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ABSTRACT 
A mathematical model of bioreduction of acetophenone in an up-flow packed bed reactor is discussed. In this paper 
an approximate analytical method (Modified Adomian decomposition method) is used to solve the non-linear 
differential equations for a spherical catalyst. A single catalyst pellet of radius R can be treated as a porous medium 
through which reactants diffuses. A simple and closed-form of analytical expressions pertaining to substrate 
concentration and effectiveness factor are presented for all values of diffusion parameters. These analytical results are 
compared with numerical results and they are found to be in good agreement. 
 
Keywords: Chemical and biological systems, Modified Adomian decomposition method, Nonlinear reaction diffusion 
equation. 
 
 
1. INTRODUCTION 
The reaction rate in a porous catalyst is affected by intraparticle mass and heat transfer in addition to the intrinsic 
kinetics. Except for an isothermal first-order reaction and a zero-order reaction, the balance equations are non-linear 
and are usually solved numerically to calculate the effectiveness factor. Since the numerical solution of the problem is 
regarded as tedious and time consuming, approximation of the effectiveness factor has been extensively investigated in 
the past and various simple approximate formulae are available in textbooks (for example, [1-5]).  
 
The usual numerical methods for the boundary-value problem are the finite-difference methods, the shooting methods 
[6] and the orthogonal collocation methods [7]. When the problem is non-linear, the methods become necessarily 
iterative ones, finding an improved solution based on the results of the previous iterations with a prospect that the 
iterative procedure will lead to the desired solution. The finite-difference method converts the boundary-value problem 
to a system of non-linear algebraic equations, the solution of which can be very difficult to obtain, especially when 
many base points are used in the method. The collocation methods are efficient when successful, but they are often 
unstable when many collocation points are used and the Thiele modulus is large [8]. The shooting methods convert the 
boundary-value problem into an initial-value problem, in which the missing boundary condition at the initial point is 
assumed. Through an iterative procedure, the methods try to produce a solution that agrees with all the given boundary 
conditions [9]. 
 
An interval method [10], continuation method [11], a branch and bound algorithm [12], simulated annealing [13], 
genetic algorithms [14], a terrain-following method [15, 16] are also used to solve the non-linear equations. Currently, 
both trial-and-error shooting method [17, 18] and a direct method that combines numerical integration and interval 
analysis [19] are available to find all solutions. Angelo Lucia [20] and co-workers present the two different collocation 
methods for the classical reaction –transport problems in spherical catalyst pellet. However, to the best of our 
knowledge, there was no rigorous solution for the concentration of reactant A at the surface of catalyst has been 
reported. The purpose of this communication is to derive simple analytical expression for concentration and 
effectiveness factor for all possible values of reaction/diffusion parameters βγ ,   and φ . 
 
2. REACTION AND DIFFUSION IN CATALYST PELLETS 
 
Many industrial reactors involve heterogeneous reaction kinetics of packed catalytic pellets in fixed-bed reactors, as 
illustrated in equation (1).  A single catalyst pellet of radius R can be treated as a porous medium through which 
reactants diffuse while reactions occur simultaneously. 
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The species and energy balances for diffusive transport inside the pellet can be written as follows [21]: 
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Equation (2) is represent species balance and equation (3) is represent the heat balance. Where Arrhenius reactions    
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The boundary conditions are 

sARrA CC ,==                                                                                                                                                                   (5)   
 

sRr TT ==                               (6) 
 

000 =∇=∇ == rrA TC                                          (7)  
 
At the surface, concentration and temperature can be given by a Dirichlet boundary condition such as that in equations 
(5) and (6). Because of symmetry, the mass and energy flux at the center of the catalyst pellet is zero, as shown in 
equation (7). The system described by equations (2)-(7) represents the nonlinear PDE system for coupled heat and mass 
transfer in a spherical non-isothermal catalyst pellet. After inserting the temperature profile into the species balance,  
equations (2)-(7) can be written in terms of the dimensionless concentration   y (y =CA/CA,s), the dimensionless pellet 
radius x (x =r/R), and dimensionless constants βγ ,  and φ . Using this dimensionless variable dimensionless non-
isothermal species and heat transport are as follows [22]: 
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The parameters βandγ,φ are in equation (8) represent the dimensionless activation energy, the dimensionless heat 
of reaction, and the Thiele modulus as evaluated at the surface of the spherical catalyst pellet, respectively. These 
parameters are expressed in terms of the pellet transport and reaction properties, as well as the pellet surface 
concentration ( SAC , ) and ( ST ) as follows: 
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where AC is the concentration of reactant A inside the catalyst pellet, sAC ,  is the concentration of reactant A at the 
surface of catalyst pellet, zDε  is the effective diffusivity inside the catalyst pellet,  is the activation energy, Δ is the  
heat of reaction, refk  is the reference reaction constant, zKε  is the effective thermal conductivity inside the catalyst 

