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ABSTRACT 
A mathematical model of reactive gas absorption is restudied in this paper. Here He’s Homotopy perturbation method 
is implemented to find the analytical solutions of system of steady-state non-linear reaction diffusion equations 
containing a non-linear term related to reactive gas absorption. Analytical expressions for concentrations of the gas 
and liquid reactants have been derived for small values of Hatta number M and all values of parameters rq, a0, α, β 
and Ω. Analytical expression of reaction (enhancement) factor for non-volatile and volatile liquid reactant also 
derived. The Homotopy perturbation method which produces the solutions in terms of convergent series requires no 
linearization. These analytical results are compared with numerical results and are found to be in good agreement. 
 
Keywords: Reactive gas absorption, Reaction/diffusion equation, Mathematical modeling, Homotopy perturbation 
method, Non-linear boundary value problem. 
 
 
INTRODUCTION 
Absorption of gases in liquid solutions accompanied by chemical reactions is an important industrial operation for the 
production of basic chemicals. Gas – liquid reactors depend on fundamental understanding of the interactions between 
transport and chemical reaction phenomena. Mathematical models are developed to describe the effect of chemical 
reaction on the rate of gas absorption at the microscopic level and are customarily accomplished by invoking inter 
phase transport models to describe the mechanism of the physical contact between the gas and liquid phases. The most 
widely used models are film model [1] and surface renewal model [2]. 
 
The mathematical formulation of film model gives rise to a boundary value problem which is non linear in most cases 
of practical importance. Considerable efforts have been directed at the development and application of rigorous and 
approximate solutions of the local and global boundary value problem models in reactive gas absorption. 
 
Shaikh et al. [13] have derived an expression for the reaction factor using a set of algebraic equations. However, to the 
best of our knowledge, till date there were no analytical results corresponding to the reaction factor for all values of the 
parameters were reported. The purpose of this communication is to derive an analytical solution for the boundary value 
problem in reactive gas absorption when the liquid reactant is non volatile and volatile.                                 
 
MATHEMATICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM FOR NON-VOLATILE 
LIQUID REACTANT 
The mass transfer of a gaseous reactant A through a spherical gas bubble and into a liquid phase which contains a non 
volatile liquid reactant B is addressed. This reaction scheme is represented in Fig-1. The absorption of A occurs with a 
non volatile liquid reactant B with an irreversible second order reaction according to the following stoichiometry: 
 

→+ BνA products                        (1) 
 
A general film model is framed using the relationship between the mass transfer co-efficient and thickness of a 
boundary layer film. If the size of the gas bubble is independent of reaction, then the film model equations for a gas 
bubble of radius R, surrounded by a film or boundary layer of thickness δ are given by [13]: 
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where CA and CB are the concentrations of the gas reactant and the liquid reactant , DA and DB are the corresponding 
diffusion coefficients, k is the second order reaction rate constant, ν  is the stoichiometric coefficient, δ,,Rr ′  are the 
distance inside the  liquid side film, radius of gas bubble and thickness of liquid side film respectively. n, VL and FL are 
the total number of gas bubbles in reactor, volume of liquid phase and volumetric flow rate of phase L  respectively. 
 
To cast equations (2) to (4) in dimensionless form, an expression relating the physical mass transfer co-efficient to the 
thickness of the boundary layer film is needed. Equation (2) can be integrated when the reaction term is dropped to 
obtain the specific rate of physical absorption. Using the definition of the mass transfer coefficient (rate of gas 

absorption divided by the driving force) the relationship 
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and utilizing the above relationship, the film model equations (2) and  (3)can be normalized as follows: 
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where a and b are dimensionless concentrations of the gas and liquid reactants respectively and x is the dimensionless 
distance inside the liquid film. The other dimensionless parameters are the Hatta number M, the concentration ratio rq 
and u0, α, β, Ω. The equations (6) and (7) are the system of non linear differential equations. This non linear boundary 
value problem does not have a general analytic solution. Shaikh and coworkers [13] have solved these equations using 
Van Krevelen- Hoftijzer approach [14] which is given in the next section. 
 
