International Journal of Mathematical Archive-4(7), 2013, 257-265 IMA Available online through www.ijma.info ISSN 2229-5046

ON SUPER EDGE BIMAGIC TOTAL LABELING OF $P_{m} X C_{n}$ AND ITS RELATED GRAPHS

K. Manimekalai*<br>Department of Mathematics, Bharathi women's College (Autonomous), Affiliated by University of Madras, Chennai-600 108, Tamil Nadu, India

## K. Thirusangu

Department of Mathematics, S.I.V.E.T College, Affiliated by University of Madras, Chennai -600 073, Tamil Nadu, India
(Received on: 16-06-13; Revised \& Accepted on: 13-07-13)


#### Abstract

A Graph $G(p, q)$ is said to have edge bimagic total labeling if there exists a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots$, $p+q\}$ such that for each edge $e=(u, v) \in E(G), f(u)+f(v)+f(e)=k_{1}$ or $k_{2}$, where $k_{1}$ and $k_{2}$ are two constants. Moreover, $G$ is said to have super edge bimagic total labeling if $f(V(G))=\{1,2, \ldots, p\}$. In this paper we prove that the super edge bimagic total labeling for generalized prism $P_{m} \times C_{n}$, the Mongolian Ger M(n,m), the generalized web $W(m, n)$, the generalized web without centre $W_{0}(m, n)$ and its related graph.


Key Words: edge bimagic total labeling, generalized prism, generalized web, super edge bimagic labeling and total labeling.

AMS Subject Classification: $05 C 78$.

## 1. INTRODUCTION

As a standard notation, assume that $G=G(V, E)$ is a finite, simple and undirected graph with $p$ vertices and $q$ edges. By a labeling we mean a one-to-one mapping that carries a set of graph elements onto a set of numbers, called labels (usually the set of integers). Edge bimagic labelings of graphs were introduced and studied by Baskar Babujee J. [1, 2]. Let x be any real number. Then $[\mathrm{x}]$ denotes the largest integer less than or equal to x . Terms and terminology as in Harary [4].

Definition 1.1 [1]: A graph $G(p, q)$ is said to have edge bimagic total labeling with two common edge counts $k_{1}$ and $k_{2}$ if there exists a bijection $f: V \cup E \rightarrow\{1,2, \ldots, p+q\}$ such that for each $e=(u, v) \in E, f(u)+f(v)+f(e)=k_{1}$ or $k_{2} . A$ total edge bimagic graph is called super edge bimagic if $f$ maps V onto $\{1,2, \ldots, \mathrm{p}\}$.

That is, a bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ is said to be an edge bimagic labeling with two magic constants $k_{1}$ and $k_{2}$, if there exists an induced edge map $f^{*}: E(G) \rightarrow\left\{k_{1}, k_{2}\right\}$ such that for every $e=(u, v) \in E, f^{*}(e)=$ $f(u)+f(v)+f(e)=k_{1}$ or $k_{2}$.

Definition1.2: The generalized prism $\mathbf{P}_{\mathrm{m}} \mathbf{x} \mathbf{C}_{\mathrm{n}}$ is the graph with the vertex set $\mathrm{V}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}, \mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and the edge set $E\left(P_{m} \times C_{n}\right)=\left\{v_{i, j} v_{i, j+1}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{v_{i, j} v_{i+1, j}: 1 \leq i \leq m-1,1 \leq j \leq n\right\}$, where $j$ is taken modulo $n$ (replacing 0 by n).

Definition1.3: The generalized web $\mathbf{W}(\mathbf{m}, \mathbf{n})$ is the graph with vertex set $\mathrm{V}(\mathrm{W}(\mathrm{m}, \mathrm{n}))=\left\{\mathrm{v}_{\mathrm{i}, \mathrm{j}}: 1 \leq \mathrm{i} \leq \mathrm{m}+1,1 \leq \mathrm{j} \leq\right.$ $n\} \cup\left\{v_{0}\right\}$ and the edge set $E(W(m, n))=\left\{v_{i, j} v_{i, j+1}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{v_{i, j} v_{i+1, j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{v_{0} v_{1, j}: 1 \leq j \leq\right.$ $n\}$, where $j$ is taken modulo $n$ (replacing 0 by $n$ ). The generalized web without centre is denoted by $W_{0}(m, n)$.

Definition1.4: For any integer $n>2$ and $h>1$, the Mongolian Ger is the graph $M(n, h)$ with the vertex set $V(M(n, h))$ $=\left\{v_{0,} v_{i, j}: 1 \leq i \leq h, 1 \leq j \leq n\right\}$ and the edge set $E(M(n, h))=\left\{v_{0} v_{1, j}: 1 \leq j \leq n\right\} \cup\left\{v_{i, j} v_{i, j+1}: 1 \leq i \leq h, 1 \leq j \leq n\right\} \cup\left\{v_{i, j} v_{i+1}\right.$, $\mathrm{j}: 1 \leq \mathrm{i} \leq \mathrm{h}-1,1 \leq \mathrm{j} \leq \mathrm{n}$, where j is taken modulo n (replacing 0 by n ).

