International Journal of Mathematical Archive-4(6), 2013, 207-210 MMA Available online through www.ijma.info ISSN 2229-5046

On rg- $\mathrm{R}_{\mathbf{0}}$ and rg - $\mathrm{R}_{\mathbf{1}}$ spaces
P. Gnanachandra*
Department of Mathematics, Aditanar College, Tiruchendur-628216, India

(Received on: 26-04-13; Revised \& Accepted on: 06-06-13)

Abstract

The aim of this paper is to introduce rg- R_{0} and $r g-R_{1}$ spaces. Some existing lower separation axioms are characterized by using these spaces.

Keywords and Phrases: pre-open, pre-closed sets, pgpr-open sets, pgpr-closed sets.
MSC 2010: 54A20, 54C10, 54D10.

1. INTRODUCTION

The separation axioms R_{0} and R_{1} were introduced and studied by Shanin in [13] and Yang [15]. In 1963, Davis [4] rediscovered them. The notions of semi- R_{0} [11]; semi- $\mathrm{R}_{1}[5]$; pre- R_{0}, pre- R_{1} [3] and $g-\mathrm{R}_{0}$, g-R R_{1} [2] were discussed by Charles Dorsott; Maheswari and Prasad; Caldas et.al. and Balasubramanian respectively. Recently the authors studied pgpr- R_{0} and pgpr- R_{1} spaces in [8]. In this paper, we introduce and investigate $\mathrm{rg}-\mathrm{R}_{0}$ and $\mathrm{rg}-\mathrm{R}_{1}$ spaces.

2. PRELIMINARIES

Throughout this paper (X, τ) denotes a topological space on which no separation axioms are assumed unless explicitly stated. A subset B of (X, τ) is regular open if $\mathrm{B}=\operatorname{int}(c l(\mathrm{~B}))$ [14] and is generalized closed(briefly g-closed)[10] if $c l(\mathrm{~B}) \subseteq \mathrm{U}$ whenever $\mathrm{B} \subseteq \mathrm{U}$ and U is open in X and regular generalized closed (briefly rg-closed)[12] if $c l(\mathrm{~B}) \subseteq \mathrm{U}$ whenever $\mathrm{B} \subseteq \mathrm{U}$ and U is regular open in X . The complement of a g-closed set is g-open and that of rg-closed set is rgopen. The intersection of all g-closed (resp. rg-closed) sets containing B is called the g-closure (resp. rg-closure) of B and denoted by cl $^{*}(B)[6]$ (resp. $\left.C l_{r}^{*}(B)[1]\right)$. In a space (X, $\left.\tau\right)$, $\operatorname{Ker}(\mathrm{A})$ denotes the intersection of all open sets containing A.

Definition 2.1[1]: A topological space (X, τ) is rg-regular if for every regular closed set F and a point $\mathrm{X} \notin \mathrm{F}$, there exist disjoint rg-open sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 2.2: A space (X, τ) is $R_{0}[13]$ (resp.g- $R_{0}[2]$) if for each open (resp. g-open) set U of $X, x \in U$ implies $c l(\{\mathrm{x}\}) \subseteq \mathrm{U}$ (resp. $\left.\mathrm{cl}^{*}(\{\mathrm{x}\}) \subseteq \mathrm{U}\right)$.

Definition 2.3: A topological space (X, τ) is $\mathrm{R}_{1}[15]$ if for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $c l(\{\mathrm{x}\}) \neq c l(\{\mathrm{y}\})$, there are disjoint open sets U and V such that $c l(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $c l(\{\mathrm{y}\}) \subseteq \mathrm{V}$.

3. $\mathbf{r g}-\mathbf{R}_{\mathbf{0}}$ spaces

In this section, we introduce rg- R_{0} spaces as a generalization of R_{0} spaces and obtain some of their basic properties.

