On rg-R₀ and rg-R₁ spaces

P. Gnanachandra*

Department of Mathematics, Aditanar College, Tiruchendur-628216, India

(Received on: 26-04-13; Revised & Accepted on: 06-06-13)

ABSTRACT

The aim of this paper is to introduce rg- R_0 and rg- R_1 spaces. Some existing lower separation axioms are characterized by using these spaces.

Keywords and Phrases: pre-open, pre-closed sets, pgpr-open sets, pgpr-closed sets.

MSC 2010: 54A20, 54C10, 54D10.

1. INTRODUCTION

The separation axioms R_0 and R_1 were introduced and studied by Shanin in [13] and Yang [15]. In 1963, Davis [4] rediscovered them. The notions of semi- R_0 [11]; semi- R_1 [5]; pre- R_0 , pre- R_1 [3] and g- R_0 , g- R_1 [2] were discussed by Charles Dorsott; Maheswari and Prasad; Caldas *et.al.* and Balasubramanian respectively. Recently the authors studied pgpr- R_0 and pgpr- R_1 spaces in [8]. In this paper, we introduce and investigate rg- R_0 and rg- R_1 spaces.

2. PRELIMINARIES

Throughout this paper (X,τ) denotes a topological space on which no separation axioms are assumed unless explicitly stated. A subset B of (X,τ) is regular open if B=int(cl(B)) [14] and is generalized closed(briefly g-closed)[10] if $cl(B)\subseteq U$ whenever $B\subseteq U$ and U is open in X and regular generalized closed (briefly rg-closed)[12] if $cl(B)\subseteq U$ whenever $B\subseteq U$ and U is regular open in X. The complement of a g-closed set is g-open and that of rg-closed set is rg-open. The intersection of all g-closed (resp. rg-closed) sets containing B is called the g-closure (resp. rg-closure) of B and denoted by $cl^*(B)$ [6] (resp. $cl^*_r(B)$ [1]). In a space (X,τ) , Ker (A) denotes the intersection of all open sets containing A.

Definition 2.1[1]: A topological space (X,τ) is rg-regular if for every regular closed set F and a point $x \notin F$, there exist disjoint rg-open sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 2.2: A space (X,τ) is R_0 [13] (resp.g- R_0 [2]) if for each open (resp. g-open) set U of X, $x \in U$ implies $cl(\{x\}) \subseteq U$ (resp. $cl^*(\{x\}) \subseteq U$).

Definition 2.3: A topological space (X,τ) is R_1 [15] if for $x, y \in X$ such that $cl(\{x\}) \neq cl(\{y\})$, there are disjoint open sets U and V such that $cl(\{x\}) \subseteq U$ and $cl(\{y\}) \subseteq V$.

3. rg-R₀ spaces

In this section, we introduce $rg-R_0$ spaces as a generalization of R_0 spaces and obtain some of their basic properties.

Definition 3.1: A topological space (X,τ) is said to be rg-R₀ if every rg-open set contains the closure of each of its points

Proposition 3.2: If (X, τ) is rg- R_0 then it is R_0 and g- R_0 .

Proof: Suppose (X,τ) is $\operatorname{rg-R_0}$. Let V be an open set in X. Since every open set is $\operatorname{rg-open}$, V is $\operatorname{rg-open}$ in X. Since (X,τ) is $\operatorname{rg-R_0}$, by Definition 3.1, $\operatorname{cl}(\{x\}) \subseteq V$ for every $x \in V$. By using Definition 2.2, (X,τ) is R_0 . Let V be a g-open set in X. Since every g-open set is $\operatorname{rg-open}$, V is $\operatorname{rg-open}$ in X. Since (X,τ) is $\operatorname{rg-R_0}$, by Definition 3.1, $\operatorname{cl}(\{x\}) \subseteq V$ for every $x \in V$. Now by using Proposition 5 of [9], $\operatorname{cl}^*(\{x\}) \subseteq \operatorname{cl}(\{x\}) \subseteq V$. This proves that (X,τ) is $\operatorname{g-R_0}$.

Theorem 3.3: A topological space (X, τ) is a rg- R_0 space if and only if for any rg-closed set H, $cl(\{x\}) \cap H = \emptyset$ for every $x \in X \setminus H$.

