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ABSTRACT 

The aim of this paper is to introduce and study new forms of separation axioms by M-open sets. Moreover; basic 
properties and preservation theorems of these separation axioms are investigated. Also; the relationships between them 
and other forms are discussed. 
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1. INTRODUCTION 
A.I. EL-Maghrabi and M.A. AL-Juhani [5] introduced and investigated the notions of M-open sets. By this concept we 
define and investigate many topological properties. In recent literature, we find many topologists had focused their 
research in the direction of investigating different types of separation axioms. This paper is devoted to introduce and 
investigate a new class of separation axioms called M-Ti-spaces, i = 0, 1, 2. Also, the M-regularity and the M-normality 
are examined in the context of these new concepts. Further, some of fundamental properties of them are studied. 
 
2. PRELIMINARIES 
Throughout this paper (X, τ) and (Y, σ) (Simply, X and Y) represent topological spaces on which no separation axioms 
are assumed, unless otherwise mentioned. The closure of subset A of X, the interior of A and the complement of A is 
denoted by cl(A), int(A) and Ac or X\A, respectively. A subset A of a space (X, τ) is called regular open [15] if A= 
int(cl(A)). A point x∈X is said to be a θ-interior of A [11] if there exists an open set U containing x such that U ⊆ cl(U) 
⊆ A. The set of all θ-interior points of A is said to be the θ-interior set and denoted by intθ(A). A subset A of X is 
called θ-open (resp. δ-open [11] if A = intθ(A) (resp. It is the union of regular open sets). The complement of δ-open set 
is called δ-closed. The δ-interior of a subset A of X is the union of all δ-open sets of X contained in A and denoted by 
intδ(A) . A subset A of a space (X,τ) is called preopen [12] or locally dense [2] (resp. δ-preopen [14], semi-open [10], 
δ-semi-open [13], θ-semi-open [3] , e-open [3], if A ⊆ int(cl(A)) (resp. A ⊆ int(clδ(A)) , A ⊆ cl(int(A)), A ⊆ cl(intδ(A)), 
A ⊆ cl(intθ(A)), A ⊆ cl(intδ(A)) ∪ int(clδ(A)) ,  
  
A subset A of a space (X,τ) is called M-open [5] if A  ⊆ cl(intθ(A)) ∪ int(clδ(A)). 
 
The complement of preopen (resp. δ-preopen, semi-open, e-open, δ-semi-open, θ-semi-open, θ-open, M-open) set is 
called preclosed (resp. δ-preclosed, semiclosed, e-closed, δ-semiclosed, θ-semiclosed, θ-closed, M-closed). The family 
of all preopen (resp. δ-preopen, semi-open, θ-semi-open, e-open, δ-semi-open , θ-open, M-open ) is denoted by PO(X) 
(resp. δ-PO(X), SO(X), θ-SO(X), e-O(X), δ-SO(X), θ-O(X), MO(X) ). The union of all M-open (resp. θ-open, θ-semi-
open, δ-preopen, e-open) sets contained in A is called the M-interior [5] (resp. θ-interior [11], θ-semi-interior [1], δ-
pre-interior [14], e-interior [3]) of A and it is denoted by M-int(A) (resp. intθ(A), sintθ(A), pintδ(A), e-int(A)). The 
intersection of all M-closed (resp.θ-semi-closed, δ-preclosed, e-closed) sets containing A is called the M-closure [5] 
(resp. θ-semi-closure [1], δ-preclosure [14], e-closure [3] ) of A and it is denoted by M-cl(A) (resp. sclθ(A), pclδ(A), e-
cl(A)). A point  x∈ X is called  a θ-cluster [11] ( resp. δ-cluster [16] ) point of A if cl(U) ∩ A ≠ φ (resp. int(cl(U)) ∩ A 
≠ φ ) for every open set U of  X containing  x. The set of all θ-cluster (resp. δ-cluster) points of A is called the θ-closure 
(resp. δ-closure) of A and is denoted by clθ(A) (resp. clδ(A)).  
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Definition 2.1: For a space (X, τ), a point p∈X is called an M-limit point of A [5] if for every  M-open set G containing 
p contains  a point of  A other than p . The set of all M-limit points of A is called M-derived set of A and is denoted by 
M-d(A). 
 
