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ABSTRACT 
An assessment of model fit and an evaluation of how well model-based predicted outcomes coincide with the observed 
data is an important component of any modeling procedure. When at least one continuous predictor is present, 
classical Pearson and deviance goodness-of-fit tests for logistic regression model are invalid. The Hosmer–Lemeshow 
test can be used in these situations. However, it does not have desirable power in many cases and provides no further 
information on the source of any detectable lack of fit. We propose a new method for goodness-of-fit testing that uses 
partitioning in the covariate space using the estimated probabilities from the assumed model. Properties of the 
proposed statistics are discussed, and a simulation study demonstrates increased power to detect omission of 
interaction terms in a variety of settings controlling type I error rates.  
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1. INTRODUCTION 
 
The specific form of the logistic regression model with unknown parameters  𝛽𝛽0, 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝  is given as: 
 

 π(𝑥𝑥) =
𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋𝑇𝑇𝛽𝛽)

1 + 𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋𝑇𝑇𝛽𝛽)                                                                                                                                                                   (1.1) 

 
where 𝑋𝑋 = �𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝�

𝑇𝑇
 and 𝛽𝛽 = �𝛽𝛽0, 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝�

𝑇𝑇
 

 
Parameter estimation in logistic regression using maximum likelihood and testing the significance of the regression 
coefficients using either Wald or score tests are usually key goals of the analysis (Cox and Snell, 1989). It is clear that, 
this maximum likelihood estimation depends on the link function and covariates included in the model. Significance 
testing of each coefficient provides information about the relationship between the covariate and response, relative to 
overall variability. Goodness-of-fit tests, on the other hand, reflect whether the predicted values are an accurate 
representation of the observed values.  
 
The logistic regression model is being used with increasing rate in various fields in data analysis. In spite of such 
increase, there has been no commensurate increase in the use of commonly available methods for assessing the model 
adequacy (S.K Sarkar and H. Midi, 2010). The objective of this paper is to propose a better method of detecting 
omission of interaction terms from logistic regression model. 

 
If the regression of the response variable on treatment and covariates is linear or exponential, omission of important 
covariates or/and their interactions only reduces the efficiency of the regression coefficient estimates, but has no effect 
on the consistency of the estimation. For logistic regression, this omission not only reduces the efficiency of the 
coefficient estimation, but also affects the consistency of the coefficient estimation. It leads to biased estimates of 
treatment effect, even in randomized experiments (Gail et al., 1984, 1988; Hauck et al., 1991; Robinson and Jewell, 
1991). In case-control studies, the consistency of the estimators of the population odds ratio is still maintained if a 
correct logistic regression model is specified (Xie and Manski, 1988; Nagelkerke et al., 1995, 2005). 
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In Section 2, a general method for assessing goodness-of-fit test in logistic regression models, applicable to a wide 
range of continuous and categorical covariate configurations, is presented. Focus, however, is on the situation where 
there is a mix of continuous and discrete covariates and their interaction terms. Theoretical considerations of the 
proposed statistics are discussed. A simulation study comparing the proposed tests with existing tests is presented in 
Section 3. 

 
The widely used chi-square and deviance statistic can be used as a measure of how far observed sample data deviate 
from a theoretical model providing expected counts in each of the distinct covariate patterns. The term used to 
represent a set of values for the explanatory variables for each subject is called a covariate pattern, which will be 
denoted by j (j = 1, 2, ..., J).  If  J=n, we call it first type covariate pattern and if J<n we call it second type covariate 
for our understanding. The deviance, 𝐷𝐷 and Pearson Chi square, χ2 can be respectively expressed as (Hosmer and 
Lemeshow, 1989): 

𝐷𝐷 = ��2 �𝑦𝑦𝑗𝑗  𝑙𝑙𝑙𝑙𝑙𝑙
𝑦𝑦𝑗𝑗

𝑚𝑚𝑗𝑗𝜋𝜋��𝑥𝑥𝑗𝑗 �
+ �𝑚𝑚𝑗𝑗 − 𝑦𝑦𝑗𝑗 � 𝑙𝑙𝑙𝑙𝑙𝑙

𝑚𝑚𝑗𝑗 − 𝑦𝑦𝑗𝑗
𝑚𝑚𝑗𝑗 �1 − 𝜋𝜋��𝑥𝑥𝑗𝑗 ��

��

2
𝐽𝐽

𝑗𝑗=1

                                                                                (1.2) 