pellet, Ar  is the arrhenius reaction rate, gR  is the  universal gas constant, T is the  temperature inside the catalyst 

pellet, refT  is the reference temperature and sT   is the temperature at the surface of catalyst pellet. The boundary 
conditions in dimensionless forms are 
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The overall reaction rate in a catalytic pellet is often expressed by the effectiveness factor (η), which measures the total 
reaction rate as a scalar multiple of a homogeneous first-order reaction at the surface concentration. The effectiveness 
factor for spherical pellet is [23]: 
 

12
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3. ANALYTICAL SOLUTION OF THE CONCENTRATION USING MODIFIED ADOMIAN DECOMPOS- 
ITION METHOD (MADM) 
 
In the recent years, much attention is devoted to the application of the Adomian decomposition method to the solution 
of various scientific models [25]. An efficient modification of the standard Adomian decomposition method for solving 
singular initial value problem in the second order partial differential equation. The MADM yields, without 
linearization, perturbation, transformation or discretisation, an analytical solution in terms of a rapidly convergent 
infinite power series with easily computable terms. The decomposition method is simple and easy to use and produces 
reliable results with few iterations used. The results show that the rate of convergence of modified Adomian 
decomposition method is higher than standard Adomian decomposition method [26-30]. Using this method (see 
Appendix A), we can obtain the analytical expression of concentration (see Appendix B), of the substrate as follows:  
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Using Eq. (10), we can obtain the effectiveness factor 
 

 15
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The Equations (14) and (15) represent the new and simple analytical expression of concentration of substrate and 
effectiveness factor of vectaut A. 
 
4. NUMERICAL SIMULATION 
The non linear diffusion equation (8) for the boundary conditions (equations (12) and (13)) is also solved numerically. 
We have used the function pdex1 in MATLAB software to solve numerically the initial-boundary value problems for 
the nonlinear differential equations. This numerical solution is compared with our analytical results in Figures (1) and 
(2). Upon comparison, it gives a satisfactory agreement for all values of the dimensionless parameters, γ , β  and φ . 
The MATLAB program is also given in Appendix C. 
 
5. DISCUSSION 
The nonlinear PDE system for coupled heat and mass transfer in a spherical non-isothermal catalyst pellet is solved 
analytically. The concentration of substrate depends on the following there factors, γ   (dimensionless activation 
energy), β  (dimensionless heat of reaction) and φ  (Thiele odulus). Figure 1(a)-(b) shows the dimensionless 
concentration y  versus dimensionless pellet radius x . The concentrations were computed for various values of the 
dimensionless parameter βγ ,  and φ . From figures 1(a)-(b), it is evident that the value of concentration 1≈y  when 

1=x  and 5.0≤φ  for all values of βγ and . The concentration y  decreases when φ  increases.   
 
The normalized numerical simulation of three dimensional substrate concentrations y versus dimensionless pellet 
raious x  is shown in Figures 2 (a) - (c). For fixed value of )1.0(=β  the value of concentration )x(y  is slowly 
decreasing when φ  is increasing. Then the concentration of )x(y =1 when 1=x  and for all values of φ , γ  and β .  
In these figure, it should be noted that the value of the concentration of substrate decreases for all values of   γ .  From 
this Figures, it is apparent that the value of the concentration of substrate increases when β  increases.  
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The variation in effectiveness factor for various values of βγ , and φ  using Equation (12) is shown in Figures 3- 5. 
From Figure 3, it is evident that the effectiveness factor increases with the increasing value of the dimensionless 
parameter β .  From Figure 4, it is evident that the effectiveness factor increases with the increasing value of the 
dimensionless parameter γ .  From Figure 5, it is evident that the effectiveness factor increases with the increasing value 
of the dimensionless parameter βγ . The effectiveness factor is equal to one when for φ <0.2 and all values parameters 
β  and γ .   
 
6. CONCLUSIONS 
The analytical expression of concentration and effectiveness factor of the reactant A inside the catalyst pellets are 
derived.   The approximate analytical expression for the steady state concentration of substrate for all values of 
parameters γφ,  and β   in a packed bed reactor was obtained using the modified Adomian decomposition method. A 
satisfactory agreement with the numerical result is noted. Moreover, we have also presented a closed form expression 
for the effectiveness factor. These analytical results are useful to analyze the reactivity behaviour of porous catalyst 
particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or 
exothermic reactions. 
 