Lemma 1.1: [5] For a space (X, τ), a subset A of X is called M-closed if and only if M-cl(A) = A∪M-d(A). 
 
Definition 2.2: A function f: (X, τ) →(Y, σ) is called  
(i)   M-continuous [6] if, f -1(U) ∈ MO(X), for each U∈ σ, 
(ii)  M-irresolute [6] if,   f -1(U) ∈ MO(X), for each U∈ MO(Y), 
(iii) M-open [7] if, f (U) ∈ MO(Y), for each U∈ τ, 
(iv)  pre-M-open [7] if, f(U) ∈ MO(Y), for each U∈ MO(X), 
(v)   super M-open  if,  f (U) ∈ σ, for each U∈ MO(X), 
(vi)  M-homeomrphism, if , f is bijective, M-irresolute and pre-M-open. 
 
Definition 2.3: A topological space (X, τ) is said to be: 
(i) δ-regular if for every closed set F of X and each point x∈X and x∈X\F, there exist two disjoint δ-open sets U,V 

such that F ⊆ U and x∈ V, 
 

(ii) δp-regular [9] if for every closed set F of X and each point x∈X and x∈X\F, there exist two disjoint δp-open sets 
U,V such that F ⊆ U and x∈ V,  
 

(iii) θs-regular if for every closed set F of X and each point x∈X and x∈X\F, there exist two disjoint θ-semi-open sets 
U, V such that F ⊆ U and x∈V, 
 

(iv) e-regular [17] if for each closed set F and each point x∉F, there exist two disjoint e-open sets U and V such that F 
⊆ U and x∈V, 
 

(v) θ-regular if for each closed set F and each point x∉F, there exist two disjoint θ-open sets U and V such that F ⊆ U 
and  x∈V,  
 

(vi) θs-normal  if for any pair of disjoint closed sets  F1 and  F2 of X, there exist two disjoint θ-semi-open sets  U, V 
such that F1 ⊆ U and F2 ⊆ V, 
 

(vii) e-normal [8] if for every pair of disjoint closed sets  F1 and F2 of  X, there exist two disjoint e-open  sets U, V such 
that F1 ⊆ U and F2 ⊆ V, 
 

(viii) θ-normal if for every pair of disjoint closed sets  F1 and F2 of  X, there exist two disjoint θ-open sets U, V such 
that F1 ⊆ U and F2 ⊆ V, 
 

(ix) δ-normal if for every pair of disjoint closed sets  F1, F2 of X, there exist two disjoint δ-open sets  U,V such that   
F1 ⊆ U and  F2 ⊆ V, 
 

(x) δp-normal[4] if for every pair of disjoint closed sets  F1, F2 of X, there exist two disjoint δ-preopen sets  U,V such 
that F1 ⊆ U and  F2 ⊆ V. 

 
Lemma 1.2: [6] For a space (X, τ). If A ∈ θ-O(X, τ) and B ∈ MO(X, τ), then A ∩ B ∈ MO(X, τA). 
 
3. M-Ti-SPACES 
 
Definition 3.1: A space (X, τ) is called  

1) M-T0 if for every two distinct points x, y of X, there exists an M-open set U such that either x∈U, y∉U or x∉U, 
y∈U, 
 

2) M-T1 if for every two distinct points x, y of X, there exist two M-open sets U, V such that x∈U, y∉U and x∉V, 
y∈V, 
 

3) M-T2 or M-Hausdorff if for every two distinct points x, y of X, there exist two disjoint M-open sets U, V such that 
x∈U, y∈V. 
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Remark 3.1: The implication between some types of separation axioms are given by the following diagram.  
 
       T2-space → T1-space → T0-space. 
 
M-T2-space → M-T1-space → M-T0-space. 
 
The converse of these implications are not true in general and the following examples. 
 