 

 χ2 = �
�𝑦𝑦𝑗𝑗 − 𝜋𝜋��𝑥𝑥𝑗𝑗 ��

2

𝜋𝜋��𝑥𝑥𝑗𝑗 � �1 − 𝜋𝜋��𝑥𝑥𝑗𝑗 ��
                                                                                                                                                          (1.3)

𝐽𝐽

𝑗𝑗=1

 

 
 
If the model is correct, the test statistic of Deviance has approximately a Chi-Square distribution with degrees of 
freedom J-(p+1). Under the null model and type one covariate pattern (J=n), it can be shown that D degenerates to: 
 

𝐷𝐷 = 2��𝜋𝜋��𝑥𝑥𝑗𝑗 �𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜋𝜋��𝑥𝑥𝑗𝑗 �

1 − 𝜋𝜋��𝑥𝑥𝑗𝑗 �
� + 𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝜋𝜋��𝑥𝑥𝑗𝑗 ���

𝐽𝐽

𝑗𝑗=1

                                                                                                             (1.4) 

 
Then from (1.4) it can be seen that 𝐷𝐷 is completely independent of the observations and contains absolutely no 
information about the model fit. The Pearson chi-square statistic performs not that much better in this situation, for it 
can be shown that χ2 ≅ 𝑛𝑛, the sample size also not being a helpful goodness of fit test, Jing Xu and 
MichaelLaValley(2011). 
 
The Hosmer and Lemeshow goodness-of-fit statistic 𝐶̂𝐶 is based on the grouping of estimated probabilities 
[𝜋𝜋�(𝑥𝑥1),𝜋𝜋�(𝑥𝑥2), …𝜋𝜋�(𝑥𝑥𝑛𝑛)] obtained from the fitted logistic model in to G groups and defined as follows: 
 

𝐶̂𝐶 = �
(𝑂𝑂𝑘𝑘 − 𝑛𝑛𝑘𝑘π�𝑘𝑘)2

𝑛𝑛𝑘𝑘π�𝑘𝑘(1 = π�𝑘𝑘)

𝐺𝐺

𝑘𝑘=1

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �𝑛𝑛𝑘𝑘 = 𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑘𝑘  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑘𝑘𝑡𝑡ℎ  
𝐺𝐺

𝑘𝑘=1

 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

 
The test statistic 𝐶̂𝐶 may be sensitive to the cut-off points specified to form the groups and therefore, it can be unstable 
leading to different conclusions. Hosmer and Lemeshow (1989) also developed a statistic based on fixed cut points 
denoted by 𝐻𝐻� in to say G groups. If the null hypothesis of the model fits the data holds, the distribution of both 𝐶̂𝐶 and 𝐻𝐻� 
for G groups are well approximated by the chi-square distribution with G-2 degrees of freedom. 
 
Osius and Rojek (1992) has developed the test statistic which is obtained by modification of Pearson Chi-square test 
statistic, and it is approximately normally distributed when the number of subjects is large. The procedure to obtain this 
test statistic is described for the type two covariate pattern, J<n as: 
 

Let 𝑣𝑣𝑗𝑗 = 𝑚𝑚𝑗𝑗𝜋𝜋�𝑗𝑗 �1 − 𝜋𝜋�𝑗𝑗 �,   𝑐𝑐𝑗𝑗 =
�1−2𝜋𝜋�𝑗𝑗 �

𝑣𝑣𝑗𝑗
       𝑗𝑗 = 1, 2, … , 𝐽𝐽  𝑎𝑎𝑎𝑎𝑎𝑎  𝐴𝐴 = �𝐽𝐽 − ∑ 1

𝑚𝑚𝑗𝑗

𝐽𝐽
𝑗𝑗=1 � 

 
perform a weighted linear regression of  𝑐𝑐 on  𝑥𝑥. Compute the standardized statistic, Z as follows:  𝑍𝑍 = �χ2−(𝐽𝐽−𝑝𝑝−1)�

√𝐴𝐴+𝑅𝑅𝑅𝑅𝑅𝑅
,  

 
where , χ2 is the Pearson Chi-square statistics, RSS is the residual sum of squares from this regression and A is 
correction factor for the variance. 
 
