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ABSTRACT 
A difficult step in dietary exposure assessment, which is a very important part of radiological/chemical risk analysis, is 
the handling of concentration data that has been reported below the detection limit (DL). These data are known as 
censored values or non-detects and therefore the resulting distribution of concentration values is left-censored. 
Handling left-censored data represents a challenge for statistical analysis of chemical/radiological data. Non detects 
have been so far  treated  with  widely  used  substitution  methods  recommended  by  international organizations. 
Based on simulation a comparative study has been carried  out to  assess  the performance  of  different  statistical  
methods to handle non-detects, i.e. parametric Maximum  likelihood (ML) methods, and the log-probit  regression  
method. Monte Carlo simulations were used to evaluate statistical methods for estimating mean and standard deviation 
of left-censored concentration data with non-uniform detection limits. Sample size and the percentage of censoring 
were allowed to vary randomly to generate a variety of left-censored data sets. The log probit regression was the 
method that yielded high correlation coefficient (r2= 0.92) between mean calculated using log probit method and that 
of the mean calculated using uncensored samples, similar were the results for the standard deviation.  
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INTRODUCTION 
Non-detects are concentration values somewhere between zero and the laboratory’s detection/reporting limits. 
Measurements are considered too imprecise to report, so the value is commonly reported as being less than an 
analytical threshold and complicate the familiar computations of descriptive statistics. The worst practice when dealing 
with nondetects is to exclude or delete them. This produces a strong upward bias in all subsequent measures of location, 
such as means and medians. Whenever available, nondetects should be replaced by laboratory estimated values, which 
could fall below the laboratory’s reporting limit for a given constituent but above the method detection limit. However, 
if best estimates for nondetects are not available, statistical methods for left-censored data sets must be applied. The 
U.S. EPA [7, 8] suggests different approaches for replacing nondetects on the basis of their percentage in the data set 
(e.g., < 15%, 15–50%, 51–80%, > 80%). The two extremes of this range (< 15% and > 80%) are the easiest to manage. 
In the situation where the percentage of nondetects is < 15%, the U.S. EPA recommends the replacement of nondetects 
with one-half of the detection limit (DL). When the percentage of NDS is > 80%, it is likely that no statistical method 
will provide a reliable measure. U.S. EPA [2] recommends the Cohen’s maximum likelihood estimation method for 
addressing nondetects in left-censored data sets. Cohen’s method is relatively unbiased and has low mean square errors 
[4], but it requires that the data be normally distributed with uniform detection limits. Unfortunately, environmental 
data sets rarely meet these conditions. They are often log-normally distributed and have nonuniform detection limits 
that result from sample dilution or aggregation of data collected at different times from the same site. Thus, the primary 
goal of this research is to test several methods that might be used to replace censored data for left-censored, log-normal 
data sets containing 10 to 80% nondetects with nonuniform detection limits. 
 
MATERIALS AND METHODS 
A few statistical methods are evaluated for data sets that contain between 10% and 80% non-detected/left censored 
values: Unbiased Cohen’s Maximum Likelihood Estimation (UCMLE) method, Unbiased Restricted Maximum 
Likelihood Estimation (URMLE) method and the regression on order statistics (ROS) or Log Probit Regression (LPR) 
method. The data sets used to evaluate these methods were generated from an arbitrary parent log-normal distribution 
LN(5,1), where 5 is mean and 1 is standard deviation of log-transformed values. Samples of size, n (between 20 and 
100) were randomly drawn from the parent distribution and ranked. The percentage of data to be designated as 
censored (between 10 and 80%) was randomly selected. The detection limits (DL) corresponding to each data set were  
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allowed to be non-uniform and were determined randomly. Each data set generated in this way was evaluated by the 
methods described in the next sections and then a new data set was generated with new random sample sizes, percent 
censoring, and non uniform detection limit. A total of 10,000 data sets were generated in this way. 
 
Cohen’s Maximum Likelihood Estimators 
Consider an ordered data set y1 ≤ y2 ≤ y3… ≤ yn, where the first k observations out of n are censored. Assume that the 
variable y can be described adequately by a lognormal distribution. Let xi = ln(yi) for i = k+1, k+2..., n and xL be the 
natural logarithm (ln) of the detection limit DL. The likelihood function L for the data is given by: 
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with Φ the cumulative distribution function of a standard normal variate, μx the mean and σx the standard deviation of 
the log transformed data. The maximum likelihood estimates, xµ̂ and xσ̂ of μx and σx can be found by calculating the 

values of  μx and σx that maximize the function L. By taking natural logarithm of (1) and setting the partial derivatives 
with respect to μx and σx to zero, maximum likelihood estimators xµ̂  and xσ̂  can be calculated. The maximum 

likelihood method has been studied extensively.  The  most useful  results  are  those  of  Cohen [1,2],  who  gives the  
following maximum  likelihood estimators in terms  of  a  tabulated function  of  two  arguments:  
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of  non quantifiable  observations  divided by the  total sample size) . In his original development, Cohen [2] provided 
tables  of  the  function ),( hγλ  however,  these  are  difficult  to use  for  computer purposes.  Therefore, we have  
used  the  following power  series expansion  of  this  function  developed by Hass and Scheff [5], that  fits  the  
tabulated  values  of  the  function  to within  a  6% relative error: 
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where                              )]1/(ln[ hh −=β  
 