Example 3.1: A Sierpinski space X = {0, 1} with τ = {X,φ, {0}} is M-T0 ,but not M-T1-space. 
 
Example 3.2: Let X = {a, b, c, d} and τ ={X,φ, {a},{b},{a, b},{a, b, c},{a, b, d}}. Then X is M-T1, but not M-T2-
space. 
 
Example 3.3: Let X = {a, b, c, d} and τ ={X,φ, {a, c},{b, d},{d},{a, c, d}}.Then X is an M-T2-space. 
 
Theorem 3.1: For a space (X, τ), the following statements are equivalent: 
(i) X is an M-T0-space, 
(ii) for every two distinct points  x , y ∈X , M-cl({x}) ≠ M-cl({y}).  
 
Proof: (i) → (ii). For every x, y of X and x ≠ y. Since X is an M-T0-space, then there exists an M-open set U such that  
x∈U , y∉U. So, y∈ X\U. Hence, {y}⊆ X\U which is an M-closed set, M-cl{y} ⊆ X\U and hence x∉ M-cl{y}. 
Therefore, M-cl({x}) ≠ M-cl({y}). 
 
(ii)→ (i). Suppose that for every x, y ∈ X, x ≠ y and M-cl({x}) ≠ M-cl({y}). Let z ∈ X such that z ∈ M-cl({x}), hence  
z ∉ M-cl({y}). If,  x ∈ M-cl({y}), then {x} ⊆ M-cl({y}) which implies that M-cl({x}) ⊆ M-cl({y}) and hence  z ∈ M-
cl({y})  which is a contradiction, thus  x ∉ M-cl({y}) which implies  x ∈ (M-cl({y}))c  and hence (M-cl({y}))c  is an 
M-open  set containing  x but not y. Therefore, X is M-T0. 
 
Definition 3.2: A function f: (X, τ) →(Y, σ) is said to be injective point M-closure if and only if for every x, y∈ X such 
that M-cl({x}) ≠ M-cl({y}), then M-cl(f(x)) ≠ M-cl(f(y)). 
 
Theorem 3.2: If, f: (X, τ) →(Y, σ) is an injective point M-closure and X is an M-T0-space, then f is injective. 
 
Proof; Let x, y ∈X and x ≠ y. Since X is an M-T0-space, then M-cl({x}) ≠ M-cl({y}). Where f is injective point M-
closure, then M-cl(f(x)) ≠ M-cl(f(y)), hence f(x) ≠ f(y). Therefore, f is injective. 
 
Remark 3.2; An M-T0-space is not hereditary property.  
 
Example 3.4: Suppose that X = {a, b, c, d} with topology  τ ={X, φ,{a},{c},{a, c}} and Y = {a, b, c} ⊆ X. with 
topology  τY = {Y, φ,{a}, {c},{a, c}}.Then X is an M-T0-space  but (Y, τY) is not M-T0. Since b, c ∈ Y and b ≠ c but no 
exists U∈MO(Y) such that b∈U, c ∉U or b∉U, c∈ U. 
 
Corollary 3.1: An M-T0-space is a topological property. 
 
Proof: Let f: (X, τ) →(Y, σ) be M -homeomorphism and x, y ∈ X such that x ≠ y. Since f is injective, then f(x) ≠ f(y). 
Since X is M-T0, then there exists an M-open set G such that x∈G, y∉G. Since f is pre-M-open, then f(G) is M-open in 
Y such that f(x) ∈ f(G), f(y) ∉ G. Hence, Y is M-T0. 
 
Theorem 3.3: Let X be a topological space. Then the following statements are equivalent:  
(i)   X is an M-T1-space, 
(ii)  for every point x∈X the singleton set {x} is M-closed, 
(iii) for every point x∈X, M-d({x}) = φ. 
 
Proof: (i) → (ii). For every x, y∈X, x ≠ y. Since X is an M-T1-space, then there exists an M-open set U containing y 
but not x. Hence, y∈ U ⊆ X\{x}. Thus X\{x} =∪{U: U is M-open, y∈ X\{x}} which is the union of an M-open sets. 
Then X\{x} is M-open. Therefore, {x} is M-closed. 
 