The Tsiatis goodness-of-fit statistic (Tsiatis, 1980) partitions the multidimensional space of covariates into some 
distinct regions instead of grouping observations by their predicted outcomes. Pulkstenis and Robinson (2002)  
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presented a goodness-of-fit method which draws on the notable strengths of both the Hosmer–Lemeshow approach and 
Tsiatis approach. However, their statistics are constructed to deal with only the situations when both categorical and 
continuous covariates are present and the number of cross-classifications of categorical covariates is not too large. 
 
A generalized logistic model proposed by Stukel (1988) provides a convenient model amenable to testing the adequacy 
of the fitted logistic model. The Stukel uses a logit function with two additional parameters and under null hypothesis it 
is well approximated by the chi-square distribution with 2 degrees of freedom. The test has not been implemented in 
any package; but it can be easily obtained from the following procedures. 
 
(1) Save the fitted value from the assumed model, 𝜋𝜋�𝑗𝑗 , j=1, 2, ..., J. (2) Compute the estimated logit  

 

𝑔𝑔��𝑥𝑥𝑗𝑗 � = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜋𝜋��𝑥𝑥𝑗𝑗 �

1−𝜋𝜋��𝑥𝑥𝑗𝑗 �
� = 𝑥𝑥𝑗𝑗′𝛽𝛽.  (3) Compute two new covariates Z1 and Z2 as follow:  

 
𝑍𝑍1𝑗𝑗 = 0.5 ∗ �𝑔𝑔��𝑥𝑥𝑗𝑗 ��

2 ∗ 𝐼𝐼�𝜋𝜋��𝑥𝑥𝑗𝑗 � ≥ 0.5 �𝑎𝑎𝑎𝑎𝑎𝑎   𝑍𝑍2𝑗𝑗 =  −0.5 ∗ �𝑔𝑔��𝑥𝑥𝑗𝑗 ��
2 ∗ 𝐼𝐼�𝜋𝜋��𝑥𝑥𝑗𝑗 � < 0.5� and (4) Perform the score test 

for t he addition Z1 and Z2 to the model. 
 
Several other studies have provided insights in different aspects of goodness of fit tests for logistic regression model, 
some of them includes: Brown’s Score test (Brown 1982), le Cessie and van Howelingen’s  test (le Cessie and 
Howelingen 1991), Copas’s (1983) residual sum of squares test, Xian-Jin et al.(2008), Rodney and Hosmer (2007), 
Hosmer et.al(2002) 

 
2.  THE PROPOSED METHOD 
 
Suppose we have n pairs of observations(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), i = 1, 2, ..., n where 𝑦𝑦𝑖𝑖   follows a Bernoulli distribution and 𝑥𝑥𝑖𝑖   is a set 
of covariate value associated with 𝑦𝑦𝑖𝑖 . The assumed logistic regression model is: 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜋𝜋�𝑥𝑥𝑗𝑗 �� = 𝑥𝑥𝑖𝑖′𝛽𝛽, 𝑖𝑖 = 1, 2, … ,𝑛𝑛                                                                                                                                                 (2.1) 
 
where 𝑥𝑥𝑖𝑖′ = �1, 𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … , 𝑥𝑥𝑝𝑝𝑝𝑝 , � represents a set of values of the p+1 covariates for the  𝑖𝑖𝑡𝑡ℎ  subject and   𝛽𝛽(𝑝𝑝+1)𝑋𝑋1    
denotes p+1 regression parameters. As discussed earlier, the estimates of the parameters are frequently obtained by the 
maximum likelihood method and denoted by 𝛽̂𝛽. The assumed model (2.1) may or may not fit the data adequately as 
expected. We say that lack-of-fit is present in the model (2.1) if the “true” unknown model for the data is 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝜋𝜋(𝑥𝑥𝑖𝑖)] = 𝑥𝑥𝑖𝑖

,𝛽𝛽 + 𝑤𝑤𝑖𝑖
,𝛥𝛥, 𝑖𝑖 = 1, 2, … ,𝑛𝑛                                                                                                                             (2.2) 