Appendix A 
 
Consider the nonlinear differential equation in the form 
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where ),( yxF is a real function, )(xg  is the given function and A and B are constants. We propose the new 
differential operator, as below 
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So, the problem (A.1) can be written as, 
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The inverse operator 1−L  is therefore considered a two-fold integral operator, as below. 
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By operating 1−L  on (A.4), we have 
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The Adomian decomposition method introduce the solution )(xy and the nonlinear function ),( yxF by infinity series 
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where the components )(xyn of the solution )(xy will be determined recurrently and the Adomian polynomials nA  of 
),( yxF are evaluated [22, 23, 25] using the formula 
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By substituting (A.7) and (A.8) into (A.6), 
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Through using Adomian decomposition method, the components )(xyn can be determined as 
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From (A.9) and (A.12), we can determine the components )(xyn , and hence the series solution of )(xy  in (A.7) can be 
immediately obtained. 
 
Appendix B 
 
In this appendix, we derive the general solution of nonlinear equation (8) by using Adomian decomposition method. 
We write the Equation (8) in the operator form, 
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where A and B are the constants of integration. We let, 
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In view of Equations (B. 3), (B. 4) and (B. 5), Eq. (B. 2) gives 
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We identify the zeroth component as 
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where nA  are the Adomian polynomials of n21 y,...,y,y . We can find the first few nA  as follows: 
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The remaining polynomials can be generated easily, and so, 
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Adding (B. 8), (B. 12) and (B. 13) we get Equation (11) in the text. 
 
Appendix C 
The Matlab program to find the numerical solution of Equation 8 is as follows. 
function pdex1 
m = 2; 
x = linspace(0,1); 
t = linspace(0,100); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u = sol(:,:,1); 
surf(x,t,u)     
title('Numerical solution computed with 20 mesh points.') 
xlabel('Distance x') 
ylabel('Time t')     
figure   
plot(x,u(end,:)) 
title('Solution at t = 2') 
xlabel('Distance x') 
ylabel('u(x,2)') 
% -------------------------------------------------------------- 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
c = 1; 
f = DuDx; 
Q=1; 
B=1.5; 
r=1; 
s =-(Q^2)*u*exp(r*B*(1-u)/(1+B*(1-u))); 
% -------------------------------------------------------------- 
function u0 = pdex1ic(x) 
u0 = 1; 
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
pl = 0; 
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ql = 1; 
pr = ur-1; 
qr = 0;    
 
Appendix D 
Nomenclature 
CA   concentration of reactant A inside the catalyst pellet (cm) 
CA,s concentration of reactant A at the surface of catalyst pellet (cm) 

εD  effective diffusivity inside the catalyst pellet (cm2/s) 
E  activation energy (kJ mol−1.) 
g  gradient of FT F 
ΔH  heat of reaction (kJ mol−1.) 
kref  reference reaction constant (mmol L-1) 

refk        reference reaction constant (mmol L-1) 

εK  effective thermal conductivity inside the catalyst pellet (mmol L-1) 

Ar  Arrhenius reaction rate (mmol L-1) 

gR  universal gas constant (J/K) 
T  temperature inside the catalyst pellet (kelvin) 

refT  reference temperature (kelvin) 

sT   temperature at the surface of catalyst pellet (kelvin) 
x   dimensionless radius of the spherical catalyst pellet 
y dimensionless concentration along radial direction of 

catalyst pellet 
β  dimensionless heat of reaction 
γ   dimensionless activation energy 
η  effectiveness factor 
φ  Thiele modulus 
 
Figures: 

           
 
Figure 1: Plot of dimensionless concentration y versus dimensionless pellet radius x . The concentrations were 
computed for various values of the dimensionless parameter φ  when  2.2,295.0  )b(  1, 1.0  )a( =γ=β=γ=β . 
The curves are plotted using equation (15). (—) denotes the analytical results and ( ) denotes the numerical 
simulations. 
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Figure 2: The normalized dimensionless concentration y versus dimensionless pellet radius x .  calculated using 
equation. (15) .The plot was constructed for the values of 

1.0,1.0  )( and 1.0,1.0  )(  ,1.0 , 1.0  )( ====== γφβφγβ cba . 
 

 
Figure 3: Plot of the effectiveness factor η  versus dimensionless parameter β . The effectiveness factor η  were 
computed using equation (16) when 1=γ . 
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Figure 4: Plot of the effectiveness factor η  versus dimensionless parameterγ . The effectiveness factor η  were 
computed using equation (16) when 1=β . 

 
Figure 5: Plot of the effectiveness factor η  versus dimensionless parameterγβ . The effectiveness factor η  were 
computed using equation (16). 
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