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ABSTRACT 
An attempt to study the effect of thermo diffusion on unsteady hydromagnetic free convective memory flow of 
incompressible and electrically conducting fluid with chemical reaction gain importance and attention in recent years. 
In view of this, the main object of the present investigation is to study the effects of chemical reaction and thermo-
diffusion on hydromagnetic free convective fluid flow past an infinite vertical plate in the presence of heat sink. In the 
course of analysis it is assumed that the magnetic field of uniform strength is applied and induced magnetic field is 
neglected and also we observe that how various parameters affect the flow past an infinite vertical plate.       
 
Keywords: Chemical Reaction, Memory flow fluid, Constant suction, Heat Sink. 
 
 
1. INTRODUCTION 
 
The heat and mass transfer with chemical reaction, have lot of application industrial process the problem received 
considerable attention in recent years in the processes involving drying, evaporation at the surface of the a water body, 
energy transfer in a wet cooling tower and the flow in a desert cooler, heat and the mass transfer occur simultaneously.  
 
Dekha et al. [10] examined the effect of the first order homogeneous chemical reaction on the process of an unsteady 
flow past a vertical plate with a constant heat and mass transfer. Muthucumaraswamy [23] presented the heat and mass 
transfer effects on a continuously moving isothermal vertical surface with uniform suction by taking into account the 
homogeneous chemical reaction of first order. 
 
Viscoelastic flows arise in numerous processes in chemical engineering systems. Such flows possess both viscous and 
elastic properties and can exhibit normal stresses and relaxation effects. 
 
An extensive range of mathematical models has been developed to simulate the diverse hydrodynamic behavior of 
these non-Newtonian fluids. An eloquent exposition of viscoelastic fluid models has been presented by Joseph [17]. 
Examples of such models are the Oldroyd model [24], Johnson-Seagalman model [28], the upper convected Maxwell 
model [31] and the Walter-B model [42]. 
 
Both steady and unsteady flows have been investigated at length in a diverse range of geometric using a wide spectrum 
of analytical and computational methods. Siddappa and Khapate [36] studied the second order Rivlin-Erickson 
viscoelastic boundary layer flow along a stretching surface. Rochelle and Peddieson [32] used an implicit difference 
scheme to analyze the steady boundary-layer flow of a nonlinear Maxwell viscoelastic fluid past a parabola and a 
paraboloid. Rao and Finlayson [29] used an adaptive finite element technique to analyze viscoelastic flow of a Maxwell 
fluid. 
 
Abel et al. [3] investigated the non-Newtonian viscoelastic boundary layer flow of Walter’s liquid-B past a stretching 
sheet, taking account of non-uniform heat source and frictional heating, Abel and Nandeppanavar [2] effects of non-
uniform heat source on MHD flow of viscoelastic fluid of Walter’s liquid-B. Abel and Nandeppanavar [1] have 
investigated the effects of heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-
uniform heat source/sink. Gireesh Kumar and Satyanarayana [12] have examined the mass transfer effects on MHD 
unsteady free convective Walter’s memory flow with constant suction and heat sink. 
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Pillai et al. [25] investigated the effects of work done by deformation in viscoelastic fluid in porous media with uniform 
heat source, Hayat et al. [14] also investigated the effects of work done by deformation in second grade fluid with 
partial slip condition in this no account of heat source has been taken into consideration and Khan et al. (20) also 
investigated the effects of work done by deformation in Walter’s liquid-B but with uniform heat source. Sharma et al. 
[34] have analyzed the Rayleigh-Taylor instability of Walter’B elastic-viscous fluid through porous medium. 
Thermosolutal instability of Walter’s (model-B) visco-elastic rotating fluid permitted with suspended particles and 
variable gravity field in porous medium was studied by Sharma and Rana [35]. Kesavaiah et al. [19]   investigated 
effects of the chemical reaction and radiation absorption on an unsteady MHD convective heat and mass transfer flow 
past a semi-infinite vertical permeable moving plate embedded in a porous medium with heat source and suction. 
 