 
The value of 𝑤𝑤𝑖𝑖

,𝛥𝛥 is not known to us. We propose to approximate the true model by a segmented logistic regression 
model. The approximately true model is constructed as follow: Group the probability of success into G mutually 
exclusive and exhaustive intervals: 

 
𝑆𝑆𝑔𝑔 = �𝜋𝜋𝑔𝑔−1,𝜋𝜋𝑔𝑔�,   𝑔𝑔 = 1,2, … ,𝐺𝐺(𝐺𝐺 ≥ 2), with πG = 1 and π0 = 0   
 
Accordingly group the data points into G mutually exclusive and exhaustive groups: 
 
𝐷𝐷𝑔𝑔 = ��𝑥𝑥𝑔𝑔𝑔𝑔 ,𝑦𝑦𝑔𝑔𝑔𝑔 �: 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑔𝑔  ,𝜋𝜋(𝑥𝑥𝑔𝑔𝑔𝑔 )  ∈ 𝑆𝑆𝑔𝑔 , 𝑔𝑔 = 1,2, … ,𝐺𝐺� 
 
Where 𝑥𝑥𝑔𝑔𝑔𝑔  is the jth set of covariate value in the gth group. Of course, we do not know  𝜋𝜋(𝑥𝑥𝑔𝑔𝑔𝑔 ) . Hence, we estimate 
𝜋𝜋(𝑥𝑥𝑔𝑔𝑔𝑔 )  by the maximum likelihood method from the assumed model (2.1)  
 
To approximate the unknown true model (2.2) the following family of segmented logistic regression model is used  
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜋𝜋�𝑥𝑥𝑔𝑔𝑔𝑔 �� = 𝑥𝑥𝑔𝑔𝑔𝑔

, 𝛽𝛽 + 𝑧𝑧𝑔𝑔𝑔𝑔
, 𝛼𝛼𝑔𝑔  ,𝑔𝑔 = 1, . . ,𝐺𝐺 ;  𝑗𝑗 = 1, … ,𝑛𝑛𝑔𝑔                                                                                                     (2.3)  

 

where  �𝑛𝑛𝑔𝑔 = 𝑛𝑛
𝐺𝐺

𝑔𝑔=1

   𝑎𝑎𝑎𝑎𝑎𝑎  𝑧𝑧𝑔𝑔𝑔𝑔 = �
𝑥𝑥𝑔𝑔𝑔𝑔 𝑥𝑥1𝑗𝑗  , 𝑖𝑖𝑖𝑖 �𝑥𝑥𝑔𝑔𝑔𝑔 ,𝑦𝑦𝑔𝑔𝑔𝑔 � ∈ 𝐷𝐷𝑔𝑔
𝑜𝑜 ,             𝑖𝑖𝑖𝑖 �𝑥𝑥𝑔𝑔𝑔𝑔 ,𝑦𝑦𝑔𝑔𝑔𝑔 � ∉  𝐷𝐷𝑔𝑔

� 

 
For the logistic regression model with only continuous covariates, G=2 or 3, seems to be sufficient. If the model 
contains both continuous and categorical covariates, we segment each category group defined by the categorical 
variables into two to three subgroups. 
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Let 𝐿𝐿(𝑋𝑋 ,𝑍𝑍) and 𝐿𝐿(𝑋𝑋) be the maximum likelihood obtained from the segmented model (2.3) and the assumed model 
(2.1) respectively. If the assumed model (2.1) is the true model, then − 2𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿(𝑋𝑋)  −  (−2𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿(𝑋𝑋 ,𝑍𝑍)) follows an 
asymptotic Chi-square distribution with degrees of freedom (df) df = rank (XZ) − rank(X). This is an overall goodness-
of-fit test for the assumed logistic regression model (2.1). Therefore, the test statistics, say T is the difference between -
2times the log likelihood functions:𝑇𝑇 = −2 log Λ,   Where  Λ = 𝐿𝐿(𝑋𝑋)

𝐿𝐿(𝑋𝑋 ,𝑍𝑍)
   

 
Consider a partition model for which models from different groups apart from having different intercepts, they all have 
the same regression coefficients 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜋𝜋�𝑥𝑥𝑔𝑔𝑔𝑔 �� = 𝑥𝑥𝑔𝑔𝑔𝑔