(ii) → (i). For every x, y∈X, x ≠ y. By hypothesis {x}, {y} are M-closed sets. Therefore, X\{x}, X\{y} are M-open sets 
such that x∉ X\{x}, y∈ X\{x} and x∈ X\{y}, y∉ X\{y}. Therefore, X is M-T1. 
 
(ii) → (iii). For every x∈X, {x} is an M-closed set, hence {x} = M-cl{x} = {x} ⋃ M-d({x}). Therefore, M-d({x}) = φ. 
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(iii) → (ii). For every x∈X, M-d({x}) = φ. But M-cl({x}) = {x}∪ M-d({x}), hence, M-cl({x}) = {x} if and only if {x} is 
M-closed. 
 
Corollary 3.2; An M-T1-space is a topological property. 
 
Proof: Let f: (X, τ) →(Y, σ) be M -homeomorphism and x, y ∈ X such that x ≠ y. Since f is injective, then f(x) ≠ f(y). 
Since X is M-T1, then there exist two M-open sets U, V such that x∈U, y∉U and x ∉V, y∈V. Since f is pre-M-open, 
then f(U), f(V) are M-open in Y such that f(x)∈f(U), f(y) ∉ f(U) and f(x)∉f(V),  f(y)∈f(V). Hence, Y is M-T1. 
 
Theorem 3.4: Let X be a topological space. Then the following statements are equivalent:  
(i)  X is an M-T2-space, 
(ii) If x∈X, then for each x ≠ y, there exist an M-open set U containing x such that y∉M-cl(U). 
 
Proof: (i) → (ii). Let x∈X. Then for each x ≠ y, there exist an M-open sets U and V such that x∈U, y∈V and U∩V=φ. 
Hence, x∈U⊆ X\V. Put X\V= F. Then F is M-closed, U ⊆ F and y∉ F. That implies y∉∩ {F: F is M-closed and U ⊆ F} 
= M-cl(U). 
 
(ii)→ (i). Let x, y∈X and x ≠ y. By hypothesis, there exist M-open set U containing x such that y∉M-cl(U). Thus 
y∈X\(M-cl(U)) which is M-open  and x∉ X\(M-cl(U)). Also, U∩(X\M-cl(U)) = φ. Therefore, X is M-T2. 
 
Remark 3.3: An M-T2-space is not hereditary property.  
 
Example 3.5: Let X = {a, b, c, d} with topology τ ={X, φ,{a},{b},{a, b}, {a, d}, {a, b, d}, {a, c, d}} and Y = {a, b, c} 
⊆ X. with topology τY = {Y, φ,{a},{b},{a, b}, {a, c}}.Then (X, τ) is M-T2-space  but (Y, τY) is not M-T2. Since a,c ∈ Y 
and a ≠ c but no exists U,V ∈ MO(Y) such that  a ∈ U,  c ∈V and   U ∩ V = φ . 
 
Theorem 3.5: Every θ-open subspace of an M-Ti-space is M-Ti, where i = 0, 1, 2. 
 
Proof: We prove that the theorem for M-T2-space. 
 
Let Y be a θ-open subspace of an M-T2-space (X, τ) and x, y ∈Y such that x ≠y. Then x, y be two distinct points of X. 
But, X is M-T2, then there exist two disjoint M-open sets U, V with x∈U and y∈V. Suppose that U1 = Y ∩ U and V1 = 
Y ∩ V. Hence by Lemma 1.2., U1, V1 are M-open sets of Y containing x, y respectively and  U1 ∩ V1 = Y ∩ ( U ∩ V) = 
φ. Therefore, (Y, τY) is M-T2. 
 
Corollary 3.3; An M-T2-space is a topological property. 
 