Corresponding author: K. Manimekalai*<br>Department of Mathematics, Bharathi women's College (Autonomous), Affiliated by University of Madras, Chennai-600 108, Tamil Nadu, India

## K. Manimekalai* \& K. Thirusangu/ On Super Edge Bimagic Total Labeling Of $P_{m} X C_{n}$ And Its Related Graphs/

 IJMA- 4(7), July-2013.In this paper we study the super edge bimagic total labeling for $P_{m} \times C_{n}$, and some of its related graphs viz., the Mongolian Ger $M(n, m)$, the generalized web $W(m, n)$, the generalized web without centre $W_{0}(m, n)$, etc.

## 2. MAIN RESULT

Theorem 2.1: For all $m \geq 2$ and odd $n \geq 3$, the generalized prism $P_{m} \times C_{n}$ has super edge bimagic total labeling.
Proof: Let $V$ be the vertex set and $E$ be the edge set of the graph $P_{m} \times C_{n}$. Then $|V|=m n$ and $|E|=(2 m-1) n$. Denote the vertices of the innermost cycle of $P_{m} \times C_{n}$ as $v_{1,1}, v_{1,2}, \ldots, v_{1, n}$ and the vertices adjacent to $v_{1,1}, v_{1,2}, \ldots, v_{1, n}$ on the second cycle as $v_{2,1}, v_{2,2}, \ldots, v_{2, n}$ respectively. Next denote the vertices adjacent to $v_{2,1}, v_{2,2}, \ldots, v_{2, n}$ on the third cycle as $\mathrm{v}_{3,1}, \mathrm{v}_{3,2}, \ldots, \mathrm{v}_{3, \mathrm{n}}$ respectively and so on. Thus the vertices adjacent to $\mathrm{v}_{\mathrm{m}-1,1}, \mathrm{v}_{\mathrm{m}-1,2}, \ldots, \mathrm{v}_{\mathrm{m}-1, \mathrm{n}}$ on the m th cycle as $\mathrm{v}_{\mathrm{m}, 1}, \mathrm{v}_{\mathrm{m}, 2}, \ldots, \mathrm{v}_{\mathrm{m}, \mathrm{n}}$ respectively.

For $1 \leq \mathrm{i} \leq \mathrm{m}$, denote

$$
\begin{align*}
& \mathrm{k}(\mathrm{i})=\left[\frac{\mathrm{i}-1}{\mathrm{n}}\right] \mathrm{n}^{2} \\
& \delta(\mathrm{i})=\left\{\begin{array}{lll}
a & ; & \text { if } \mathrm{i} \equiv \operatorname{a} \bmod \mathrm{n} \& \mathrm{a}>0 \\
n & ; & \text { if } \mathrm{i} \equiv 0 \bmod \mathrm{n}
\end{array}\right. \tag{1}
\end{align*}
$$

We define the bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots,(3 \mathrm{~m}-1) \mathrm{n}\}$ as follows:
Initially we assign the label to the vertices of $\mathrm{P}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$.
For $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)=\left\{\begin{array}{lll}
k(i)+(\delta(i)-1)(n+1)+j & ; 1 \leq j \leq n-\delta(i)+1  \tag{3}\\
k(i)+(\delta(i)-1)(n+1)-n+j & ; \mathrm{n}-\delta(i)+2 \leq j \leq n
\end{array}\right.
$$

Let $e=\left(v_{i, j}, v_{s, t}\right)$ be any edge in $P_{m} x C_{n}$ and let $f^{\prime}(e)=f\left(v_{i, j}\right)+f\left(v_{s, t}\right)$

We denote the edges of $\mathrm{P}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ as follows:
For $1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}$, denote the edge by $\mathrm{e}_{\mathrm{j}}{ }^{(1)}$, if the sum of the labels of its end vertices is equal to $2 \mathrm{j}+1$.
For $0 \leq j \leq(m-1) n$, denote the edge by $e_{j}{ }^{(2)}$, if the sum of the labels of its end vertices is equal to $n+1+j$.
For $0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n}$, denote the edge by $\mathrm{e}_{\mathrm{j}}^{(3)}$, if the sum of the labels of its end vertices is equal to $\mathrm{mn}+2+\mathrm{j}$.
For $1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2}$, denote the edge by $\mathrm{e}_{\mathrm{j}}{ }^{(4)}$, if the sum of the labels of its end vertices is equal to $2 \mathrm{mn}-\mathrm{n}+2 \mathrm{j}+2$.
Hence from equation (4), we have

$$
\begin{array}{lll}
f^{\prime}\left(e_{j}^{(1)}\right)=2 j+1 & , & 1 \leq j \leq \frac{n-1}{2} \\
f^{\prime}\left(e_{j}^{(2)}\right)=n+1+j & , & 0 \leq j \leq(m-1) n  \tag{5}\\
f^{\prime}\left(e_{j}^{(3)}\right)=m n+2+j & , & 0 \leq j \leq(m-1) n \\
f^{\prime}\left(e_{j}^{(4)}\right)=2 m n-n+2(j+1), & 1 \leq j \leq \frac{n-3}{2}
\end{array}
$$