PREVIOUS WORK 
As per Van Krevelen- Hoftijzer approach, the concentration of the liquid reactant within the film is equal to its 
concentration at the interface (i.e.) b(x) =b1 for x∈(0,1). This uncouples equation (6) from (7) and using the boundary  
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condition equation (8) can be solved to obtain a(x). This function can be used to obtain an expression for the reaction 
factor which is defined as the ratio of the actual rate of absorption to the maximum possible rate of physical absorption 
given by 

 
                          (9) 
 
 

 
Shaikh et al [13] obtained the expression for *

AE  using the following set of simultaneous algebraic equations. 
 

( )[ ] ( )

( )[ ] ( )

( )

( )[ ] ( ) 















Ω
+Ω++
















Ω
+−Ω+Ω

Ω+Ω
−

Ω+
+





















Ω++















Ω
+−Ω+Ω

















Ω
+Ω++−Ω+Ω

=

ibMibMibMM

a

ibMibMM

ibMibMM

ibMAE

11cosh2111sinh111

01

1
1

2111tanh111

11tanh21111
*

β

                                   (10) 
 

( ) *1 A L
i

rq E a
b

rq
+ − −

=
                                                          (11)   

( )

( )[ ] ( ) 















Ω
+Ω++
















Ω
+−Ω+Ω

















Ω
+Ω+Ω+Ω

=

ibMibMibMM

ibMuibM

La
11cosh2111sinh111

11sinh0
21 β

                                           (12)
                                                                                            

                           

ββα nlMMM +=





Ω+
Ω

+
























Ω
+

Ω
+−





Ω+
Ω

= 2
123

111
1

2
1

                                                    
                   (13)

 
 
where 

Ω+
Ω

=










Ω
+

Ω
+−

Ω+
Ω

=
1

,
23

111
1

nl α                                               (14) 

 
 

ADVANTAGES OF HOMOTOPY PERTURBATION METHOD 
Recently, many authors have applied the HPM to various problems and demonstrated the efficiency of the HPM for 
handling non-linear structures and solving various physics and engineering problems [3-6]. Homotopy perturbation 
method is a series expansion method used in the solution of non linear partial differential equations. This method 
employs a homotopy transform to generate a convergent series solution of differential equations. This method has been 
used by many authors to obtain solutions of a large class of linear and non- linear equations. The HPM was introduced 
by Ji-Huan He. The basic concept of HPM [7-10] is given in Appendix-A. In this paper HPM [11-12] is employed to 
solve the system of non-linear differential equations (6) and (7). 

 
ANALYTICAL EXPRESSIONS OF THE CONCENTRATIONS OF GAS AND LIQUID REACTANTS FOR 
NON-VOLATILE LIQUID REACTANT USING HOMOTOPY PERTURBATION METHOD 
The dimensionless concentration of gas and liquid reactants can be obtained by solving the non – linear equation (6) 
and (7) using HPM (see Appendix B) 
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From equation (15) the reaction factor can be obtained as follows: 
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DISCUSSION  
Equations (15) and (16) represent the new analytical expressions of concentration of  gas reactant and   liquid  reactant 
for small values of parameters.   Equation (17) represents the new simple closed form of an analytical expression of 
reaction factor. Tables 1-4 show the comparison between analytical and numerical values of reaction factor in non 
volatile liquid reactant model for small values of Hatta number M. From the tables it is evident that as the value of 
Hatta number increases, the value of reaction factor also increases. Further, when the value of Ω increases the value of 
reaction factor decreases.  
 
MATHEMATICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM FOR VOLATILE LIQUID 
REACTANT 
The absorption of gaseous species A accompanied by simultaneous reaction with volatile liquid species B according to 
irreversible second-order kinetics is described. A linear approximation for the concentration profile of species B is 
applied in a film model to obtain an analytical expression for the reaction factor which can be applied to all reaction 
regimes. On the  basis of the film model and a plane interface, the absorption of species A accompanied by irreversible 
second order reaction with volatile species B  is mathematically described as follows [9]: 
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To cast equations (18) to (21) in dimensionless form, an expression relating the physical mass transfer co-efficient to 
the thickness of the boundary layer film is used. Using the definition of the mass transfer coefficient the relationship 
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and utilizing the above relationship, the film model equations can be normalized as follows: 
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with boundary conditions 
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where γ is the volatility of the liquid reactant and Gb  is the dimensionless concentration. The equations (23) and (24) 
are the system of non linear differential equations. This non linear boundary value problem does not have a general 
analytic solution. While no general method of solving these non-linear problems has been proposed, homotopy 
perturbation method has been applied here to solve these non linear differential equations.  
 