Proof; Let f: (X, τ) →(Y, σ) be M -homeomorphism and x, y ∈ X such that x ≠ y. Since f is injective, then f(x) ≠ f(y). 
Since X is M-T2, then there exist two disjoint M-open sets U, V such that x∈U, y∈V. Since f is pre-M-open, then f(U), 
f(V) are two disjoint M-open sets in Y such that f(x)∈f(U) and f(y)∈f(V). Hence, Y is M-T2. 
 
Theorem 3.6: If, f:(X, τ)→(Y, σ) is an injective M-continuous function and Y is Ti-space, then X is M-Ti, where i = 0, 
1, 2. 
 
Proof; We prove that the theorem for M-T0-space. 
 
Let x1, x2 ∈ X and x1≠ x2. Since f is injective, then f(x1) ≠ f(x2) in Y. But, Y is T0, then there exist an open set U such 
that f(x1) ∈ U, f(x2) ∉ U or f(x2) ∈ U , f(x1) ∉ U. Since f is M-continuous, then f -1(U) is an M-open set of X such that  
x1∈f -1(U),  x2 ∉f -1(U) or x2∈f -1(U), x1 ∉f -1(U). Therefore, X is M-T0. 
 
Theorem 3.7: If, f: (X, τ) →(Y, σ) is an injective M-irresolute function and Y is an M-Ti-space, then X is M-Ti, where 
i = 0, 1, 2 
 
Proof:  We prove that the theorem for M-T2-space. 
 
Let x, y ∈X and x ≠ y. Since f is injective, then f(x) ≠ f(y). But, Y is M-T2, then there exists two disjoint M-open sets U, 
V of Y such that f(x)∈U, f(y)∈V . By using M-irresoluteness of f, then f -1(U), f -1(V) are M-open set of  X such that  
x∈ f -1(U), y ∈ f -1(V) and f -1(U) ∩ f -1(V) = φ. Therefore, X is M-T2. 
 
Theorem 3.8; If, f:(X, τ)→(Y, σ) is a bijective M-open function and  X is a Ti-space, then Y is M-Ti, where i = 0,1,2. 
 
Proof: We prove that the theorem for M-T2-space. 
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Let y1, y2 be two distinct points in Y. Since f is bijective, then there exist x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. 
Since X is T2, then there exist two disjoint M-open sets U, V  in X such that x1∈U, x2 ∈V. Since f is M-open, then f(U), 
f(V) are M-open in Y with y1∈f(U), y2 ∈ f(V). Therefore, Y is M-T2. 
 
Theorem 3.9: If, f: (X, τ) →(Y, σ) is a bijective super M-open function and X is an M-T0-space, then Y is T0, where  
i = 0, 1, 2. 
 
Proof; We prove that the theorem for T0-space.  
 
Let y1, y2 be two distinct points in Y. Since f is bijective, then there exist x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. 
Since X is M-T0 then there exist an M-open set U in X such that x1∈U, x2 ∉U or x2 ∈U, x1∉U. Since f is super M-open, 
then f(U) is open in Y with y1∈f(U), y2 ∉f(U) or y2∈ f(U), y1∉ f(U). Therefore, Y is T0. 
 
Theorem 3.10: If, f:(X, τ) →(Y, σ) is a bijective pre-M-open function and  X is an M-Ti-space, then Y is M-Ti, where 
 i = 0, 1, 2. 
 
Proof: We prove that the theorem for M-T0-space.  
 
Let y1, y2 be two distinct points in Y. Since f is bijective, then there exist x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. 
Since X is M-T0 then there exist an M-open set U in X such that x1∈U, x2 ∉U or x2 ∈U, x1∉U. Since f is pre-M-open, 
then f(U) is M-open in Y with y1∈f(U), y2 ∉f(U) or y2∈f(U), y1∉f(U). Therefore, Y is M-T0. 
 
4. M-REGULAR SPACE 
 
Definition 4.1: A space X is said to be M-regular if for every closed set F of X and each point x∈X such that x∈ X\F, 
there exist two disjoint M-open sets U, V such that F ⊆ U and x∈V. 
 
Remark 4.1: The implication between some types of topological spaces are given by the following diagram.  
   