Now, let us label the edges of $P_{m} \times C_{n}$ as

$$
\begin{array}{lll}
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)=2 \mathrm{mn}+1-2 \mathrm{j} & , & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=2 \mathrm{mn}-\mathrm{n}+1-\mathrm{j} & , & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right)=3 \mathrm{mn}-\mathrm{n}-\mathrm{j} & , & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)=2(\mathrm{mn}-\mathrm{j}) & , \quad 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2} .
\end{array}
$$

## K. Manimekalai* \& K. Thirusangu/ On Super Edge Bimagic Total Labeling of $P_{m} X C_{n}$ And Its Related Graphs/

 IJMA- 4(7), July-2013.The induced map $f^{*}$ on E defined by $f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}{ }^{(k)}\right)+f\left(e_{j}{ }^{(k)}\right)$ for any edge $e_{j}^{(k)} \in E$ satisfies the conditions:

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right) \\
& =(2 \mathrm{j}+1)+(2 \mathrm{mn}+1-2 \mathrm{j}) \\
& =2 \mathrm{mn}+2 \text {, } \\
& 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
& f^{*}\left(e_{j}^{(2)}\right)=f^{\prime}\left(e_{j}^{(2)}\right)+f\left(e_{j}^{(2)}\right) \\
& =(\mathrm{n}+1+\mathrm{j})+(2 \mathrm{mn}-\mathrm{n}+1-\mathrm{j}) \\
& =2 m n+2, \quad 0 \leq j \leq(m-1) n \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right) \\
& =(m n+2+j)+(3 m n-n-j) \\
& =4 m n-n+2, \quad 0 \leq j \leq(m-1) n \\
& f^{*}\left(e_{j}{ }^{(4)}\right)=f^{\prime}\left(e_{j}^{(4)}\right)+f\left(e_{j}^{(4)}\right) \\
& =2 m n-n+2(j+1)+2(m n-j) \\
& =4 m n-n+2, \quad 1 \leq j \leq \frac{n-3}{2} \text {. }
\end{aligned}
$$

Clearly, it is observed that for each edge $e_{j}^{(k)} \in E, f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}{ }^{(k)}\right)+f\left(e_{j}^{(k)}\right)=2 m n+2$ or $4 m n-n+2$. Since there exists two common edge counts $\mathrm{k}_{1}=2 \mathrm{mn}+2$ and $\mathrm{k}_{2}=4 \mathrm{mn}-\mathrm{n}+2$, the graph $\mathrm{P}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ has edge-bimagic total labeling . Moreover $f(V)=\{1,2, \ldots, m n\}$, $f$ is a super labeling. Hence $P_{m} \times C_{n}$ has super edge bimagic total labeling with magic counts $2 m n+2$ and $4 m n-n+2$, where $n$ is odd and $m \geq 2$.

Theorem 2.2: For all $m \geq 2$ and odd $n \geq 3$, the Mongolian Ger $M(n, m)$ has super edge bimagic total labeling.
Proof: Let $\mathrm{G}_{1}\left(\mathrm{~V}_{1}, \mathrm{E}_{1}\right) \cong$ Mongolian $\mathrm{Ger} \mathrm{M}(\mathrm{n}, \mathrm{m})$.Then the vertex set $\mathrm{V}_{1}=\mathrm{V} \cup\left\{\mathrm{v}_{0}\right\}$ and the edge set $\mathrm{E}_{1}=\mathrm{E} \cup \mathrm{E}_{0}$, where V and $E$ are as defined in the proof of the Theorem 2.1 and $E_{0}=\left\{v_{0} V_{1, j} / 1 \leq j \leq n\right\}$. Then $\left|V_{1}\right|=m n+1$ and $\left|E_{1}\right|=2 m n$. We define the bijection $\mathrm{f}: \mathrm{V}_{1} \cup \mathrm{E}_{1} \rightarrow\{1,2, \ldots, 3 \mathrm{mn}+1\}$ as follows:

Initially we assign labels to the vertices of $\mathrm{G}_{1}$.
$f\left(v_{0}\right)=m n+1$ and $f$ on the vertices in $V$ is as in Theorem 2.1. Then $f\left(V_{1}\right)=\{1,2, \ldots, m n+1\}$.

Let $\mathrm{e}=\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}, \mathrm{v}_{\mathrm{s}, \mathrm{t}}\right)$ be any edge in $G_{1}$ and let $\mathrm{f}^{\prime}(\mathrm{e})=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{s}, \mathrm{t}}\right)$

We denote the edges of $G_{1}$ as follows:

For $1 \leq \mathrm{j} \leq \mathrm{n}$, denote each edge $\left(\mathrm{v}_{0}, \mathrm{v}_{1, \mathrm{j}}\right) \in \mathrm{E}_{0}$ by $\mathrm{e}_{\mathrm{j}}^{(0)}$ and the edges in E as denoted in the proof of the Theorem 2.1.