The requirements of modern technology have stimulated interest in fluid flow studies which involve the interaction of 
several phenomena. One such study is related to the effects of free convective flow with mass transfer, which plays an 
important role in geophysical sciences, astrophysical sciences and in cosmical studies. In view of these applications 
several researchers [6, 11, 22, 27, 38] have given much attention towards free convecting flows of viscous 
incompressible fluids past an infinite plate.  
 
In this paper, we make an attempt to study the effect of thermo diffusion on unsteady hydromagnetic free convective 
memory flow of incompressible and electrically conducting fluid with chemical reaction gain importance and attention 
in recent years. In view of this, the main object of the present investigation is to study the effects of chemical reaction 
and thermo-diffusion on hydromagnetic free convective fluid flow past an infinite vertical plate in the presence of heat 
sink. In the course of analysis it is assumed that the magnetic field of uniform strength is applied and induced magnetic 
field is neglected and also we observe that how various parameters affect the flow past an infinite vertical plate.       
 
2. FORMULATION OF THE PROBLEM 
 
We consider an unsteady hydromagnetic, chemically reacting, free convective flow of incompressible and electrically 
conducting fluid past an infinite vertical porous plate in the presence of constant suction and heat absorbing sink. Let x′ 
- axis be taken in the vertically upward direction along the infinite vertical plate and y′ - axis normal to it. The magnetic 
field of uniform strength is applied and induced magnetic field is neglected. Boussineq’s approximation, for the 
equations of the flow is governed as: 
 
Continuity equation 
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Momentum equation 
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Diffusion equation 
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From (1) we have 
 
v′ = − v0                                                                                (5) 
 
On disregarding the Joulean heat dissipation, the boundary conditions of the problem are: 
 
y′ = 0: u′ = 0, ti

w eTTTT ′′
∞∞ ′−′+′=′ ωε )( , ti

w eCCCC ′′
∞∞ ′−′+′=′ ωε )(  

y′ → ∞: u′→ 0, ∞′→′ TT   ∞′→′ CC                                                             (6) 
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In order to write the governing equations and the boundary conditions in dimensionless form, the following non-
dimensional quantities are introduced  
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In view of the equation (7) the equations (2), (3) and (4) reduced to the following non-dimensional form 
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The following boundary conditions are: 
y = 0: u = 0,  T = 1+εeiωt, C = 1+εeiωt 
y → ∞:  u → 0,  T → 0,       C → 0                                             (11) 
 
3. SOLUTION OF THE PROBLEM 
 
Equations (8), (9) and (10) are coupled, non-linear partial differential equations and these cannot be solved in closed 
form. However, these equations can be reduced to a set of ordinary differential equations, which can be solved 
analytically. This can be done by representing the velocity, temperature and concentration of the fluid in the 
neighborhood of the plate as: 
 
 u(y,t) = u0(y) + εeiωtu1(y) 
 T(y,t) = T0(y) + εeiωtT1(y)                                                             (12) 
 C(y,t) = C0(y) + εeiωtC1(y)       
 
where u0, T0 and C0 are mean velocity, mean temperature and mean concentration. Substituting (12) in equations (8), 
(9) and (10), equating harmonic and non-harmonic terms for mean velocity, mean temperature and mean concentration, 
after neglecting coefficient of ε2, we get 
 
Zero order of ε 
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First order of ε 
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The equations (13) and (16) are third order differential equations due to presence of elasticity. 
 
Therefore u0 and u1 are expanded using Beard and Walters rule [1964] 

u0 = u00 + Rmu01                                                              (19) 
 
u1 = u10 + Rmu11                                                              (20) 

 
Zero order of Rm 
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First order of Rm 
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Using the multi-parameter perturbation technique and assuming Ec<<1, we write 
 u00 = u000 + Ec u001                                                (25) 
 
 u01 = u011 + Ec u012                                                (26) 
 
 u10 = u100 + Ec u101                                                (27) 
 
 u11 = u111 + Ec u112                                                (28) 
 
 T0 = T00 + Ec T01                                                              (29) 
 
 T1 = T10 + Ec T11                                                              (30) 
 
 C0 = C00 + Ec C01                                                (31) 
 