                     θ-regular →  δ-regular → δp-regular 
 
                   θs-regular                              M-regular → e-regular 
 
None of these implications is reversible by [9, 17] and the following examples. 
 
Example 4.1: Let X = {a, b, c, d} and τ ={X,φ, {a},{b, c},{a, b, c}}. Then X is an M-regular space but not δp-regular 
and it is not θs-regular.  
 
Example 4.2: Let X = {a, b, c, d} and τ ={X,φ, {a},{b},{a, b},{a, b, c},{a, b, d}}. Then X is an e-regular space but it is 
not M-regular.                                                                                          
 
Theorem 4.1:  Let X be a space. Then the following statements are equivalent: 
(i) X is M-regular, 
(ii) For each closed set F ⊆ X and x∈X\F, there exists an M-open set U such that x∈U ⊆ M-cl(U) ⊆ X\F. 
 
Proof; (i) → (ii). Let X be an M-regular space, F ⊆ X and x∉F. Then there exist two disjoint M-open sets U, V such 
that x∈U and F ⊆ V = X\M-cl(U). Since F ⊆ X\M-cl(U), then  M-cl(U) ⊆ X\F. Therefore, x∈U ⊆ M-cl(U) ⊆ X\F. 
 
(ii) → (i). Let x∈X and F⊆ X\{x} be a closed set such that x∈U ⊆ M-cl(U) ⊆ X\F. Then F ⊆ X\M-cl(U) which is an  
M-open set and disjoint with U. Therefore, X is M-regular. 
 
Theorem 4.2:  In an M-regular space, for any two points x, y of X then either M-cl({x}) = M-cl({y})  
or M-cl({x}) ∩ M-cl({y}) = φ .  
 
Proof:  Let be M-cl({x}) ≠ M-cl({y}) then either  x∉M-cl({y}) or y∉M-cl({x}).  Suppose that y∉M-cl({x}). Since X is 
M-regular, then there exists an M-open set G such that M-cl({x}) ⊆ G and y∈X\G. Where X\G is M-closed and M-
cl({y}) ⊆ X\G. Hence M-cl({x}) ∩ M-cl({y}) ⊆ G ∩ (X\G) = φ.  
 
Theorem 4.3: If, f: (X, τ) →(Y, σ) is a bijective continuous and pre -M-open functions and X is an M-regular space, 
then Y is M-regular. 
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Proof: Let F⊆ Y be a closed set and y∈Y\F. Since f is bijective continuous, then f -1(F) is closed of X. Put f(x) = y, 
then x∈X\f -1(F). Since X is M-regular, then there exist two disjoint M-open sets U, V such that x∈U and f -1(F) ⊆ V. 
Since f is bijective and pre-M-open, then y∈ f(U), F ⊆ f(V) and f(U) ∩ f(V) = φ. Therefore, Y is M-regular. 
 
Theorem 4.4: If, f: (X, τ) →(Y, σ) is an injective M-irresolute and closed functions and Y is an M-regular space, then 
X is M-regular. 
 
Proof; Let F ⊆ X be a closed set and x∉ F. Since f is injective closed, then f(F) is closed of Y and f(x) ∉ f(F), hence, 
f(x) ∈ Y\F. By M-regularity of Y, there exist two disjoint M-open sets U, V such that f(F) ⊆ U and f(x) ∈V. Since f is 
M-irresolute, then F ⊆ f -1(U) and x∈ f -1(V) and f -1(U) ∩ f -1(V) = φ. Hence, X is M-regular. 
 
Remark 4.2:  An M-regular-space is not hereditary property.  
 
Example 4.3: In Example 3.4, X is an M-regular space but (Y, τY) is not M-regular. Since {b, c} is a closed set of Y 
and a ∉{b, c} but no exists U, V∈ MO(Y) such that {b, c} ⊆ U, a ∈V and U∩V =  φ. 
 
Theorem 4.5: Every θ-open subspace of an M-regular space is M-regular. 
 