Then from equation (6), we have

$$
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right)=\mathrm{mn}+1+\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n} \text { and }
$$

for each edge $e_{j}^{(k)} \in E, f^{\prime}\left(e_{j}^{(k)}\right)$ is as defined in equation (5) of Theorem 2.1.
Now we assign labels to the edges of $\mathrm{G}_{1}$.

$$
\begin{array}{lll}
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right)=\mathrm{mn}+\mathrm{n}+2-\mathrm{j} & , & 1 \leq \mathrm{j} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)=2 \mathrm{mn}+\mathrm{n}+2-2 \mathrm{j}, & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=2 \mathrm{mn}+2-\mathrm{j} & , & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right)=3 \mathrm{mn}+1-\mathrm{j} & , & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)=2 \mathrm{mn}+\mathrm{n}+1-2 \mathrm{j}, & & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2} .
\end{array}
$$

Thus $f\left(E_{1}\right)=\{m n+2, m n+3, \ldots, 3 m n+1\}$.
The induced edge map $f^{*}$ on $E_{1}$ defined by $f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}{ }^{(k)}\right)+f\left(e_{j}{ }^{(k)}\right)$ for every edge $e_{j}{ }^{(k)} \in E_{1}$ satisfies the conditions:

$$
\begin{array}{rlrl}
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right) & & \\
& =2 \mathrm{mn}+\mathrm{n}+3, & & 1 \leq \mathrm{j} \leq \mathrm{n} \\
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right) & & \\
& =2 \mathrm{mn}+\mathrm{n}+3, & & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right) & & \\
& =2 \mathrm{mn}+\mathrm{n}+3, \\
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right) \\
& =4 \mathrm{mn}+3, & & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right) & & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
& =4 \mathrm{mn}+3, & & \\
&
\end{array}
$$

Clearly it is observed that for each edge $e_{j}^{(k)} \in E_{1}, f^{*}\left(e_{j}^{(k)}\right)=f^{\prime}\left(e_{j}^{(k)}\right)+f\left(e_{j}^{(k)}\right)=2 m n+n+3$ or $4 m n+3$. Since there exists two common edge counts $k_{1}=2 m n+n+3$ and $k_{2}=4 m n+3$, the graph $G_{1}$ has super edge bimagic total labeling. Hence for all $m \geq 2$ and odd $n \geq 3$, the Mongolian Ger $M(n, m)$ has super edge bimagic total labeling.

Example 2.1: In Figure 2.1, we give a super edge bimagic total labeling for the Mongolian Ger M (5, 3).


Fig. 2.1 : super edge bimagic total labeling of the Mongolian Ger M(5,3).
In the next section, we prove that for all $\underset{\underline{~}}{ } 2$ and odd $n \geq 3$, the generalized web without centre, $W_{0}(m, n)$ is super edge bimagic. The graph $W_{0}(m, n)$ is the same as the graph obtained from $P_{m} \times C_{n}$ by attaching a pendent vertex at each vertex of the outermost cycle of $P_{m} \times C_{n}$. Denote the pendent vertices adjacent to $v_{m, 1}, v_{m, 2}, \ldots, v_{m, n}$ of the $m$ th cycle of $P_{m} \times C_{n}$ as $v_{m+1,1}, v_{m+1,2}, \ldots, v_{m+1, n}$ respectively.

Theorem 2.3: For all $m \geq 2$ and odd $n \geq 3$, the graph $W_{0}(m, n)$ has super edge-bimagic total labeling.
Proof: Let $V^{\prime}$ be the vertex set and $E^{\prime}$ be the edge set of $W_{0}(m, n)$. Then $V^{\prime}=V \cup\left\{v_{m+1, j} / 1 \leq j \leq n\right\}$ and $E^{\prime}=E \cup\left\{v_{m, j}\right.$ $\left.\mathrm{v}_{\mathrm{m}+1, \mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$, where V and E are as defined in Theorem 2.1. Then $\left|\mathrm{V}^{\prime}\right|=(\mathrm{m}+1) \mathrm{n}$ and $\left|\mathrm{E}^{\prime}\right|=2 \mathrm{mn}$.

For $1 \leq \mathrm{i} \leq \mathrm{m}+1$, denote $\mathrm{k}(\mathrm{i})$ and $\delta(\mathrm{i})$ as defined in equations (1) and (2) of Theorem 2.1.
We define the bijection $\mathrm{f}: \mathrm{V}^{\prime} \cup \mathrm{E}^{\prime} \rightarrow\{1,2, \ldots,(3 \mathrm{~m}+1) \mathrm{n}\}$ as follows:
Initially we assign labels to the vertices $\mathrm{W}_{0}(\mathrm{~m}, \mathrm{n})$.
For $1 \leq \mathrm{i} \leq \mathrm{m}+1$ and $1 \leq \mathrm{j} \leq \mathrm{n}$ each $\mathrm{v}_{\mathrm{i}, \mathrm{j}} \in \mathrm{V}^{\prime}$, define $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)$ as in equation (3) of Theorem 2.1.