ANALYTICAL EXPRESSIONS OF THE CONCENTRATIONS OF GAS AND LIQUID REACTANTS FOR 
VOLATILE LIQUID REACTANT USING HOMOTOPY PERTURBATION METHOD

 Using HPM (see Appendix C), the analytical expression of concentrations of gas and liquid reactants are obtained as 
follows: 
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where the constants 1c  to 4c  and  1M are defined in the equations (C6), (C7), (C10) and (C11).

  
NUMERICAL SIMULATION 
To show the efficiency of the present method , the analytical solutions (27) and (28) is compared with numerical 
solution. The SCILAB/MATLAB program is also given in Appendix D. The dimensionless concentrations of gas and 
liquid  reactants which are derived from HPM  are compared with simulation results in Figs 2 and 3. 

 
Limiting case 
 
When 0,1,1 uaGb === α , the boundary conditions (25) and (26) become as follows: 
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In this case,  the dimensionless concentrations of the gas and liquid reactants can be obtained using Homotopy 
perturbation method as follows: 
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The dimensionless concentrations of gas and liquid reactants (eqns 31 and 32) which are derived from HPM  are 
compared with simulation results in Figs 4 and 5. The SCILAB/MATLAB program is also given in appendix E.  
 
CONCLUSION 
Approximate solution of two non linear boundary value problems in reactive gas absorption are obtained using 
Homotopy perturbation method. Simple and closed form of an analytical expression of the enhancement factor is 
reported for both volatile and non volatile reactants. This theoretical result is very much useful to analyze the spherical- 
effect of gas – liquid reactions.  
 
APPENDIX A: Basic concepts of the Homotopy perturbation method    
   
Homotopy perturbation method has overcome the limitations of traditional perturbation methods. It can take full   
advantage of the traditional perturbation techniques, so a considerable deal of research has been conducted to apply the  
homotopy technique to solve various strong non-linear equations. To explain this method, let us consider the following  
function: 
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where oD  is a general differential operator, oB  is a boundary operator, )(rf  is a known analytical function and  Γ  is 
the boundary of the domain Ω . In general, the operator oD  can be divided into a linear part L  and a non-linear 
part N . Eq. (A1) can therefore be written as 
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By the homotopy technique, we construct a homotopy ℜ→×Ω ]1,0[:),( prv  that satisfies 
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where p∈[0, 1] is an embedding parameter, and 0u   is an initial approximation of Eq. (A1) that satisfies the boundary 
conditions. From Eq. (A4) and Eq. (A5), we have 
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When p=0, Eq. (A4) and Eq. (A5) become linear equations. When p =1, they become non-linear equations. The process 
of changing p from zero to unity is that of 0)0()( =− uLvL  to 0)()( =− rfvoD . We first use the embedding 
parameter p  as a “small parameter” and assume that the solutions of Eq. (A4) and Eq. (A5) can be written as a power 
series in p : 
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Setting 1=p   results in the approximate solution of Eq. (A1): 
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This is the basic idea of the HPM. 
 
APPENDIX B 
 
Solution of equations (6) and (7) using Homotopy perturbation method 
 
The Homotopy for the equations (6) and (7) can be constructed as follows: 
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The boundary conditions (8a) and (8b) can be written as follows: 
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Substituting equations (B4),(B5) in equations (B1),(B2) and comparing the coefficients of like powers of p, the 
following equations are obtained. 
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The boundary conditions become 
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Solving equations (B6) to (B9) using the boundary conditions (B10) to (B13), we obtain the following results: 
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According to HPM, we conclude that  
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From the above equations we can obtain the equations (15) and (16) in the text. 
 