 C1 = C10 + Ec C11                                                (32) 
 
Using equations (25) to (32) in the equations (14), (15), (17), (18), (21), (22), (23), and (24) and equating the 
coefficient of Ec0 and Ec1, we get the following set of differential equations: 
 
Zero order of Ec 
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First order of Ec 
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The corresponding boundary conditions are: 
y = 0: 
u000 = u001 = u011 = u012 = u100 = u101 = u111 = u112 = 0 
T00 =1,  T01 = 0,  T10 = 1, T11 = 0, C00 =1,  C01 = 0,  C10 = 1, C11 = 0  
y → ∞ :                                                                (49) 
u000 → u001 → u011 → u112 → u100 → u101 → u111 → u112 → 0 
T00 → 0,  T01 → 0,  T10 → 0, T11 → 0, C00 → 0,  C01 → 0,  C10 → 0, C11 → 0     
 
The differential equations (33) to (48) have been solved subject to boundary conditions (49). 
 
4. NUSSELT NUMBER AND SHERWOOD NUMBER 
 
Local rate of heat transfer across the walls (Nusselt Number) is given by 
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The rate of mass transfer across the walls (Sherwood Number) is given by   
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5. RESULTS AND DISCUSSION  
 
In this analysis we investigate the effect of Chemical reaction and Thermo diffusion on convective heat and mass 
transfer flow of a viscous, electrically conducting fluid past a porous vertical plate in the presence of heat absorbing 
sink. The non-linear coupled equations governing the flow, heat and mass transfer are solved by employing multi-
parameter perturbation technique. 
 
The axial velocity (u) is shown in figures 1-6 for different values of M, N, Sc, Kr, Sr and S.  
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      Fig. 1 : Variation of u with M 
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Fig. 2 : Variation of u with N               

  I II III IV           
N 1 2 -0.5 -0.8            

 
 
 
 
 
 
 
 
 
 
 
 
 



Pavan Kumar Cintaginjala1*, U. Rajeswara Rao1 and D.R.V.Prasada Rao1/ CHEMICAL REACTION AND THERMO-DIFFUSION EFFECTS…/ 
 IJMA- 4(7), July-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                     100   

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

y

u

I
II
III
IV

 
              Fig. 3 : Variation of u with Sc 
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Fig. 4 : Variation of u with Kr             
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Fig. 6 : Variation of u with S        

  I II III IV       
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The variation of u with Hartmann number M shows that higher the Lorentz force smaller the velocity u in the flow 
region (fig.1). The variation of u with buoyancy ratio N shows that when molecular buoyancy forces dominate over the 
thermal buoyancy force |u| enhances with increase N>0 and for N<0, |u| enhances in the vicinity of the boundary y=0 
and depreciates far away from the boundary (fig.2). With respect to Sc we notice that lesser the molecular diffusivity 
smaller |u| in the flow region (fig.3). Fig.4 represents u with Chemical reaction parameter Kr. We notice that |u| 
experiences an enhancement in the degenerating chemical reaction case. Fig. 5 represents u with Soret parameter Sr. It 
is found that actual velocity reduces with increase in |Sr|. Fig.6 represents u with heat source parameter S. It is found 
that higher the suction velocity at the plate smaller| u| in the flow region. 
 
The non-dimensional temperature (T) is exhibited in figures 7-12 we follow the convention that the non-dimensional 
temperature +ve or –ve according as the actual temperature is greater or lesser than ∞T . The variation of T with M 
shows that higher the Lorentz force smaller the actual temperature in the flow region (fig. 7). With respect to buoyancy 
ratio N, we find that the actual temperature experiences an enhancement with increase in |N| irrespective of the 
direction of the buoyancy forces (fig.8). From fig.9 we find that an increase in Sc results the reduction in T. Thus lesser 
the molecular diffusivity smaller the actual temperature in entire flow region. Fig.10 represents T with chemical 
reaction parameter Kr. The actual temperature reduces with increase in Kr≤2.5 and enhances with higher Kr=3.5. With 
respect to Soret parameter Sr we find that the actual temperature reduces with increase in |Sr| (fig.11). An increase in 
suction parameter S reduces the actual temperature in the flow region (fig.12).      
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Fig. 8 : Variation of T with N               
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              Fig. 9 : Variation of T with Sc 
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Fig. 10 : Variation of T with Kr              
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Fig. 12 : Variation of T with S       
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The concentration distribution (C) is shown in figures 13-14 for the different values of Sc, Kr. Fig.13 represents C with 
Schmidt number Sc. We notice that lesser the molecular diffusivity smaller the actual concentration in the flow region. 
Also it depreciates in the degenerating chemical reaction parameter (Kr) case (fig.14). 
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Fig. 13 : Variation of C with Sc        Fig. 14 : Variation of C with Kr 