## K. Manimekalai* \& K. Thirusangu/ On Super Edge Bimagic Total Labeling Of $P_{m} X C_{n}$ And Its Related Graphs/

 IJMA- 4(7), July-2013.Then $f\left(V^{\prime}\right)=\{1,2, \ldots,(m+1) n\}$.

Let $e=\left(v_{i, j}, v_{s, t}\right)$ be any edge in $W_{0}(m, n)$ and let $f^{\prime}(e)=f\left(v_{i, j}\right)+f\left(v_{s, t}\right)$

We denote the edges in $\mathrm{E}^{\prime}$ as follows:
For $1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}$, denote the edge by $\mathrm{e}_{\mathrm{j}}{ }^{(1)}$, if the sum of the labels of its end vertices is equal to $2 \mathrm{j}+1$.
For $0 \leq j \leq m n$, denote the edge by $e_{j}^{(2)}$, if the sum of the labels of its end vertices is equal to $n+1+j$.
For $0 \leq j \leq(m-1) n$, denote the edge by $e_{j}^{(3)}$, if the sum of the labels of its end vertices is equal to $(m+1) n+2+j$.
For $1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2}$, denote the edge by $\mathrm{e}_{\mathrm{j}}{ }^{(4)}$, if the sum of the labels of its end vertices is equal to $2(\mathrm{mn}+\mathrm{j}+1)$.
Then from equation (7), we have

$$
\begin{array}{lll}
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)=2 \mathrm{j}+1 & , & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=\mathrm{n}+1+\mathrm{j} & , & 0 \leq \mathrm{j} \leq \mathrm{mn}  \tag{8}\\
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right)=(\mathrm{m}+1) \mathrm{n}+2+\mathrm{j} & , & 0 \leq \mathrm{j} \leq(m-1) \mathrm{n} \\
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)=2(\mathrm{mn}+\mathrm{j}+1) & , & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2} .
\end{array}
$$

Now, let us label the edges of $\mathrm{W}_{0}(\mathrm{~m}, \mathrm{n})$ by

$$
\begin{array}{lll}
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)=2 \mathrm{mn}+2 \mathrm{n}-2 \mathrm{j}+1 & , & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=2 m n+\mathrm{n}+1-\mathrm{j} & , & 0 \leq \mathrm{j} \leq m n \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right)=3 m n+\mathrm{n}-\mathrm{j} & , & 0 \leq \mathrm{j} \leq(m-1) \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)=2(\mathrm{mn}+\mathrm{n}-\mathrm{j}) & , & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2} .
\end{array}
$$

Then $f\left(E^{\prime}\right)=\{m n+n+1, m n+n+2, \ldots, 3 m n+n\}$.
The induced map $f^{*}$ on $E^{\prime}$ defined by $f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}{ }^{(k)}\right)+f\left(e_{j}{ }^{(k)}\right)$ for every edge $e_{j}{ }^{(k)} \in E^{\prime}$ satisfies the conditions:

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right) \\
& =2(m n+n+1), \quad 1 \leq j \leq \frac{n-1}{2} \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}{ }^{(2)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(2)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right) \\
& =2(m n+n+1), \quad 0 \leq j \leq m n \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right) \\
& =2(2 m n+n+1) \quad 0 \leq j \leq(m-1) n \\
& f^{*}\left(e_{j}^{(4)}\right)=f^{\prime}\left(e_{j}{ }^{(4)}\right)+f\left(e_{j}{ }^{(4)}\right) \\
& =2(2 m n+n+1), \quad 1 \leq j \leq \frac{n-3}{2} .
\end{aligned}
$$

Clearly, it is observed that for each edge $e_{j}{ }^{(k)} \in E^{\prime}, f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}{ }^{(k)}\right)+f\left(e_{j}{ }^{(k)}\right)=2(m n+n+1)$ or $2(2 m n+n+1)$. Since there exists two common edge counts $k_{1}=2(m n+n+1)$ and $k_{2}=2(2 m n+n+1)$, the graph $W_{0}(m, n)$ has super edgebimagic total labeling, for all $\mathrm{m} \geq 2$ and odd $\mathrm{n} \geq 3$.

Theorem2.4: Let $G_{2}\left(V_{2}, E_{2}\right)$ be the graph obtained from $P_{m} \times C_{n}$ by attaching s pendent vertices at each vertex of the outermost cycle. Then the graph $\mathrm{G}_{2}$ has a super edge bimagic total labeling for all $\mathrm{m} \geq 2$ and odd $\mathrm{n} \geq 3$.

## K. Manimekalai* \& K. Thirusangu/ On Super Edge Bimagic Total Labeling of $P_{m} X C_{n}$ And Its Related Graphs/ IJMA- 4(7), July-2013.