Definition 3.1: A topological space (X, τ) is said to be rg- R_{0} if every rg-open set contains the closure of each of its points

Proposition 3.2: If (X, τ) is $r g-R_{0}$ then it is R_{0} and $g-R_{0}$.
Proof: Suppose (X, τ) is $\mathrm{rg}-\mathrm{R}_{0}$. Let V be an open set in X . Since every open set is rg-open, V is rg-open in X . Since (X, τ) is $r g-R_{0}$, by Definition 3.1, $c l(\{x\}) \subseteq V$ for every $x \in V$. By using Definition 2.2, (X, τ) is R_{0}. Let V be a g-open set in X. Since every g-open set is rg-open, V is rg-open in X . Since (X, τ) is $\mathrm{rg}-\mathrm{R}_{0}$, by Definition 3.1, $\operatorname{cl}(\{\mathrm{x}\}) \subseteq \mathrm{V}$ for every $\mathrm{x} \in \mathrm{V}$. Now by using Proposition 5 of $[9], \operatorname{cl}^{*}(\{x\}) \subseteq c l(\{\mathrm{x}\}) \subseteq \mathrm{V}$. This proves that (X, τ) is $g-\mathrm{R}_{0}$.

P. Gnanachandra*/On rg-R R_{0} and rg- R_{1} spaces / IJMA- 4(6), June-2013.

Theorem 3.3: A topological space (X, τ) is a rg- R_{0} space if and only if for any rg-closed set $H, c l(\{x\}) \cap H=\varnothing$ for every $x \in X \backslash H$.

Proof: Suppose (X, τ) is rg- R_{0}. Let H be rg-closed in X and $x \in X \backslash H$.Then $X \backslash H$ is rg-open. Since (X, τ) is rg- R_{0}, by using Definition 3.1, $\operatorname{cl}(\{\mathrm{x}\}) \subseteq \mathrm{X} \backslash \mathrm{H}$ and so $\operatorname{cl}(\{\mathrm{x}\}) \cap \mathrm{H}=\varnothing$. Conversely assume that, for any rg-closed set H of X , $c l(\{x\}) \cap H=\varnothing$ for every $\mathrm{x} \in \mathrm{X} \backslash \mathrm{H}$. Let V be any rg-open set in X and $\mathrm{x} \in \mathrm{V}$. Then $\mathrm{x} \in \mathrm{V}=\mathrm{X} \backslash(\mathrm{X} \backslash \mathrm{V})$ and $\mathrm{X} \backslash \mathrm{V}$ is rg-closed. By our assumption $c l(\{x\}) \cap \mathrm{X} \backslash \mathrm{V}=\varnothing$ which implies that $c l(\{\mathrm{x}\}) \subseteq \mathrm{V}$. This proves that (X, τ) is $\mathrm{rg}-\mathrm{R}_{0}$.

Theorem 3.4: A topological space X is $r g-R_{0}$ if and only if for any points x and y in $X, x \neq y$ implies $\operatorname{cl}(\{x\}) \cap \operatorname{cl}(\{y\})=\varnothing$.

Proof: Let X be $r g-R_{0}$ and $x \neq y \in X$. By Theorem 3.1 of [7], $\{x\}$ is rg-open. Since $x \in\{x\}$, we have $c l(\{x\}) \subseteq\{x\}$.Thus $c l(\{\mathrm{x}\})=\{\mathrm{x}\}$.Now $\operatorname{cl}(\{\mathrm{x}\}) \cap c l(\{\mathrm{y}\})=\{\mathrm{x}\} \cap\{\mathrm{y}\}=\varnothing$. Conversely suppose for any points x and y in $\mathrm{X} \neq \mathrm{x}$ y implies $c l(\{x\}) \cap c l(\{y\})=\varnothing$. Let V be rg-open and $x \in V$. Let $y \in c l(\{x\})$.Suppose $y \notin V$. Since $x \in V, x \neq y$. By assumption, $c l(\{\mathrm{x}\}) \cap c l(\{\mathrm{y}\})=\varnothing$. Then $\mathrm{y} \notin \operatorname{cl}(\{\mathrm{x}\})$ which is a contradiction to $\mathrm{y} \in c l(\{\mathrm{x}\})$ so we get $\mathrm{y} \in \mathrm{V}$ and $c l(\{\mathrm{x}\}) \subseteq \mathrm{V}$. Thus X is rg-R ${ }_{0}$.