, 𝛽𝛽 + 𝑏𝑏𝑔𝑔  ,   𝑔𝑔 = 1, . .𝐺𝐺 ;   𝑗𝑗 = 1, … ,𝑛𝑛𝑔𝑔                                                                                                         (2.4) 
 
Let 𝐿𝐿(𝑋𝑋, 𝑏𝑏) be the maximum likelihood of the model (2.4), we can write the overall lack of- fit test statistic as:    
 
𝑇𝑇 = −2 log Λ1 + −2 log Λ2,  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  Λ1 = 𝐿𝐿(𝑋𝑋)

𝐿𝐿(𝑋𝑋 ,𝑏𝑏)
 and Λ2 = 𝐿𝐿(𝑋𝑋 ,𝑏𝑏)

𝐿𝐿(𝑋𝑋 ,𝑍𝑍)
   

 
𝑑𝑑𝑑𝑑1 =  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋, 𝑏𝑏) −  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋 ), 𝑑𝑑𝑑𝑑2  =  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋, 𝑏𝑏) −  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋 ,𝑍𝑍). 
 
We call the first term the log- likelihood of between-group lack-of-fit and the second term the log- likelihood of within-
group lack-of-fit. If the assumed model is correct, then lacks of these terms have approximately a Chi-square 
distribution with degrees of freedom 𝑑𝑑𝑑𝑑1 and 𝑑𝑑𝑑𝑑2 respectively. If the overall lack-of-fit test is significant, we can carry 
out the between group and within-group lack-of-fit tests to determine whether the lack-of-fit is due to between-group or 
within-group. For example, if the former is significant but the latter is not, we may conclude that the lack-of-fit may be 
due to difference of levels between groups and model (2.4) may be sufficient for fitting the data. However, if the latter 
is significant but the former is not, then it is an indication that model (2.4) is not sufficient to explain the data and we 
need a separate model for each group, that is, a segmented model.  

 
3. SIMULATION STUDY 
 
One option in investigating the power is to generate data under an alternative model, perform logistic regression on the 
generated data, and determine how often each goodness of fit test rejected the nul1 hypothesis of an adequate logistic 
model. Suppose that the assumed model is of the form: 

 
𝐻𝐻0  : 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝜋𝜋(𝑥𝑥)� = 𝛽𝛽0+ 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝐷𝐷  𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝛽𝛽0 = −0.5,   𝛽𝛽1 = 0.4 , 𝛽𝛽2 = 0.1                                                                  (3.1)  
 
In all simulations we first generated a sample size of 50, 100, 200 and 400 from (3.1) with covariate 𝑥𝑥 independently 
generated from uniform distribution over the interval (-3, 3), and the covariate 𝐷𝐷 independently generated from a 
Bernoulli distribution with probability 0.5. And then we generated the outcome variable, 𝑦𝑦 by comparing an 
independently generated U(0, 1) variate, 𝑢𝑢, to the true logistic probability using the rule 𝑦𝑦 = 1 𝑖𝑖𝑖𝑖 𝑢𝑢 ≥ 𝜋𝜋(𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑦𝑦 =
0  otherwise.  

 
The six known goodness-of-fit test statistics used to compared with the proposed test statistic in the simulation study 
are Deviance, DEV; Pearson Chi-square, PER ; Hosmer and Lemeshow’s decile of risk statistic, HL𝑪𝑪�; Hosmer and 
Lemeshow’s predetermined cutoff point statistic, HL𝑯𝑯�  ; the Osius and Rojek, OR; and Stukel’s test statistic, ST. 