Proof: The graph $G_{2}\left(V_{2}, E_{2}\right)$ is the same as the graph obtained from $W_{0}(m, n)$ by appending $s-1$ pendent edges at each vertex $v_{m, j}(j=1,2, \ldots, n)$ of the outermost cycle of $W_{0}(m, n)$. Denote the newly attached pendent vetices at $v_{m, j}$ as $v_{j}^{(1)}$, $v_{j}^{(2)}, \ldots, v_{j}^{(s-1)}(j=1,2, \ldots, n)$.Then $V_{2}=V^{\prime} \cup V_{3}$ where $V_{3}=\left\{v_{j}^{(l)} ; j=1,2, \ldots, n ; l=1,2, \ldots, s-1\right\}$ and the edge set $E_{2}=E^{\prime} \cup E_{3}$, where $\mathrm{E}_{3}=\left\{\mathrm{v}_{\mathrm{m}, \mathrm{j}} \mathrm{v}_{\mathrm{j}}^{(l)} / 1 \leq \mathrm{j} \leq \mathrm{n} ; 1 \leq l \leq \mathrm{s}-1\right\}$ and $\mathrm{V}^{\prime}$ and $\mathrm{E}^{\prime}$ are as defined in the proof of the Theorem 2.3. Then $\left|\mathrm{V}_{2}\right|=$ ( m $+s) n$ and $\left|E_{2}\right|=(2 m+s-1) n$. We define the bijection $f: V_{2} \cup E_{2} \rightarrow\{1,2, \ldots,(3 m+2 s-1) n\}$ as follows:

Initially we assign labels to the vertices of $\mathrm{G}_{2}$.
For $1 \leq i \leq m+1$ and $1 \leq j \leq n$ each $v_{i, j} \in V^{\prime}$, define $f\left(v_{i, j}\right)$ as in the equation (3) of Theorem 2.1and for $1 \leq j \leq n ; 1 \leq l \leq s-1$ each $\mathrm{v}_{\mathrm{j}}{ }^{(l)} \in \mathrm{V}_{3}$, define $\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}{ }^{(l)}=\mathrm{f}\left(\mathrm{v}_{\mathrm{m}+1, \mathrm{j}}\right)+\ln\right.$. Then $\mathrm{f}\left(\mathrm{V}_{2}\right)=\{1,2, \ldots,(\mathrm{~m}+\mathrm{s}) \mathrm{n}\}$.

Let $e=\left(v_{i, j}, v_{s, t}\right)$ be any edge in $G_{2}$ and let $f^{\prime}(e)=f\left(v_{i, j}\right)+f\left(v_{s, t}\right)$

We denote the edges of $\mathrm{G}_{2}$ as follows.
For $1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}$, denote the edge by $\mathrm{e}_{\mathrm{j}}^{(1)}$, if the sum of the labels of its end vertices is equal to $2 \mathrm{j}+1$.
For $0 \leq \mathrm{j} \leq(\mathrm{m}+\mathrm{s}-1) \mathrm{n}$, denote the edge by $\mathrm{e}_{\mathrm{j}}{ }^{(2)}$, if the sum of the labels of its end vertices is equal to $\mathrm{n}+1+\mathrm{j}$.
For $0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n}$, denote the edge by $\mathrm{e}_{\mathrm{j}}{ }^{(3)}$, if the sum of the labels of its end vertices is equal to $\mathrm{mn}+\mathrm{sn}+2+\mathrm{j}$.
For $1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2}$, denote the edge by $\mathrm{e}_{\mathrm{j}}^{(4)}$, if the sum of the labels of its end vertices is equal to $(2 \mathrm{~m}+\mathrm{s}-1)+2 \mathrm{j}+2$.
Then from equation (9), we have

$$
\begin{array}{ll}
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)=2 \mathrm{j}+1 & , \quad 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=\mathrm{n}+1+\mathrm{j} & , \quad 0 \leq \mathrm{j} \leq(\mathrm{m}+\mathrm{s}-1) \mathrm{n}  \tag{10}\\
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right)=\mathrm{mn}+\mathrm{sn}+2+\mathrm{j} & , 0 \leq \mathrm{j} \leq(m-1) \mathrm{n} \\
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)=(2 \mathrm{~m}+\mathrm{s}-1) \mathrm{n}+2 \mathrm{j}+2, & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2} .
\end{array}
$$

Now let us label the edges of $\mathrm{G}_{2}$ by

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)=2 \mathrm{mn}+2 \mathrm{sn}-2 \mathrm{j}+1, & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=2 \mathrm{mn}+2 \mathrm{sn}-\mathrm{n}+1-\mathrm{j}, & 0 \leq \mathrm{j} \leq(\mathrm{m}+\mathrm{s}-1) \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right)=3 \mathrm{mn}+2 \mathrm{sn}-\mathrm{n}-\mathrm{j}, & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(4)}\right)=2(\mathrm{mn}+\mathrm{sn}-\mathrm{j}) & , \\
1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2} .
\end{array}
$$