Proof: Suppose (X,τ) is rg-R₀. Let H be rg-closed in X and $x \in X \setminus H$. Then $X \setminus H$ is rg-open. Since (X,τ) is rg-R₀, by using Definition 3.1, $cl(\{x\}) \subseteq X \setminus H$ and so $cl(\{x\}) \cap H = \emptyset$. Conversely assume that, for any rg-closed set H of X, $cl(\{x\}) \cap H = \emptyset$ for every $x \in X \setminus H$. Let V be any rg-open set in X and $x \in V$. Then $x \in V = X \setminus (X \setminus V)$ and $X \setminus V$ is rg-closed. By our assumption $cl(\{x\}) \cap X \setminus V = \emptyset$ which implies that $cl(\{x\}) \subseteq V$. This proves that (X,τ) is rg-R₀.

Theorem 3.4: A topological space X is rg- R_0 if and only if for any points x and y in X, $x \neq y$ implies $cl(\{x\}) \cap cl(\{y\}) = \emptyset$.

Proof: Let X be rg-R₀ and $x\neq y\in X$. By Theorem 3.1 of [7], $\{x\}$ is rg-open. Since $x\in \{x\}$, we have $cl(\{x\})\subseteq \{x\}$. Thus $cl(\{x\})=\{x\}$. Now $cl(\{x\})\cap cl(\{y\})=\{x\}\cap \{y\}=\emptyset$. Conversely suppose for any points x and y in $X\neq x$ y implies $cl(\{x\})\cap cl(\{y\})=\emptyset$. Let V be rg-open and $x\in V$. Let $y\in cl(\{x\})$. Suppose $y\notin V$. Since $x\in V$, $x\neq y$. By assumption, $cl(\{x\})\cap cl(\{y\})=\emptyset$. Then $y\notin cl(\{x\})$ which is a contradiction to $y\in cl(\{x\})$ so we get $y\in V$ and $cl(\{x\})\subseteq V$. Thus X is rg-R₀.

Theorem 3.5: A topological space (X, τ) is rg-R0 if and only if for any x and y in X, $x\neq y$ implies $Ker(\{x\}) \cap Ker(\{y\}) = \emptyset$.

Proof: Assume that (X,τ) is a rg-R₀ space and \neq yx \in X. By Theorem 3.4, $cl(\{x\}) \cap cl(\{y\}) = \emptyset$. If $Ker(\{x\}) \cap Ker(\{y\}) \neq \emptyset$, then there exists $z \in X$ such that $z \in Ker(\{x\}) \cap Ker(\{y\})$. Then $z \in Ker(\{x\})$ and $z \in Ker(\{y\})$. Since $z \in Ker(\{x\})$ we have $x \in cl(\{z\})$. Suppose $x \neq z$, $cl(\{x\}) \cap cl(\{z\}) = \emptyset$ which contradicts $x \in cl(\{x\}) \cap cl(\{z\})$ so x = z. Similarly we have y = z. That is x = y = z. This is a contradiction to $x \neq y$. Hence $Ker(\{x\}) \cap Ker(\{y\}) = \emptyset$.

Conversely, assume that for any $\not = y$ in X, $Ker(\{x\}) \cap Ker(\{y\}) = \emptyset$. Suppose $z \in cl(\{x\}) \cap cl(\{y\})$. Then $z \in cl(\{x\})$ and $z \in cl(\{y\})$. Now $z \in cl(\{x\})$ implies that $x \in Ker(\{z\})$. Since $x \in Ker(\{x\})$ we have $x \in Ker(\{x\}) \cap Ker(\{z\})$ and hence x = z (otherwise $\not = z \Rightarrow Ker(\{x\}) \cap Ker(\{z\}) = \emptyset$ which is a contradicts $x \in Ker(\{x\}) \cap Ker(\{z\})$). Similarly we have y = z and hence x = y = z. This is a contradiction to $x \ne y$. So $cl(\{x\}) \cap cl(\{y\}) = \emptyset$. By Theorem 3.4, (X, τ) is $rg - R_0$.

Theorem 3.6: A topological space (X, τ) is rg- R_0 if and only if it is T_1 .