  I II III IV         I II III IV 
Sc 0.24 0.6 1.3 2.01        Kr 0.5 1.5 2.5 3.5  

 
The rate of heat transfer (Nusselt number) at the plate y=0 is shown in tables 1-3 for different values of Sc, N, Kr and 
Sr. It is found that the rate of heat transfer enhances in magnitude with increase in Sc. When the molecular buoyancy 
force dominates over the thermal buoyancy force |Nu| depreciates at y=0 irrespective of the direction of the buoyancy 
forces (table 1). An increase in chemical reaction parameter Kr≤2.5 enhances |Nu| and depreciates with higher Kr≥3.5 
(table 2). With respect to Soret parameter Sr we notice that |Nu| enhances with increase in Sr≥0 and for Sr<0 it 
depreciates with |Sr|≤0.7 and enhances with higher |Sr|=0.9 (table 3). 

Table – 1 
Average Nusselt number (Nu) at y = 0 

Sc I II III IV 
0.24 -0.1171 -0.1105 -0.1178 -0.1166 
0.60 -0.1358 -0.1346 -0.1364 -0.1363 
1.3 -0.1667 -0.1662 -0.1670 -0.1669 

2.01 -0.1962 -0.1958 -0.1963 -0.1960 
N 1 2 -0.5 -0.8 

 
Table – 2 

Average Nusselt number (Nu) at y = 0 
Sc I II III IV IV 

0.24 -0.1171 -0.1186 -0.1188 -0.1180 -0.1175 
0.60 -0.1358 -0.1362 -0.1363 -0.1360 -0.1354 
1.3 -0.1667 -0.1669 -0.1670 -0.1660 -0.1656 

2.01 -0.1962 -0.1963 -0.1966 -0.1952 -0.1831 
Kr 0.5 1.5 2.5 3.5 4.5 

 
Table – 3 

Average Nusselt number (Nu) at y = 0 
Sc I II III IV V VI 

0.24 -0.1171 -0.1240 -0.1322 -0.0950 -0.0901 -0.1052 
0.60 -0.1358 -0.1466 -0.1572 -0.0804 -0.0699 -0.1963 
1.3 -0.1667 -0.1885 -0.2093 -0.0137 -0.0134 -0.0210 

2.01 -0.1962 -0.2277 -0.2575 -0.0607 0.0546 0.1218 
Sr 0.5 0.7 0.9 -0.5 -0.7 -0.9 

 
The rate of mass transfer (Sherwood number) at the boundary y=0 is shown in table 4 for different values of Sc and Kr. 
The variation of Schmidt number Sc shows that lesser the molecular diffusivity smaller the rate of mass transfer (Sh) at 
y=0. With respect to chemical reaction parameter Kr we notice that the rate of mass transfer experiences an 
enhancement in the degenerating chemical reaction case.  

Table – 4 
Sherwood number (Sh) at y = 0 

Sc I II III IV IV 
0.24 -0.2466 -0.4919 -0.6638 -0.8043 -0.9261 
0.60 -0.3245 -0.6950 -0.9610 -1.1799 -1.3703 
1.3 -0.3856 -0.8903 -1.2664 -1.5799 -1.85454 

2.01 -0.4145 -1.0012 -1.4516 -1.8314 -2.1660 
Kr 0.5 1.5 2.5 3.5 4.5 
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