Theorem 3.5: A topological space (X, τ) is $r g-R 0$ if and only if for any x and y in $X, x \neq y$ implies Ker $(\{x\}) \cap \operatorname{Ker}(\{y\})=\varnothing$.

Proof: Assume that (X, τ) is a $r g-R_{0}$ space $\operatorname{and} \neq \mathrm{yx} \in \mathrm{X}$. By Theorem 3.4, $\operatorname{cl}(\{\mathrm{x}\}) \cap c l(\{y\})=\varnothing$. If $\operatorname{Ker}(\{\mathrm{x}\}) \cap \operatorname{Ker}(\{\mathrm{y}\}) \neq \varnothing$, then there exists $\mathrm{z} \in \mathrm{X}$ such that $\mathrm{z} \in \operatorname{Ker}(\{\mathrm{x}\}) \cap \operatorname{Ker}(\{\mathrm{y}\})$. Then $\mathrm{z} \in \operatorname{Ker}(\{\mathrm{x}\})$ and $\mathrm{z} \in \operatorname{Ker}$ $(\{y\})$. Since $z \in \operatorname{Ker}(\{x\})$ we have $x \in \operatorname{cl}(\{z\})$. Suppose $x \neq z, \operatorname{cl}(\{x\}) \cap c l(\{z\})=\varnothing$ which contradicts $x \in \operatorname{cl}(\{x\}) \cap c l(\{z\})$ so $\mathrm{x}=\mathrm{z}$. Similarly we have $\mathrm{y}=\mathrm{z}$. That is $\mathrm{x}=\mathrm{y}=\mathrm{z}$. This is a contradiction to $\mathrm{x} \neq \mathrm{y}$. Hence $\operatorname{Ker}(\{\mathrm{x}\}) \cap \operatorname{Ker}(\{\mathrm{y}\})=\varnothing$.

Conversely, assume that for any $\mathrm{x} \neq \mathrm{y}$ in $\mathrm{X}, \operatorname{Ker}(\{\mathrm{x}\}) \cap \operatorname{Ker}(\{\mathrm{y}\})=\varnothing$. Suppose $\mathrm{z} \in \operatorname{cl}(\{\mathrm{x}\}) \cap \operatorname{cl}(\{\mathrm{y}\})$.Then $\mathrm{z} \in \operatorname{cl}(\{\mathrm{x}\})$ and $\mathrm{z} \in \operatorname{cl}(\{\mathrm{y}\})$. Now $\mathrm{z} \in \operatorname{cl}(\{\mathrm{x}\})$ implies that $\mathrm{x} \in \operatorname{Ker}(\{\mathrm{z}\})$. Since $\mathrm{x} \in \operatorname{Ker}(\{\mathrm{x}\})$ we have $\mathrm{x} \in \operatorname{Ker}(\{\mathrm{x}\}) \cap \operatorname{Ker}(\{\mathrm{z}\})$ and hence $\mathrm{x}=\mathrm{z}$ (otherwise $\mathrm{x} \neq \mathrm{z} \Rightarrow \operatorname{Ker}(\{\mathrm{x}\}) \cap \operatorname{Ker}(\{\mathrm{z}\})=\varnothing$ which is a contradicts $\mathrm{x} \in \operatorname{Ker}(\{\mathrm{x}\}) \cap \operatorname{Ker}(\{\mathrm{z}\}))$. Similarly we have $y=z$ and hence $x=y=z$. This is a contradiction to $x \neq y$. So $\operatorname{cl}(\{x\}) \cap \operatorname{cl}(\{y\})=\varnothing$. By Theorem $3.4,(X, \tau)$ is rg- R_{0}.