Proof: Let (X,τ) be $\operatorname{rg-R_0}$ and let $x \in X$. By using Theorem 3.1 of [7], $\{x\}$ is $\operatorname{rg-open}$. Since (X,τ) is $\operatorname{rg-R_0}$, by using Definition 3.1, $\operatorname{cl}(\{x\}) \subseteq \{x\}$ and hence $\operatorname{cl}(\{x\}) = \{x\}$. That is $\{x\}$ is closed. It follows that every singleton set is closed. Therefore (X,τ) is T_1 . Conversely suppose (X,τ) is T_1 . Let V be $\operatorname{rg-open}$ and let $x \in V$. Then $\operatorname{cl}(\{x\}) = \{x\} \subseteq V$. Thus (X,τ) is $\operatorname{rg-R_0}$.

Theorem 3.7: For a topological space (X, τ) , the following are equivalent:

- (a) (X, τ) is $rg-R_0$.
- (b) If H is rg-closed, then H=Ker(H).
- (c) If H is rg-closed and $x \in H$, then $Ker(\{x\}) \subseteq H$.

Proof:

(a) \Rightarrow (b): Assume that (X,τ) is $\operatorname{rg-R_0}$. Let H be any $\operatorname{rg-closed}$ set in X and $x \in Ker$ (H). Suppose $x \notin H$. Then X\H is $\operatorname{rg-open}$ and $x \in X \setminus H$. Since (X,τ) is $\operatorname{rg-R_0}$, $\operatorname{cl}(\{x\}) \subseteq X \setminus H$ which implies $H \subseteq X \setminus \operatorname{cl}(\{x\})$. Since $X \setminus \operatorname{cl}(\{x\})$ is open, we have $\operatorname{Ker}(H) \subseteq X \setminus \operatorname{cl}(\{x\})$. Since $x \notin X \setminus \operatorname{cl}(\{x\})$, we have $x \notin Ker$ (H). This is a contradiction to $x \in Ker$ (H) so we get $x \in H$. That is $\operatorname{Ker}(\{x\}) \subseteq H$. But always $H \subseteq Ker$ (H). This proves that H = Ker (H).

- (b) \Rightarrow (c): Let H be a rg-closed set and $x \in H$. Then $Ker(\{x\}) \subseteq Ker(H) = H$, by (b).
- (c) \Rightarrow (a): Let V be any rg-open set and $x \in V$. Let $y \in cl(\{x\})$. Then $x \in Ker(\{y\})$. Suppose $y \notin V$.

Then $y \in X \setminus V$ and $X \setminus V$ is rg-closed. By (c), $Ker(\{y\}) \subseteq X \setminus V$. This implies that $x \in X \setminus V$ and hence $x \notin V$. This is a contradiction to $x \in V$ and we get $y \in V$. That is $cl(\{x\}) \subseteq V$. Thus (X, τ) is $rg-R_0$.

Theorem 3.8: For a topological space (X, τ) , the following are equivalent:

- (i) (X, τ) is a rg- R_0 space.
- (ii) For any $A \neq \emptyset$ and $G \in RGO(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists a closed set F such that $A \cap F \neq \emptyset$, and $F \subseteq G$.
- (iii) Any $G \in RGO(X, \tau)$, $G = \bigcup \{F: F \subseteq G \text{ and } F \text{ is closed}\}$.
- (iv) Any $F \in RGC(X, \tau)$, $F = \bigcap \{G: G \subseteq F \text{ and } G \text{ is open}\}.$

Proof: (i) \Rightarrow (ii): Let A be a nonempty subset of X and G \in RGO(X, τ) such that A \cap G \neq Ø. Then there exists x \in A \cap G. Since X is rg-R₀ and x \in G, $cl(\{x\})\subseteq$ G. Take F $=cl(\{x\})$. Then F is closed and F \subseteq G. Now x \in cl($\{x\}$)=F and x \in A implies that x \in A \cap F and A \cap F \neq Ø.

(ii) \Rightarrow (iii): Let $G \in RGO(X,\tau)$, then $G \supseteq \bigcup \{F/F \subseteq G \text{ and } F \text{ is closed}\}$. Let $x \in G$. Then $\{x\} \cap G \neq \emptyset$. Now by using (ii), there exists a closed set H such that $\{x\} \cap H \neq \emptyset$ and $H \subseteq G$. That is $x \in H \subseteq \bigcup \{F: F \subseteq G \text{ and } F \text{ is closed}\}$ and $G \subseteq \bigcup \{F/F \subseteq G \text{ and } F \text{ is closed}\}$. It follows that $G = \bigcup \{F: F \subseteq G \text{ and } F \text{ is closed}\}$.