APPENDIX C 
 
Solution of equations (23) and (24) using Homotopy perturbation method 
 
Consider the equations  
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with the following boundary conditions, 
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The complementary function for the above equation is 
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                                                                                               (C5) 

 

Using the boundary condition at x=0, ( )bb
dx
db

G−= 1γ  and at x=1, b=1, the following constants are obtained.  
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M

M
rqb

rq
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G sinh

1
cosh

1
1

γ
                   (C6) 
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=

rq
M

rq
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1
2

γ

                    (C7)
 

 
Substituting this value of b and a=1 in (C1), we get 























+











= x

rq
Mcx

rq
McM

dx
ad sinhcosh 21

2
2

2
                                   (C8) 

 

Using the boundary condition that at x=0, a=1 and at x=1, 01 uaM
dx
da

β−=− , we get  

a (x)= 43sinh2cosh1 cxc
rq

Mxrqc
rq

Mxrqc ++
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where 
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+
−= 04121

1
112

1
3 sinhcosh

1
1 ucMcM

rq
Mc

rq
MrqcM

rq
Mc

rq
Mrq

M
c β  

            (C10) 
rqcc 14 1−=                       (C11) 

 
and the constants 1c  and  2c  are given in the equation (C6)  and (C7). 
 
APPENDIX D 
Scilab/matlab program to find the numerical solution of Eqns.23 and 24. 
function pdex4 
m = 0; 
x = linspace(0,1); 
t = linspace(0,100000); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
figure 
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plot(x,u1(end,:)) 
title('u1(x, t)') 
xlabel('Distance x') 
ylabel('u1(x,2)') 
%—————————————————————— 
figure 
plot(x,u2(end,:)) 
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('u2(x,2)') 
% ————————————————————– 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = [1; 1];  
f = [1; 1] .* DuDx;  
M = 0.5; 
r = 75; 
q = 1; 
F = -M^2*u(1)*u(2); 
F1 = -(M^2)*u(1)*u(2)/(r*q); 
s=[F; F1]; 
% ————————————————————– 
function u0 = pdex4ic(x);  
u0 = [1; 1]; 
% ————————————————————– 
function [pl, ql, pr, qr] = pdex4bc(xl, ul, xr, ur, t)  
M = 0.5; 
r = 75; 
q = 1; 
g = 0.2; 
h = 0.1; 
j = 50; 
k = 0.01; 
u0 = 0; 
pl = [ul(1)-1; -g*(1-h)*ul(2)]; 
ql = [0; 1]; 
pr = [M^2*(j-1)*ur(1)+k*(ur(1)-u0); ur(2)-1]; 
qr = [1; 0]; 
 
APPENDIX E 
Scilab/matlab program to find the numerical solution of Eqns.in the limiting case. 
function pdex4 
m = 0; 
x = linspace(0,1); 
t = linspace(0,100000); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
figure 
plot(x,u1(end,:)) 
title('u1(x,t)') 
xlabel('Distance x') 
ylabel('u1(x,2)') 
%—————————————————————— 
figure 
plot(x,u2(end,:)) 
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('u2(x,2)') 
% ————————————————————– 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = [1; 1];  
f = [1; 1] .* DuDx;  
M = 0.5; 
r = 100; 
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q = 1; 
F = -M^2*u(1)*u(2); 
F1 = -(M^2)*u(1)*u(2)/(r*q); 
s=[F; F1]; 
% ————————————————————– 
function u0 = pdex4ic(x);  
u0 = [1; 1]; 
% ————————————————————– 
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)  
M = 0.5; 
r = 100; 
q = 1; 
pl = [ul(1)-1; 0]; 
ql = [0; 1]; 
pr = [0; ur(2)-1]; 
qr = [1; 0]; 
 
NOMENCLATURE 

  a  dimensionless concentration of gas reactant, CA/CAi 
'a    interfacial area 

b   dimensionless concentration of liquid reactant, CB/CBL 
Gb  dimensionless concentration, defined as CGB/CBL 

jD  diffusion coefficient of species j,j=A,B 

*
AE  reaction factor 

Fp volumetric flow rate of phase p, p=L,G 
k second order reaction rate constant 

0
GBk  gas – side mass transfer coefficient for species B 
0
Lk  liquid – side mass transfer coefficient 

Bk  equilibrium constant for species B 

M Hatta number, defined as 02
1

/)( LBLA kCkD  
M1 dimensionless parameter 
n total number of gas bubbles in reactor   
q dimensionless ratio of concentrations, AIBL CC /  
r dimensionless ratio of diffusion coefficients AB DD ν/  