Then $f\left(E_{2}\right)=\{m n+s n+1, m n+s n+2, \ldots,(3 m+2 s-1) n\}$.
The induced map $f^{*}$ on $E_{2}$ defined by $f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}{ }^{(k)}\right)+f\left(e_{j}{ }^{(k)}\right)$ for every edge $e_{j}{ }^{(k)} \in E_{2}$ satisfies the conditions:

$$
\begin{array}{rlrl}
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right) & & \\
& =2(\mathrm{mn}+\mathrm{sn}+1)=\mathrm{k}_{1}, & & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right) & & \\
& =2(\mathrm{mn}+\mathrm{sn}+1)=\mathrm{k}_{1}, & & 0 \leq \mathrm{j} \leq(\mathrm{m}+\mathrm{s}-1) \mathrm{n} \\
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(3)}\right) \\
& =(4 \mathrm{~m}+3 \mathrm{~s}-1) \mathrm{n}+2=\mathrm{k}_{2}, & & 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n} \\
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right) \\
& =(4 \mathrm{~m}+3 \mathrm{~s}-1) \mathrm{n}+2=\mathrm{k}_{2}, & & 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-3}{2} .
\end{array}
$$

## K. Manimekalai* \& K. Thirusangu/ On Super Edge Bimagic Total Labeling of $P_{m} X C_{n}$ And Its Related Graphs/

 IJMA- 4(7), July-2013.Clearly, it is observed that for every edge $e_{j}{ }^{(k)} \in E_{2}, f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}{ }^{(k)}\right)+f\left(e_{j}{ }^{(k)}\right)=2(m n+s n+1)$ or $(4 m+3 s-1) n+2$. Since there exists two common edge counts $k_{1}=2(m n+s n+1)$ and $k_{2}=(4 m+3 s-1) n+2$, the graph $G_{2}$ has super edge bimagic total labeling, for n odd and $\mathrm{m} \geq 2$.

In Figure 2.3, we give a super edge bimagic total labeling for the graph $\mathrm{G}_{2}$ in Theorem 2.4 with $\mathrm{m}=4, \mathrm{n}=5$ and $\mathrm{s}=3$.


Theorem 2.5: For $\mathrm{m} \geq 2$ and odd $\mathrm{n} \geq 3$, the generalized web $\mathrm{W}(\mathrm{m}, \mathrm{n})$ has super edge bimagic total labeling.
Proof: The generalized web $W(m, n)$ is the same as the one obtained from $W_{0}(m, n)$ by joining each vertex of the innermost cycle to a new vertex $\mathrm{v}_{0}$ by an edge. Let $\mathrm{V}^{\prime \prime}$ be the vertex set and $\mathrm{E}^{\prime \prime}$ be the edge set of $\mathrm{W}(\mathrm{m}, \mathrm{n})$. Then $\mathrm{V}^{\prime \prime}=$ $V^{\prime} \cup\left\{\mathrm{v}_{0}\right\}$ and $\mathrm{E}^{\prime \prime}=\mathrm{E}^{\prime} \cup \mathrm{E}_{0}$, where $\mathrm{V}^{\prime}$ and $\mathrm{E}^{\prime}$ are as defined in Theorem 2.3 and $\mathrm{E}_{0}=\left\{\mathrm{v}_{0} \mathrm{v}_{1, \mathrm{j}}: 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. Then $\left|\mathrm{V}^{\prime \prime}\right|=$ $(m+1) n+1$ and $\left|E^{\prime \prime}\right|=(2 m+1) n$.

For $1 \leq \mathrm{i} \leq \mathrm{m}+1$, denote $\mathrm{k}(\mathrm{i})$ and $\delta(\mathrm{i})$ as defined in equations (1) and (2) of Theorem 2.1.
We define the bijection $\mathrm{f}: \mathrm{V}^{\prime \prime} \cup \mathrm{E}^{\prime \prime} \rightarrow\{1,2, \ldots,(3 m n+2) \mathrm{n}+1\}$ as follows:
Initially we assign labels to the vertices of $\mathrm{W}(\mathrm{m}, \mathrm{n})$.
For $1 \leq \mathrm{i} \leq \mathrm{m}+1$ and $1 \leq \mathrm{j} \leq \mathrm{n}$ each vertex $\mathrm{v}_{\mathrm{i}, \mathrm{j}} \in \mathrm{V}^{\prime}$, define $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)$ as in the equation (3) of Theorem 2.1 and $\mathrm{f}\left(\mathrm{v}_{0}\right)=$ $m n+n+1$. Then $f\left(V^{\prime \prime}\right)=\{1,2, \ldots, m n+n+1\}$.

Let $e=\left(v_{i, j}, v_{s, t}\right)$ be any edge in $W(m, n)$ and let $f^{\prime}(e)=f\left(v_{i, j}\right)+f\left(v_{s, t}\right)$

We denote the edges of $\mathrm{W}(\mathrm{m}, \mathrm{n})$ as follows:
For $0 \leq \mathrm{j} \leq \mathrm{n}$, denote each edge $\mathrm{v}_{0} \mathrm{v}_{1, \mathrm{j}} \in \mathrm{E}_{0}$ by $\mathrm{e}_{\mathrm{j}}{ }^{(0)}$ and denote the edges in $\mathrm{E}^{\prime}$ of $\mathrm{W}(\mathrm{m}, \mathrm{n})$ as denoted in Theorem 2.3.
Then from the equation (11), we have

$$
\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right)=\mathrm{mn}+\mathrm{n}+1+\mathrm{j}, \quad 0 \leq \mathrm{j} \leq \mathrm{n}
$$