 
The proposed 4-group partition test partitions each of the two categorical group defined by D into two groups at cut off 
points set at the 50th percentiles of the estimated probability from the assumed model and the six known tests 
mentioned were applied to the random samples generated and the proportion of rejections was calculated for each 
goodness of fit test. The results from the simulations for the assumed models when the sample sizes are 50,100,200 and 
400 are summarized in table 3.1.The tabled value is the percent of times the p-value from the goodness-of-fit test was 
less than 0.05, with 1000 replications, this percent should range from 3.65% to 6.35% which is a 95% confidence 
interval at 5% level of significance and size 1000. Therefore, when the percent ranged from 3.65% to 6.35%, the 
goodness-of-fit test was interpreted to have Type I error rate close to the nominal level; when the percent was above 
6.35%, the test was interpreted to have an inflated Type I error rate; when the percent was below 3.65% the test was 
interpreted to have a Type I error rate below the nominal level.  
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Table 3.1: Observed type I error rates for the proposed and known tests 

 
 
In this simulation study, the Deviance test cannot control type I error rate. When the assumed model is correct model, 
the chance of rejecting the null hypothesis increases as the sample size gets larger and larger, which indicate that the 
large sample size does not help Deviance test to control type I error rate. In addition, all type I error rates of Deviance 
test are larger than the upper bound of 95% confidence interval. Type I error rates of Pearson Chi-square test are 
smaller than the lower bound of 95% confidence interval under different sample sizes, even zero per cent chance to 
reject null hypothesis when the assumed model is true with n=200, 400. The ability of controlling type I error rate of 
Osius and Rojek’s normal approximation test can be improved by larger sample size. Type I error rate of Osius and 
Rojek’s normal approximately normal test are greater than the upper bound of 95% confidence interval. Based on 
Ttable 3.1, almost all type I error rates of Hosmer and Lemeshow’s Ĉ test, Hosmer and Lemeshow’s Ĥ, Stukel’s score 
test and the proposed test fall within 95% confidence interval, under different sample sizes. 
 
Next we used seven different interaction models to study the power with omission of interaction terms from the model.  
 
We generated the outcome variable from a model with:   
  
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝜋𝜋(𝑥𝑥)� = 𝛽𝛽0+ 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝐷𝐷 + 𝛽𝛽3𝑥𝑥𝑥𝑥                                                                                                                                    (3.2)      
 
where 𝛽𝛽3 takes on the values 0.0, 0.1, 0.2, … , 0.7. This allows a series of models that increase in the strength of 
interactions between 𝑥𝑥 and 𝐷𝐷. The proposed 4-group partition test and the six known tests were applied to the random 
sample generated from (3.2) to test the goodness-of-fit of the assumed model (3.1) at 5% level of significance. The 
simulated rejection rates of these tests were presented in Table 3.2 and graphically shown in Figure 3.1 to 3.4.   
 

                          Table 3.2: Simulated rejection rates for the proposed and known tests 

 
 

This simulation study results suggest that, the power of Deviance test is getting poorer and poorer when the assumed 
model departures further and further from the true model. For Pearson Chi-square test, bigger sample size and further 
departure from true model cannot enhance its power to detect the lack of fit. This simulation study showed that the 
Deviance test and Pearson chi-square test are not applicable to the type one covariate pattern (J=n). For Osius and 
Rojek’s normal approximation test, larger sample sizes improve the ability to control the type one error rate. However,  
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neither larger sample sizes nor further departure from the true model can improve the power of detecting lack-of-fit. 
Stukel’s score test and Hosmer and Lemeshow’s Ĉ and Ĥ test s have very similar performance: They control type I error 
rate, but the power of detecting lack of fit cannot be improved much by larger sample size and further departure away 
from the true model. The proposed test has the best performance among these tests at different sample sizes. 
 

Figure 3.1: Plots of Simulated rejection rates for the proposed and known tests (n=50) 

 
 

Figure 3.2: Plots of Simulated rejection rates for the proposed and known tests (n=100) 
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Figure 3.3: Plots of Simulated rejection rates for the proposed and known tests (n=200) 

 
 

Figure 3.4: Plots of Simulated rejection rates for the proposed and known tests (n=400)  

 
 
4. CONCLUSION 
 
The results from this simulation study indicates that the proposed test has the best performance among these tests at 
different sample sizes and degree of departure from the true model under the arrangement created. The ability of 
controlling type I error rate and power of detecting lack of fit are improved by increasing the sample sizes. Overall, 
when assessing the goodness of fit of a logistic model in a situation where the predictor variable is a mixture of 
continuous and categorical, it would be useful to use the proposed method, the Stukel’s test and Hosmer and 
Lemeshow’s C�  statistic to detect omission of interaction terms from the model. 
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