(iii) \Rightarrow (iv): Let $F \in RGC(X,\tau)$. Then $X \setminus F \in RGO(X,\tau)$ and by (iii), $X \setminus F = \bigcup \{H: H \subseteq X \setminus F \text{ and } H \text{ is closed} \}$. Since H is closed, $X \setminus H$ is open. Now $H \subseteq X \setminus F$ implies $X \setminus H \subseteq F$ and $X \setminus F = \bigcup H$ implies that $F = X \setminus (\bigcup H) = \bigcap (X \setminus H)$ where $X \setminus H$ is open and $X \setminus H \subseteq F$. So $F = \bigcap \{G: G \subseteq F \text{ and } G \text{ is open} \}$.

(iv) \Rightarrow (i): Let $F \in RGC(X,\tau)$ and $x \in F$. By (iv), $F = \bigcap \{G / G \subseteq F \text{ and } G \text{ is open} \}$. Then $x \in G$, for all open set G containing G. Since G is open, G is G is open, G is open, G is open, G is open, G is G is open, G i

Theorem 3.9: If (X, τ) is rg- R_0 if and only if for any rg-closed set U and $x \not\in U$, there exists an open set G such that $U \subseteq G$ and $x \not\in G$.

Proof: Suppose (X,τ) is rg-R₀. Let U be any rg-closed set and $x \notin U$. Then $x \in X \setminus U$ and $X \setminus U$ is rg-open. Since (X,τ) is a rg-R₀ space, by Definition 3.1, $cl(\{x\})\subseteq X \setminus U$. Put $G=X \setminus cl(\{x\})$. Then $x \notin G$ and $U \subseteq X \setminus cl(\{x\})=G$. Since $cl(\{x\})$ is closed, we have $G=X \setminus cl(\{x\})$ is open.

Conversely, suppose for any rg-closed set U and $x \notin U$, there exists an open set G such that $U \subseteq G$ and $x \notin G$. Let U be any rg-closed set and $x \notin U$. Then by our assumption, there exists an open set G such that $U \subseteq G$ and $x \notin G$. That is $x \in X \setminus G$ and $X \setminus G$ is closed. Also $cl(\{x\}) \subseteq X \setminus G$ and $cl(\{x\}) \cap G = \emptyset$. Thus $cl(\{x\}) \cap U \subseteq cl(\{x\}) \cap G = \emptyset$. By Theorem 3.4, (X,τ) is rg-R₀

Corollary 3.10: If (X, τ) is rg- R_0 , then it is rg-regular.

Proof: Suppose (X,τ) is rg-R₀. Let H be regular closed and $x \notin H$. Since every regular closed set is rg-closed, H is rg-closed. By using Theorem 3.9, there exists an open set V such that $H \subseteq V$ and $x \notin V$. Since every open set is rg-open, V is rg-open. Put $U = \{x\}$. By Theorem 3.1 of [7], U is rg-open. Also $U \cap V = \{x\} \cap V = \emptyset$. Thus, U and V are disjointing rg-open sets containing x and H respectively. Then by Definition 2.1, (X,τ) is rg-regular.

4. rg-R₁ spaces

In this section, we introduce and investigate rg-R₁ spaces using the notion of rg-open sets.

Definition 4.1: A space (X,τ) is said to be rg-R₁, if for x, y in X with $cl(\{x\})\neq cl(\{y\})$, there exist disjoint rg-open sets U and V such that $cl(\{x\})\subseteq U$ and $cl(\{y\})\subseteq V$.

Proposition 4.2:

- (i) Every rg- R_0 space is rg- R_1 .
- (ii) Every R_1 space is $rg-R_1$.
- (iii) Every T_2 space is rg- R_1 .