Bias-Corrected Maximum Likelihood Estimators:  
The estimates 

MLEμ̂  and 
MLEσ̂ given by equations (2) and (3) are biased. Saw [3] computed the  first-order  bias  

correction  terms  to  the  maximum likelihood  estimates of  the  mean and  standard  deviation of  a  type II censored  
normal sample.  A type II censored normal sample is one in which a constant proportion of observations are censored, 
rather than all observations below a fixed value. Schneider [4] reduced these results to the simple computational 
formulas  

)}1/()(*439.5692.2exp{)ˆ( +−−−= nknB µ                          (5) 
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In practice, the bias corrections given by equations (5) and (6) are also used for Type I censored data. The bias-
corrected MLEs or unbiased MLEs, denoted by UMLE, are given as follows. 
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Note that, if no censoring exists, then the ordinary values of sample mean and variance are used.  Also, if  less  than 

two uncensored  data points  exist,  the  value of  2
os  is  not computable, hence,  neither are  the  maximum likelihood 

estimators  by this method. It should  be noted  that the  tables  in  Cohen [2] only provide values of  λ  up to a  value of  
γ = 1.  Schneider [4] extended these tables to values of γ = 1.48, and Schmee et. al. (10) extended these tables to γ = 10.  
The adequacy of the numerical approximation beyond this bound cannot be ascertained. It should also be observed that 
the maximum likelihood method can be obtained in other ways as well.  
 
Bias-Corrected Restricted Maximum Likelihood Estimators:  
Although less frequently considered for calculating summary statistics from censored environmental data, the one-step 
restricted maximum likelihood estimators developed by Persson and Rootzen [9], are somewhat simpler to compute. 
The method provides the following explicit solution to maximize the likelihood function Eq. (1) for the mean and 
standard deviation by imposing an assumption that the number of observations below the censoring limit follows a 
binomial distribution. Estimators of the mean and standard deviation for censored normally distributed data xi are given 
by: 

( ) RMLLRML hx σµ ˆ*ˆ 1−Φ−=                                                           (9) 
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where ( )h1−Φ  is the inverse cumulative normal distribution function evaluated at h, the proportion of censored data. 
The parameters a and b are calculated as 
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Since the estimators are not asymptotically unbiased at low degrees of censoring, the following bias-corrected 
estimators of the mean and standard deviation were suggested by Haas and Scheff [5], 
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Log Probit Regression (LPR) or Regression on Order Statistics (ROS): 
A number of potentially robust methods are available using the normal scores for the order statistics. We take the one 
here recommended by Gilliom and Helsel [6]. A logarithmic transformation has yielded k observations xi, i = 1, 2, ….k 
each below a common transformed detection limit xL and (n-k) observations xi, i = k+1, k+2, ….(n-k) that are observed 
and greater than xL. The observations having common mean μx and variance 2

xσ  will satisfy the equation 

 

( )ixxi Px 1−Φ+= σµ                                                         (15) 

 
where { }iii yYProbP ≤=  and ( ).1−Φ  denotes the inverse of the cumulative normal distribution function. This 

suggests that the intercept and slope from a regression on the normal scores would yield the mean and variance of the 
transformed observations. The regression is performed on the inverse transformed adjusted order statistics. It should be  
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noted here that if the procedure is truly robust to departures from normality, the original untransformed observations yi 
and detection limits DL could be used. Our simulations, presented later in the later section, suggest that regressing on 
the order statistics is robust for log-normal populations. The commonly accepted procedure is to replace the 
probabilities by the adjusted ranks, so that the regression equation becomes 
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where, i = k+1, k+2, ….., (n-k), with the estimators for μx and 

xσ  estimated by least squares. This implies that the 

residual errors εi are assumed to have equal variance and are uncorrelated. Helsel and Gilliom [6] recommend using 
ordinary least squares as an easier computational alternative. Their procedure uses the predicted values from the 
regression model (16) for i = 1, 2, ..., k for the censored values. Then, transform back to the original observations yi and 
compute the usual mean and variance from the resulting sample consisting of predicted values for the k censored/BDL 
observations from the model (16) and the (n-k) observed/detected values from the original sample. Note that the 
procedure produces estimators for the censored values based on extrapolation from a normal model for the transformed 
values and then back-transforming to the original raw observations. We have applied the bootstrap for estimating the 
variance of the parameter estimators produced by the ROS/LPR procedure since no theoretical arguments have been 
given in the literature for preferring another method. 
 