'r  distance inside liquid - side film 
R radius of gas bubble 
VL volume of liquid phase 
x dimensionless distance inside liquid side film 
z distance inside liquid side film 
zL thickness of liquid side film     
     
Greek letters 
α  ratio of total liquid volume to film volume, VL

0
Lk / 'a DA 

β  dimensionless parameter, FL/ 'a 0
Lk  

δ  thickness of liquid side film 
γ  dimensionless voltality parameter DAKB - 

0
GBk /DB

0
Lk  

'γ  dimensionless parameter, (1-bG) γ  
ν  stoichiometric coefficient 
Ω  dimensionless ration of bubble radius to film thickness 
 
Subscripts 
G bulk gas phase 
 I gas – liquid interphase  
 L bulk liquid phase 
 0 liquid food 
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Table 1: Comparison between analytical (Eq. (17)) and numerical values of reaction factor 
when u0 = 0, rq=5, α=200, β=5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ω M 
Numerical value 

of  *
AE  [13] 

Analytical value of 
*

AE (Eqn.(17) 
% deviation 

50 

0.01 0.834 0.834 0 
0.05 0.847 0.847 0 
0.08 0.865 0.865 0 
0.1 0.879 0.879 0 
0.2 0.943 0.943 0 
0.3 0.990 0.990 0 
0.4 1.029 1.029 0 
0.5 1.066 1.068 0.18 
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Table 2: Comparison between analytical (Eq. (17)) and numerical values of reaction factor 

when u0 = 0, rq=5, α=200 and  β=5 
 
 
 
 
 
 
 

 
 
 
 
 

 
Table 3: Comparison between analytical (Eq. (17)) and numerical values of reaction factor  

when u0 = 0, rq=50, α=200, β=5 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 4: Comparison between analytical (Eq. (17)) and numerical values of reaction factor  

when u0 = 0, rq=50, α=200, β=5 
 

Ω M 
Numerical value 

of  *
AE  [13] 

Analytical value of 
*

AE Eqn.(17) 
% deviation 

0.5 

0.01 0.834 0.834 0 
0.05 0.849 0.849 0 
0.08 0.871 0.871 0 
0.1 0.888 0.888 0 
0.2 0.977 0.977 0 
0.3 1.060 1.060 0 
0.4 1.135 1.147 1.05 
0.5 1.209 1.246 3.06 

 
                        

 
 

Fig. 1: General reaction scheme 

Ω M 
Numerical value 

of  *
AE  [13] 

Analytical value of 
*

AE Eqn.(17) 
% deviation 

0.5 

0.01 0.834 0.834 0 
0.05 0.849 0.849 0 
0.08 0.871 0.871 0 
0.1 0.888 0.888 0 
0.2 0.977 0.977 0 
0.3 1.060 1.060 0 
0.4 1.135 1.147 1.05 
0.5 1.203 1.246 3.57 

Ω M 
Numerical value 

of  *
AE  [13] 

Analytical value of 
*

AE Eqn.(17) 
% deviation 

50 

0.01 0.834 0.834 0 
0.05 0.847 0.847 0 
0.08 0.865 0.865 0 
0.1 0.879 0.879 0 
0.2 0.943 0.943 0 
0.3 0.990 0.990 0 
0.4 1.029 1.029 0 
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Fig. 2: Dimensionless concentration of gas reactant )(xa  versus dimensional distance x for various values of M and 
some fixed values of other parameters (a0=0, rq=100, 01.0,50 == βα  ). Solid lines represent analytical result (eqn 

(27)) and dotted lines represent numerical results.  

 
Fig. 3: Dimensionless concentration of liquid reactant )(xb versus dimensional distance x for various values of M and 
some fixed values of other parameters (a0=0, rq=100, 01.0,50 == βα  ). Solid lines represent analytical result (eqn 
(28)) and dotted lines represent numerical results.  
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Fig. 4: Dimensionless concentration of gas reactant a(x) vesus dimensional distance x for various values of M and for 
fixed value of  rq=100. Solid lines represent analytical result (eqn (31)) and dotted lines represent numerical results.  

 
 
Fig. 5: Dimensionless concentration of liquid reactant )(xb versus dimensional distance x for various values of M and 
for fixed value of rq=100. Solid lines represent analytical result (eqn. (32)) and dotted lines represent numerical 
results.  
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