Proof:

- (i) Suppose (X,τ) is rg-R₀. Let $x, y \in X$ with $cl(\{x\}) \neq cl(\{y\})$. Then by Theorem 3.6, $cl(\{x\}) = \{x\}$ and $cl(\{y\}) = \{y\}$. By using Theorem 3.1[7], $\{x\}$, $\{y\}$ are rg-open sets and $\{x\} \cap \{y\} = \emptyset$. This shows that (X,τ) is rg-R₁.
- (ii) Suppose (X,τ) is R_1 . Let $x, y \in X$ with $cl(\{x\}) \neq cl(\{y\})$. Since (X,τ) is R_1 , by Definition 2.3, there exist disjoint open sets U and V such that $cl(\{x\})\subseteq U$ and $cl(\{y\})\subseteq V$. Since every open set is rg-open, U and V are rg-open. This proves that (X,τ) is rg- R_1 .
- (iii) Let (X,τ) be a T_2 space. Since every T_2 space is T_1 , by using Theorem 3.6, (X,τ) is rg- R_0 . Now by using (i), (X,τ) is rg- R_1 .

Theorem 4.3: If a topological space (X, τ) is $rg-R_1$ then either $cl(\{x\})=X$ for each $x \in X$ or $cl(\{x\})\neq X$ for each $x \in X$.

P. Gnanachandra*/On rg- R_0 and rg- R_1 spaces / IJMA- 4(6), June-2013.

Proof: Assume that (X,τ) is $\operatorname{rg-R_1}$. If $\operatorname{cl}(\{x\})=X$ for all $x\in X$, then the theorem is proved. If not, then there exists $y\in X$ such that $\operatorname{cl}(\{y\})\neq X$. To prove $\operatorname{cl}(\{x\})\neq X$ for all $x\in X$. Suppose not, then there exists $z\in X$ such that $\operatorname{cl}(\{z\})=X$. Now $\operatorname{cl}(\{y\})\neq X=\operatorname{cl}(\{z\})$. Since (X,τ) is $\operatorname{rg-R_1}$, there exist disjoint $\operatorname{rg-open}$ sets U and V containing $\operatorname{cl}(\{y\})$ and $\operatorname{cl}(\{z\})$ respectively. Since $\operatorname{cl}(\{z\})=X$, we have V=X. This implies that $U\cap V=U\cap X=U\neq\emptyset$, because $y\in U$. This is a contradiction to $U\cap V=\emptyset$. Therefore $\operatorname{cl}(\{z\})\neq X$. Thus $\operatorname{cl}(\{x\})\neq X$ for all $x\in X$.

REFERENCES

- [1] I.Arockia Rani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D Thesis, Bharathiyar University, Coimbatore, (1997).
- [2] S. Balasubramanian, Generalized separation axioms, Scientia Magna, 6(4) (2010), 1-14.
- [3] M.Caldas, S.Jafari and T.Noiri, Characterizations of pre-R₀ and pre-R₁ topological spaces, Topology Proceedings. 25(2000), 17-30.
- [4] A.S.Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68 (1961), 886-893.
- [5] C.Dorsott, Semi-T₂, Semi-R₁ and Semi-R₀ topological spaces, Annales de la Socete Scientifique de Bruxelles, T. 92, III (1978), 143-150.
- [6] W. Dunham and N. Levine, Further results on generalized closed sets, kyungpook Math. J.20 (1980), 169-175.
- [7] P.Gnanachandra and P. Thangavelu, Remarks on rg-closure, gpr-closure operators and gpr-separation axioms, *Ultra Scientist*, 24(1) A (2012), 185-191.
- [8] P. Gnanachandra and P. Thangavelu, Characterizations of pgpr-R₀ and pgpr-R₁, American Journal of Mathematics and Mathematical sciences, 1(1) (2012), 55-60.
- [12] Jin Han Park, Jin Keun Park and Seong Jun Park, Further results on rg-continuity, Far East J. Math.Soc. special volume part II(2000), 237-245.
- [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(2) (1970), 89-96.
- [14] S.N. Maheswari and R. Prasad, On (R0)_s- spaces, Portugaliae Math. 34(1975), 213-217.
- [16] N. Palaniappan and K. Chandrasekhara Rao, Regular generalized closed sets, Kyungpook Mathematical Journal, 33(2)(1993), 211-219.
- [17] N. A. Shanin, On separation in topological spaces, C.R. (Doklady) Acad. Sci. URSS (N.S.), 38(1943), 110-113.
- [19] M. H. Stone, Applications of the theory of Boolean rings to the general topology, Trans.A. M.S. 41(1937), 375-481.
- [20] C. T. Yang, On paracompact spaces, Proc. Amer. Math. Soc. (5) 1954, 185-189.

Source of support: Nil, Conflict of interest: None Declared