Proof: Let Y be a θ-open subspace of an M-regular space (X, τ) and F be a closed set of Y with x∉F. Then F ⊆ X be a 
closed set with x∉F. By M-regularity of X, there exist two disjoint M-open sets U, V such that F ⊆ U and x ∈ V. Let 
U1 = Y ∩ U and V1 = Y ∩ V. Hence by Lemma 1.2., U1, V1 are M-open of Y containing F, x respectively and U1 ∩ V1 
= Y ∩ (U∩V) =φ. Therefore, (Y, τY) is M-regular. 
 
Corollary 4.1: An M-regular-space is a topological property. 
 
Proof: Let f: (X, τ) →(Y, σ) be an M -homeomorphism. Then f is a bijective pre-M-open continuous function. Assume 
that F ⊆ Y is a closed set and y∈Y\F, then f -1(F) is closed set of X and x∈X\f -1(F). Since X is M-regular, then there 
exist two disjoint M-open sets U, V such that x∈U and f -1(F) ⊆ V. By using pre-M-open, y∈f(U) and F ⊆ f(V) such 
that f(U) ∩ f(V) = φ. Therefore, Y is M-regular. 
 
5. M-NORMAL SPACE 
 
Definition 5.1: A space X is called M-normal if  for every pair of disjoint closed sets  F1 and  F2, there exist two 
disjoint M-open sets U, V such that F1 ⊆ U and F2 ⊆ V. 
 
Remark 5.1: The implication between some types of topological spaces  are given by the following diagram.  
                                                                                                               
    θ-normal → δ-normal →  δp-normal 
 
   θs-normal                        M-normal → e-normal 
        
None of these implications is reversible by [4, 8] and the following examples. 
 
Example 5.1: Let X = {a, b, c, d} and τ = {X,φ, {a},{b}, {a, b},{a, b, c},{a, b, d}}. Then X is e-normal space but it is 
not M-normal. 
 
Example 5.2: Let X = {a, b, c, d} and τ = {X,φ, {a},{c}, {a, b},{a, c},{a, b, c}, {a, c, d}}. Then X is an M-normal 
space but it is not θs-normal. 
 
Theorem 5.1: Every M-regular space finite is M-normal. 
 
Proof: Let F1, F2, be two disjoint closed sets of X and x∈ F1, hence x∉F2. Since X is M-regular space, then there exist 
two disjoint M-open sets U, V such that x∈Ux,  F2 ⊆ Vx . Suppose that U = ∪ Ux , V = ∩ Vx . Since X is finite, then F1 
is finit and hence U = ⋃ Ux, V = ∩  Vx are M-open sets such that F1 ⊆ U, F2 ⊆ V and U ∩ V = φ. Therefore, X is M-
normal.  
 
Remark 5.2: The converse of above theorem is not true in general. Suppose that X = {a, b, c} with topology τ ={X, φ, 
{a},{b}, {a, b}, {a, c}}. Hence, X is M-normal space but it is not M-regular. Since, {b, c} is closed set and a ∉{b, c} 
but no exists two disjoint M-open sets containing them. 
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Theorem 5.2: Let X be a topological space. Then the following statements are equivalent:  
 
(i) X is an M-normal space, 
 
(ii) For every pair of open sets U and V whose union is X, there exist M-closed sets A and B such that A ⊆ U, B ⊆ V 
and A⋃ B = X, 
 
(iii) For every closed set F and every open set G containing F, there exists an M-open set U such that F ⊆ U ⊆ M-cl(U) 
⊆ G. 
 
Proof: (i) → (ii). Let U and V be two open sets in M-normal space X such that X = U⋃V. Then X\U, X\V are disjoint 
closed sets. Since X is M-normal, then there exist two disjoint M-open sets U1, V1 such that X\U ⊆ U1 and X\V ⊆ V1. 
Let A = X\U1, B = X\V1. Then A and B are M-closed sets such that A ⊆ U, B ⊆ V and A⋃ B = X. 
 