Theorem 3.6: A topological space (X, τ) is $r g-R_{0}$ if and only if it is T_{1}.
Proof: Let (X, τ) be $r g-R_{0}$ and let $x \in X$. By using Theorem 3.1 of [7], $\{x\}$ is rg-open. Since (X, τ) is $r g-R_{0}$, by using Definition 3.1, $\operatorname{cl}(\{x\}) \subseteq\{x\}$ and hence $\operatorname{cl}(\{x\})=\{x\}$. That is $\{x\}$ is closed. It follows that every singleton set is closed. Therefore (X, τ) is T_{1}.Conversely suppose (X, τ) is T_{1}. Let V be rg-open and let $\mathrm{x} \in \mathrm{V}$. Then $c l(\{\mathrm{x}\})=\{\mathrm{x}\} \subseteq \mathrm{V}$. Thus (X, τ) is $r g-R_{0}$.

Theorem 3.7: For a topological space (X, τ), the following are equivalent:
(a) (X, τ) is $r g-R_{0}$.
(b) If H is rg-closed, then $H=\operatorname{Ker}(H)$.
(c) If H is rg-closed and $x \in H$, then $\operatorname{Ker}(\{x\}) \subseteq H$.

Proof:

$\mathbf{(a)} \Rightarrow \mathbf{(b)}$: Assume that (X, τ) is rg- R_{0}. Let H be any rg-closed set in X and $\mathrm{x} \in \operatorname{Ker}(\mathrm{H})$. Suppose $\mathrm{x} \notin \mathrm{H}$. Then $\mathrm{X} \backslash H$ is rg-open and $x \in X \backslash H$. Since (X, τ) is $r g-R_{0}, c l(\{x\}) \subseteq X \backslash H$ which implies $H \subseteq X \backslash c l(\{x\})$. Since $X \backslash c l(\{x\})$ is open, we have $\operatorname{Ker}(\mathrm{H}) \subseteq \mathrm{X} \backslash c l(\{\mathrm{x}\})$. Since $\mathrm{x} \notin \mathrm{X} \backslash c l(\{\mathrm{x}\})$, we have $\mathrm{x} \notin \operatorname{Ker}(\mathrm{H})$. This is a contradiction to $\mathrm{x} \in \operatorname{Ker}(\mathrm{H})$ so we get $\mathrm{x} \in \mathrm{H}$. That is $\operatorname{Ker}(\{\mathrm{x}\}) \subseteq \mathrm{H}$. But always $\mathrm{H} \subseteq \operatorname{Ker}(\mathrm{H})$. This proves that $\mathrm{H}=\operatorname{Ker}(\mathrm{H})$.
(b) \Rightarrow (c): Let H be a rg-closed set and $\mathrm{x} \in \mathrm{H}$. Then $\operatorname{Ker}(\{\mathrm{x}\}) \subseteq \operatorname{Ker}(\mathrm{H})=\mathrm{H}$, by (b).
$\mathbf{(c)} \Rightarrow \mathbf{(a)}$: Let V be any rg-open set and $\mathrm{x} \in \mathrm{V}$. Let $\mathrm{y} \in \operatorname{cl}(\{\mathrm{x}\})$. Then $\mathrm{x} \in \operatorname{Ker}(\{y\})$. Suppose $\mathrm{y} \notin \mathrm{V}$.
Then $\mathrm{y} \in \mathrm{X} \backslash \mathrm{V}$ and $\mathrm{X} \backslash \mathrm{V}$ is rg-closed. By (c), $\operatorname{Ker}(\{y\}) \subseteq \mathrm{X} \backslash \mathrm{V}$. This implies that $\mathrm{x} \in \mathrm{X} \backslash \mathrm{V}$ and hence $\mathrm{x} \notin \mathrm{V}$. This is a contradiction to $\mathrm{x} \in \mathrm{V}$ and we get $\mathrm{y} \in \mathrm{V}$. That is $c l(\{\mathrm{x}\}) \subseteq \mathrm{V}$. Thus (X, τ) is $\mathrm{rg}-\mathrm{R}_{0}$.

Theorem 3.8: For a topological space (X, τ), the following are equivalent:
(i) (X, τ) is a $r g-R_{0}$ space.
(ii) For any $A \neq \varnothing$ and $G \in R G O(X, \tau)$ such that $A \cap G \neq \varnothing$, there exists a closed set F such that $A \cap F \neq \varnothing$, and $F \subseteq G$.
(iii) Any $G \in R G O(X, \tau), G=\bigcup\{F: F \subseteq G$ and F is closed $\}$.
(iv) Any $F \in R G C(X, \tau), F=\cap\{G: G \subseteq F$ and G is open $\}$.