and for each $\mathrm{e}_{\mathrm{j}}{ }^{(\mathrm{k})} \in \mathrm{E}^{\prime}, \mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(\mathrm{k})}\right)$ is as defined in equation (8) of Theorem 2.3.
Now, let us label the edges of $W(m, n)$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right)=\mathrm{mn}+2 \mathrm{n}+2-\mathrm{j}, 0 \leq \mathrm{j} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(1)}\right)=2 \mathrm{mn}+3 \mathrm{n}-2 \mathrm{j}+2,1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} \\
& \mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=2 \mathrm{mn}+2 \mathrm{n}+2-\mathrm{j}, 0 \leq \mathrm{j} \leq \mathrm{mn}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(e_{j}^{(3)}\right)=3 m n+2 n+1-j, 0 \leq j \leq(m-1) n \\
& f\left(e_{j}^{(4)}\right)=2 m n+3 n+1-2 j, 1 \leq j \leq \frac{n-3}{2} .
\end{aligned}
$$

Then $f\left(E^{\prime \prime}\right)=\{m n+n+2, m n+n+3, \ldots, 3 m n+2 n+1\}$.
Define the induced map $f$ * on $E^{\prime \prime}$ by
$f^{*}\left(e_{j}^{(k)}\right)=f^{\prime}\left(e_{j}^{(k)}\right)+f\left(e_{j}^{(k)}\right)$ for every edge $e_{j}^{(k)} \in E^{\prime \prime}$.
It satisfies the conditions:

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(0)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(0)}\right) \\
& =(m n+n+1+j)+(m n+2 n+2-j) \\
& =2 \mathrm{mn}+3 \mathrm{n}+3=\mathrm{k}_{1}, 0 \leq \mathrm{j} \leq \mathrm{n} . \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(1)}\right) \\
& =(2 j+1)+(2 m n+3 n-2 j+2) \\
& =2 m n+3 n+3=k_{1}, 1 \leq j \leq \frac{n-1}{2} \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(2)}\right) \\
& =(n+1+j)+2 m n+2 n+2-j \\
& =2 \mathrm{mn}+3 \mathrm{n}+3=\mathrm{k}_{1}, \quad 0 \leq \mathrm{j} \leq \mathrm{mn} \\
& \begin{aligned}
\mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right) & =\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}{ }^{(3)}\right) \\
& =(\mathrm{mn}+\mathrm{n}+2+\mathrm{j})+(3 \mathrm{mn}+2 \mathrm{n}+1-\mathrm{j}) \\
& =4 m n+3 \mathrm{n}+3=\mathrm{k}_{2}, \quad 0 \leq \mathrm{j} \leq(\mathrm{m}-1) \mathrm{n}
\end{aligned} \\
& \mathrm{f}^{*}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right)=\mathrm{f}^{\prime}\left(\mathrm{e}_{\mathrm{j}}{ }^{(4)}\right)+\mathrm{f}\left(\mathrm{e}_{\mathrm{j}}^{(4)}\right) \\
& =2(m n+j+1)+2 m n+3 n+1-2 j \\
& =4 m n+3 n+3=k_{2}, \quad 1 \leq j \leq \frac{n-3}{2} .
\end{aligned}
$$



Fig.2.4: Generalized web W(4,7)

## K. Manimekalai* \& K. Thirusangu/ On Super Edge Bimagic Total Labeling Of $P_{m} X C_{n}$ And Its Related Graphs/

 IJMA- 4(7), July-2013.Clearly, it is observed that for each edge $e_{j}{ }^{(k)} \in E^{\prime}, f^{*}\left(e_{j}{ }^{(k)}\right)=f^{\prime}\left(e_{j}^{(k)}\right)+f\left(e_{j}^{(k)}\right)=2 m n+3 n+3$ or $4 m n+3 n+3$. Since there exists two common edge counts $k_{1}=2(m n+n+1)$ and $k_{2}=2(2 m n+n+1)$, the generalized web $W(m, n)$ has super edge bimagic total labeling for all $\mathrm{m} \geq 2$ and odd $\mathrm{n} \geq 3$.

In Figure 2.4, we give a super edge bimagic total labeling for the generalized web $\mathrm{W}(4,7)$.

## CONCLUSION

In this paper, we have proved the super edge bimagic total labeling for generalized prism $\mathrm{P}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$, the Mongolian Ger $M(n, m)$, the generalized web $W(m, n)$, the generalized web without centre $W_{0}(m, n)$ and its related graph. Further we extend this work by examining the existence of certain other labelings for these graphs.

## REFERENCE

[1] Baskar Babujee J., Bimagic labeling in path graphs, The Mathematics Education, Volume 38, No. 1. 2004, p. 12-16.
[2] Baskar Babujee J., On Edge Bimagic Labeling, Journal of Combiatorics Information \& System Sciences, Vol. 28, No. 1-4, 239-244 (2004).
[3] Gallian J. A., A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 17 (2010), \# DS6.
[4] Harary F. "Graph Theory", Narosa Publishing House, New Delhi, (1998).
Source of support: Nil, Conflict of interest: None Declared