(ii) → (iii). Let F ⊆ X be a closed set and G be an open set containing F. Then X\F and G are open sets such that X = 
X\F ⋃ G. Then by (ii), there exist two M-closed sets W1, W2 such that W1 ⊆ X\F, W2 ⊆ G and W1∪ W2 = X. Then F ⊆ 
X\W1, X\G ⊆ X\W2 and (X\W1) ∩ (X\W2) = φ. Let U = X\W1 and V = X\W2. Then U and V are disjoint M-open sets 
such that F ⊆ U ⊆ X\V ⊆ G. Therefore, F ⊆ U ⊆ M-cl(U) ⊆ G. 
 
(iii)→ (i). Let F1, F2 ⊆ X be two disjoint closed sets. Put G = X\F2, then F1 ⊆ G where G is an open set. By (iii) there 
exists an M-open set U of X such that F1 ⊆ U ⊆ M-cl(U) ⊆ G. It follows that F2 ⊆ X\G ⊆ X\M-cl(U) = V. Then there 
exist two M-open sets U, V such that F1 ⊆ U, F2 ⊆ V and U ∩ V = φ. Therefore, X is M-normal. 
 
Theorem 5.3: Every θ-open subspace of an M-normal space is M-normal. 
 
Proof: Let Y be a θ-open subspace of an M-normal space (X, τ) and F1, F2 are two disjoint closed sets of Y. Then F1, 
F2 are two disjoint closed sets of X. By M-normality of X, there exist two disjoint M-open sets U, V such that F1 ⊆ U, 
F2 ⊆ V. Let U1 = Y ∩ U and V 1 = Y ∩ V. Hence by Lemma 1. 2., U1, V1 are M-open of Y containing F1, F2  
respectively and U1 ∩ V1 = Y ∩ (U∩V) = φ. Therefore, (Y, τY) is M-normal. 
 
Theorem 5.4: If, f: (X, τ) →(Y, σ) is a surjective pre-M-open continuous and M-irresolute functions from an M-normal 
space X onto a space Y, then Y is M-normal. 
 
Proof: Let F be a closed subset of Y and B be an open set containing F. Then by continuity of f, we have f -1(F) is 
closed and f -1(B) is open of X such that  f -1(F) ⊆ f -1(B). By M-normality of X and by Theorem 5.2,  there exists an M-
open set U in X such that f -1(F) ⊆ U ⊆ M-cl(U) ⊆ f -1(B).Then f(f -1(F)) ⊆ f(U) ⊆ f(M-cl(U)) ⊆ f(f -1(B)).  Since f is 
surjective pre-M-open M-irresolute, we have F ⊆ f(U) ⊆ M-cl(f(U)) ⊆ B. Therefore, Y is M-normal. 
 
Theorem 5.5: If, f: (X, τ) →(Y, σ) is a bijective continuous and pre-M-open functions from an M-normal space X onto 
a space Y, then Y is M-normal. 
 
Proof: Let F1, F2 be two disjoint closed sets of Y. Since f is continuous, then f -1(F1) and f -1(F2) are disjoint closed sets 
of X. By M-normality of X, there exist two disjoint M-open sets U, V such that f -1(F1) ⊆ U and f -1(F2) ⊆ V. By 
bijective and pre-M-open of  f we have  F1 ⊆ f(U) , F2 ⊆ f(V) and  f(U) ∩ f(V) = φ. Therefore, Y is M-normal.  
 
Theorem 5.6: If, f: (X, τ) →(Y, σ) is an injective closed and M-irresolute functions and Y is an M-normal space, then 
X is M-normal.  
 
Proof: Let F1, F2 be two disjoint closed sets of X. Since f is closed function, then f(F1), f(F2)  are disjoint closed sets of 
Y. By M-normality of Y, there exist two disjoint M-open sets U, V such that f(F1) ⊆ U and f(F2) ⊆ V. By using 
injective and  M-irresolute, we have F1 ⊆ f -1(U), F2 ⊆ f -1(V) and f -1(U) ∩ f -1(V) = φ. Therefore, X is M-normal. 
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