P. Gnanachandra*/On rg-R R_{0} and rg- R_{1} spaces / IJMA- 4(6), June-2013.

Proof: (i) \Rightarrow (ii): Let A be a nonempty subset of X and $G \in R G O(X, \tau)$ such that $A \cap G \neq \varnothing$. Then there exists $x \in A \cap G$. Since X is $r g-R_{0}$ and $x \in G, \operatorname{cl}(\{x\}) \subseteq G$. Take $F=c l(\{x\})$. Then F is closed and $F \subseteq G$. Now $x \in c l(\{x\})=F$ and $x \in A$ implies that $\mathrm{x} \in \mathrm{A} \cap \mathrm{F}$ and $\mathrm{A} \cap \mathrm{F} \neq \varnothing$.
(ii) \Rightarrow (iii): Let $G \in \operatorname{RGO}(X, \tau)$, then $G \supseteq \bigcup\{F / F \subseteq G$ and F is closed $\}$. Let $x \in G$. Then $\{x\} \cap G \neq \varnothing$. Now by using (ii), there exists a closed set H such that $\{x\} \cap H \neq \varnothing$ and $H \subseteq G$. That is $x \in H \subseteq \bigcup\{F$: $F \subseteq G$ and F is closed $\}$ and $G \subseteq \bigcup\{F / F \subseteq G$ and F is closed $\}$. It follows that $G=\bigcup\{F: F \subseteq G$ and F is closed $\}$.
(iii) \Rightarrow (iv): Let $F \in \operatorname{RGC}(X, \tau)$. Then $X \backslash F \in \operatorname{RGO}(X, \tau)$ and by (iii), $X \backslash F=\bigcup\{H$: $H \subseteq X \backslash F$ and H is closed $\}$. Since H is closed, $\mathrm{X} \backslash \mathrm{H}$ is open. Now $\mathrm{H} \subseteq \mathrm{X} \backslash \mathrm{F}$ implies $\mathrm{X} \backslash \mathrm{H} \subseteq \mathrm{F}$ and $\mathrm{X} \backslash \mathrm{F}=\bigcup \mathrm{H}$ implies that $\mathrm{F}=\mathrm{X} \backslash(\cup H)=\cap(X \backslash H)$ where $X \backslash H$ is open and $X \backslash H \subseteq F$. So $F=\cap\{G$: $G \subseteq F$ and G is open $\}$.
(iv) $\Rightarrow(\mathbf{i})$: Let $\mathrm{F} \in \operatorname{RGC}(\mathrm{X}, \tau)$ and $\mathrm{x} \in \mathrm{F}$. By (iv), $\mathrm{F}=\cap\{\mathrm{G} / \mathrm{G} \subseteq \mathrm{F}$ and G is open\}. Then $\mathrm{x} \in \mathrm{G}$, for all open set G containing F. Since G is open, $\operatorname{Ker}(\{x\}) \subseteq G$, for all open set G containing F. That is $\operatorname{Ker}(\{x\}) \subseteq \cap\{G / G \subseteq F$ and G is open $\}=F$. By using Theorem 3.7(c), (X, τ) is $r g-R_{0}$.

Theorem 3.9: If (X, τ) is $r g-R_{0}$ if and only if for any $r g$-closed set U and $x \notin U$, there exists an open set G such that $U \subseteq G$ and $x \notin G$.