RESULTS AND DISCUSSIONS 
The statistical methods described herein were evaluated by comparing means for the left-censored data sets to both the 
mean for the uncensored data sets and to the true mean of the data. Correlation coefficients (R2) between the means of 
left-censored versus uncensored data were calculated along with the root mean square error. Each of the above 
mentioned statistical methods for left-censored data sets were applied to the 10,000 data sets randomly generated from 
the arbitrary parent log-normal distribution LN (5, 1). The means calculated by the above methods for left censored 
sample were compared with the means calculated for the original non-censored sample to assess the effectiveness of the 
statistical methods in dealing with left-censored data (Figs. 1 to 3).  
 
The UCML method on average tends to slightly over-estimate the uncensored mean (Fig. 1A). The correlation 
coefficient between the means of UCML means and uncensored means is found to be R2 = 0.78815, which shows a 
poor correlation as well as root mean square error is also large (RMSE = 26.32553). The correlation between standard 
deviations from UCLM method and that of uncensored standard deviation is also very large as evident from (Fig 1B). 
URML method shows a little improvement over the UCML method (Fig 2A). The correlation coefficient between 
URML mean and uncensored mean (R2 = 0.89019) is more, indicating a stronger correlation between the two, also the 
root mean square is less (RMSE = 15.39859). The correlation between standard deviations of URML method and that 
of uncensored samples is also improved (Fig 2B). The LPR/ROS method however supersedes over the other two 
methods as can be seen from (Fig 3A), because this method uses a regression to derive the relationship between the 
detected data and the underlying distribution, the data imputed for the non detects also fits the underlying distribution. 
Consequently, both the mean and standard deviation of a  LPR/ROS data set is generally similar to that of the 
corresponding uncensored data set. The correlation coefficient between the LPR/ROS means and uncensored sample 
means is very high (R2 = 0.92228), also the root mean square error is very less (RMSE = 12.66111). The correlation 
between the standard deviations of LPR/ROS method and uncensored sample standard deviation is very strong (R2 = 
0.99238), however on average the LPR/ROS method slightly underestimates the standard deviation as evident from 
(Fig 3B). LPR/ROS method yields statistical summaries for left censored data that are nearly the same as if all the data 
had been detected. However, it should be noted that data sets evaluated in this simulation suit the LPR/ROS method 
because the data sets are drawn from a parent log-normal distribution. The LPR/ROS method might not be quite as 
effective for data sets that are not strictly log-normal or are drawn from more than one parent distribution. We have also 
examined the relationship between means from these methods and other study variables, i.e. % censoring and sample 
size (Figs. 4 and 5). Despite the occasional outliers, most means calculated by these methods are relatively insensitive 
to % censoring, with most means ranging between 150 and 350. As can be seen from Fig 4 and Fig 5, LPR/ROS 
method is the one that behaves very similar to that of the uncensored samples both for sample size and % censoring. 
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                                                      (A)                                                                                        (B) 
Figure 1: (A) Unbiased Cohen’s Maximum Likelihood (UCML) mean vs noncensored mean. (B) Unbiased Cohen’s 
Maximumu Likelihood (UCML) standard deviation vs noncensored standard deviation. Correlation coefficients (R2 ) 
shows the relationship between noncensored and UCML means and the dotted line indicates the theoretical 1:1 fit 

 
        (A)                                                                                          (B) 

Figure 2: (A) Unbiased Restricted Maximum Likelihood (URML) mean vs noncensored mean. (B) Unbiased 
Restricted Maximumu Likelihood (URML) standard deviation vs noncensored standard deviation. Correlation 
coefficients (R2 ) shows the relationship between noncensored and URML means and the dotted line indicates the 
theoretical 1:1 fit 

 
            (A)                                                                                             (B) 

Figure 3: (A) Log Probit or Regression on Oredr Statistics (LPR/ROS) mean vs noncensored mean. (B) Log Probit or 
Regression on Oredr Statistics (LPR/ROS) standard deviation vs noncensored standard deviation. Correlatio n 
coefficients (R2 ) shows the relationship between noncensored and LPR/ROS means and the dotted line indicates the 
theoretical 1:1 fit 
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            (A)                                                                                         (B) 

 
      (C)                                                                                       (D) 

 
Figure 4: (A) % Censoring vs uncensored mean. (B) % Censoring vs UCML mean (C) % Censoring vs URML mean 

(D) % Censoring vs LPR/ROS mean 

 
    (A)                                                                                     (B) 
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                                                 (C)                                                                                        (D) 
Figure 5: (A) Sample size vs uncensored mean. (B) Sample size vs UCML mean (C) Sample size vs URML mean (D) 
Sample size vs LPR/ROS mean 

 
CONCLUSION 
Log probit method or regression on order statistics method (LPR/ROS) performs better for estimation of summary 
statistics even in the cases of high censoring (upto 80%), than the other two methods i.e. unbiased Cohen’s maximum 
likelihood method (UCLM) and unbiased restricted maximum likelihood method (URML), for the data that comes from 
a parent Log normal distribution. For the data that comes from other than log normal distribution or from mixed 
distributions, other alternatives can be explored for estimation of the descriptive statistics.  
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