 
 
W(x, y, 0) = 0                                                                                                                                                                    (3) 
 

�
W(1,y,t)=0,    0≤y≤l,           t>0

∂W
∂x =0,                                                   x=0

�                                                                                                                                                   (4) 

 

�
W (x,l,t)=0,    0≤x≤1                t>0

∂W
∂x =0,                                                   y=0

�                                                                                                                                             (5) 

 
where  l = b

a
 

 
Solution of the problem 
 
 For solving eqn. (2), we use the following finite Fourier cosine transforms defined as: 
Wc(i, y, t) = ∫ W1

0 (x, y, t) cos(pix) dx                                                                                                                               (6) 
 
Wc�(x, j, t) = ∫ Wc

l
0 (x, y, t) cos�pjy� dy,                                                                                                                              (7) 

 
where  
 pi = (2i + 1) π

2
,        pj = (2j + 1) π

2l
   

 
Consequently, we have the following inverse of finite Fourier cosine transforms: 
 
W(x, y, t) = 2∑ Wc

∞
i=0 (i, y, t) cos(pix )                                                                                                                             (8) 

 
Wc(i, y, t) = 2

l
∑ Wc�

∞
j=0 (i, j, t) cos�pjy �                                                                                                                             (9) 

 
We use transforms (6) and (7) to initial condition (3) we get 
 
Wc�(i, j, 0) = 0                                                                                                                                                                  (10) 
  
Also taking finite Fourier cosine transform to boundary conditions, we have 
 

�
Wc  (i,l,t)=0

∂W c
∂y (i,0,t)= 0

  �                                                                                                                                                                       (11) 

 
Applying transforms (6) and (7) to the equation of motion (2) and using initial and boundary conditions (10) and (11)   
we get 
 

ζ1
∂W c�

dt
+ ξ1Wc� = (−1)i+j F(t)

pi pj
                                                                                                                                               (12) 



Anil Tripathi1, Ravindra Kumar2* and K. K. Singh2/UNSTEADY MHD FLOW OF CONDUCTING WALTER’S VISCO-ELASTIC FLUID…/ 
IJMA- 4(7), July-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                      325   

 
where 

Wc� = ��W
l

0

(x, y, t) cos(pix)
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Then using the Laplace transform defined as: 
 

�
W���c�(s)=∫ W c�

∞
0 e−st dt

F�(s)=∫ F(t)∞
0 e−st dt

 �                                                                                                                                                            (13) 

 
and by condition (11) on equation (12) we get 
 

ζ1W� c�+ξ1W� c� = (−1)i+j F�(s)
pi pj

                                                                                                                                                  (14) 

 
Now, by Laplace inversion formula and using convolution theorem, we get 
 

W� c� = (−1)i+j

pi pj ζ1
∫ Ft

0 (t − λ)e−�ξ1 ζ1⁄ �λdλ                                                                                                                                (15) 

  
Thus, by Fourier cosine inversion formula as in equation (8) and (9), the expression of velocity becomes   
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ζ1
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2
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We discuss the nature of velocity for following different particular cases: 
 
Case I: Flow under constant pressure gradient: 
 
Let, 
 
F(t) = F0              (a constant) 
 
From equation (16)    the velocity will be  
 

W = 4
l
∑ ∑ �(−1)i+j F0

pi pj ξ1
(1 − e−c1t) cos(pix) cos�pjy��∞

j=0
∞
i=0                                                                                              (17) 

 
Case II: Flow under impulsive pressure gradient: 
 
Let  
 
F(t) = f0δ(t) 
 
Where δ(t) is the unit impulse function defined as       
    

δ(t) = �
0,     t ≠ 0
1,     t = 0

� 
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So, from equation (16), we get the velocity 
 

W = 4
l
∑ ∑ �(−1)i+j f0

pi pj ζ1
e−c1t cos(pix) cos�pjy��∞

j=0
∞
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Case III: Flow under transient pressure gradient: 
 
Let, 
 
F(t) = f1e−Nt , (N > 0), 

 
Where f1is a constant. 
 
So, from equation (16), the velocity takes form 
 

W = 4
l
∑ ∑ �(−1)i+j f1e−Nt

pi pj�ξ1−Nζ1�
�1 − e−(c1−N)t� cos(pix) cos�pjy��∞

j=0
∞
i=0                                                                                  (19) 

 
Case IV: Flow under periodic pressure gradient: 
 
Let, 
 
F(t) = Re(F1eiωt), 

 
Where F1 is a constant, 
             
 From equation (16), the velocity becomes 
 

W = 4
l
∑ ∑ � (−1)i+j F1

pi pj�ξ1
2−ω2ζ1

2�
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i=0  xcos(pix)�pjy�                                                          (20) 

 
Case V: When the fluid is purely viscous: 
 
For purely viscous fluid the kinematical co-efficient of visco-elasticity μ1 = 0 and we get, 
 

W = 4
l
∑ ∑ �(−1)i+j

pi pj
∫ F(t − θ)e−ξ1θdθt
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where 

ξ1 =
1
K

+ M2 + pi
2 + pj

2, c1 = ξ1  
 
Case VI: When porous medium is withdrawn i.e. K → ∞ . 
 
We get all results for Walter’s fluid motion in the absence of porous medium and in the presence of magnetic field. 
 
The values of ξ1 and ζ1 are given by, 
 
ξ1 = M2 + pi

2 + PJ
2 and  ζ1 = 1 − μ1�pi

2 + pj
2�                                                                                                             (22) 

 
Case VII: when magnetic field is withdrawn i.e. M→0 
 
We get all results for Walter’s fluid motion in the absence of magnetic field and in the presence of porous medium. The 
values of ξ1 and ζ1 are given by 
 
 ξ1 = 1

K
+pi

2 + PJ
2 and  ζ1 = 1 − μ1�pi

2 + pj
2� 

 
Case VIII: When magnetic field and porous medium both are withdrawn i.e. 
 
M→ 0, K → ∞ both 
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We get all results for Walter’s fluid motion in absence of magnetic field and porous medium. The values of ξ1 and ζ1 
are given by  
 
ξ1 = pi

2 + PJ
2 and ζ1 = 1 − μ1�pi

2 + pj
2� = 1 − μ1ξ1 
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