Proof: Suppose (X, τ) is rg- R_{0}. Let U be any rg-closed set and $x \notin U$. Then $x \in X \backslash U$ and $X \backslash U$ is rg-open. Since (X, τ) is a $\operatorname{rg}-\mathrm{R}_{0}$ space, by Definition 3.1, $\operatorname{cl}(\{\mathrm{x}\}) \subseteq \mathrm{X} \backslash \mathrm{U}$. Put $\mathrm{G}=\mathrm{X} \backslash \operatorname{cl}(\{\mathrm{x}\})$. Then $\mathrm{x} \notin \mathrm{G}$ and $\mathrm{U} \subseteq \mathrm{X} \backslash \operatorname{cl}(\{\mathrm{x}\})=\mathrm{G}$. Since $\operatorname{cl}(\{\mathrm{x}\})$ is closed, we have $\mathrm{G}=\mathrm{X} \backslash c l(\{\mathrm{x}\})$ is open.

Conversely, suppose for any rg-closed set U and $x \notin U$, there exists an open set G such that $U \subseteq G$ and $x \notin G$. Let U be any rg-closed set and $x \notin U$. Then by our assumption, there exists an open set G such that $U \subseteq G$ and $x \notin G$. That is $\mathrm{x} \in \mathrm{X} \backslash \mathrm{G}$ and $\mathrm{X} \backslash \mathrm{G}$ is closed. Also $c l(\{\mathrm{x}\}) \subseteq \mathrm{X} \backslash \mathrm{G}$ and $\operatorname{cl}(\{\mathrm{x}\}) \cap \mathrm{G}=\varnothing$. Thus $c l(\{\mathrm{x}\}) \cap \mathrm{U} \subseteq c l(\{\mathrm{x}\}) \cap \mathrm{G}=\varnothing$. By Theorem 3.4, (X, τ) is $\mathrm{rg}-\mathrm{R}_{0}$

Corollary 3.10: If (X, τ) is $r g$ - R_{0}, then it is rg-regular.
Proof: Suppose (X, τ) is rg- R_{0}. Let H be regular closed and $\mathrm{x} \notin \mathrm{H}$. Since every regular closed set is rg-closed, H is rgclosed. By using Theorem 3.9, there exists an open set V such that $\mathrm{H} \subseteq \mathrm{V}$ and $\mathrm{x} \notin \mathrm{V}$. Since every open set is rg-open, V is rg-open. Put $U=\{x\}$. By Theorem 3.1 of [7], U is rg-open. Also $U \cap V=\{x\} \cap V=\varnothing$. Thus, U and V are disjointing rg-open sets containing x and H respectively. Then by Definition 2.1, (X, τ) is rg-regular.

4. $\mathrm{rg}-\mathrm{R}_{1}$ spaces

In this section, we introduce and investigate rg- R_{1} spaces using the notion of rg-open sets.
Definition 4.1: A space (X, τ) is said to be $\operatorname{rg}-\mathrm{R}_{1}$, if for x , y in X with $\operatorname{cl}(\{\mathrm{x}\}) \neq \operatorname{cl}(\{\mathrm{y}\})$, there exist disjoint rg-open sets U and V such that $\operatorname{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\operatorname{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$.

Proposition 4.2:

(i) Every $r g-R_{0}$ space is $r g-R_{1}$.
(ii) Every R_{1} space is $r g-R_{1}$.
(iii) Every T_{2} space is $r g-R_{1}$.

Proof:

(i) Suppose (X, τ) is $r g-R_{0}$. Let $x, y \in X$ with $\operatorname{cl}(\{x\}) \neq \operatorname{cl}(\{y\})$. Then by Theorem 3.6, $\operatorname{cl}(\{x\})=\{x\}$ and $\operatorname{cl}(\{y\})=\{y\}$. By using Theorem 3.1[7], $\{x\},\{y\}$ are rg-open sets and $\{x\} \cap\{y\}=\varnothing$. This shows that (X, τ) is $r g-R_{1}$.
(ii) Suppose (X, τ) is R_{1}. Let $x, y \in X$ with $\operatorname{cl}(\{x\}) \neq c l(\{y\})$. Since (X, τ) is R_{1}, by Definition 2.3, there exist disjoint open sets U and V such that $\operatorname{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\operatorname{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$. Since every open set is rg-open, U and V are rg-open. This proves that (X, τ) is $r g-R_{1}$.
(iii) Let (X, τ) be a T_{2} space. Since every T_{2} space is T_{1}, by using Theorem 3.6, (X, τ) is rg- R_{0}. Now by using (i), (X, τ) is $r g-R_{1}$.

Theorem 4.3: If a topological space (X, τ) is $r g-R_{1}$ then either $\operatorname{cl}(\{x\})=X$ for each $x \in X$ or $\operatorname{cl}(\{x\}) \neq X$ for each $x \in X$.

P. Gnanachandra*/On rg-R R_{0} and rg- R_{1} spaces / IJMA- 4(6), June-2013.

Proof: Assume that (X, τ) is $r g-R_{1}$. If $c l(\{x\})=X$ for all $x \in X$, then the theorem is proved. If not, then there exists $y \in X$ such that $\operatorname{cl}(\{y\}) \neq \mathrm{X}$. To prove $\operatorname{cl}(\{\mathrm{x}\}) \neq \mathrm{X}$ for all $\mathrm{x} \in \mathrm{X}$. Suppose not, then there exists $\mathrm{z} \in \mathrm{X}$ such that $\operatorname{cl}(\{\mathrm{z}\})=\mathrm{X}$. Now $c l(\{y\}) \neq \mathrm{X}=c l(\{\mathrm{z}\})$. Since (X, τ) is $\mathrm{rg}-\mathrm{R}_{1}$, there exist disjoint rg-open sets U and V containing $c l(\{y\})$ and $c l(\{z\})$ respectively. Since $c l(\{z\})=X$, we have $V=X$. This implies that $U \cap V=U \cap X=U \neq \varnothing$, because $y \in U$. This is a contradiction to $\mathrm{U} \cap \mathrm{V}=\varnothing$. Therefore $\operatorname{cl}(\{\mathrm{z}\}) \neq \mathrm{X}$. Thus $c l(\{\mathrm{x}\}) \neq \mathrm{X}$ for all $\mathrm{x} \in \mathrm{X}$.

REFERENCES

[1] I.Arockia Rani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D Thesis, Bharathiyar University, Coimbatore, (1997).
[2] S. Balasubramanian, Generalized separation axioms, Scientia Magna, 6(4) (2010), 1-14.
[3] M.Caldas, S.Jafari and T.Noiri, Characterizations of pre- R_{0} and pre- R_{1} topological spaces, Topology Proceedings. 25(2000), 17-30.
[4] A.S.Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68 (1961), 886-893.
[5] C.Dorsott, Semi- T_{2}, Semi-R R_{1} and Semi-R topological spaces, Annales de la Socete Scientifigue de Bruxelles, T. 92, III (1978), 143-150.
[6] W. Dunham and N. Levine, Further results on generalized closed sets, kyungpook Math. J. 20 (1980), 169-175.
[7] P.Gnanachandra and P. Thangavelu, Remarks on rg-closure, gpr-closure operators and gpr-separation axioms, Ultra Scientist, 24(1) A (2012), 185-191.
[8] P. Gnanachandra and P. Thangavelu, Characterizations of pgpr-R R_{0} and $\mathrm{pgpr}-\mathrm{R}_{1}$, American Journal of Mathematics and Mathematical sciences, 1(1) (2012), 55-60.
[12] Jin Han Park, Jin Keun Park and Seong Jun Park, Further results on rg-continuity, Far East J. Math.Soc. special volume part II(2000), 237-245.
[13] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(2) (1970), 89-96.
[14] S.N. Maheswari and R. Prasad, On (R0) ${ }_{s}$ - spaces, Portugaliae Math. 34(1975), 213-217.
[16] N. Palaniappan and K. Chandrasekhara Rao, Regular generalized closed sets, Kyungpook Mathematical Journal, 33(2)(1993), 211-219.
[17] N. A. Shanin, On separation in topological spaces, C.R. (Doklady) Acad. Sci. URSS (N.S.), 38(1943), 110-113.
[19] M. H. Stone, Applications of the theory of Boolean rings to the general topology, Trans.A. M.S. 41(1937), 375481.
[20] C. T. Yang, On paracompact spaces, Proc. Amer. Math. Soc. (5) 1954, 185-189.

Source of support: Nil, Conflict of interest: None Declared

