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ABSTRACT 
In this paper, we study the basic properties such as a stochastic representation and moment estimators of the class of 
the generalized skew-Laplace (GSL) distribution.  We consider the general case by inclusion of location and scale 
parameters. We derive the cumulative distribution function (CDF) and the general properties of the GSL distribution in 
explicit form, such as: the moment generating function (MGF), characteristic function (CF), Laplace and Fourier 
transforms. Expressions for the n U

th
U moment, skewness and kurtosis coefficients are obtained.  It should be noted that 

some known results are obtained as special cases. Graphical illustration of the probability density function (pdf) and 
CDF of the GSL distribution are also given. Skewness- kurtosis graphs for this distribution have been represented.  
Further, we get a numerical example for skewness-kurtosis coefficients for this distribution. 
 
Keywords: Generalized skew-Laplace distribution, Moment generating function, Characteristic function, Laplace and 
Fourier transforms, Skewness, Kurtosis. 
 
MSC 2010 Code: 60E10; 62E10. 
 
 
1.  INTRODUCTION 
The fundamental properties and characterizations of symmetric distributions about origin are widely used in 
engineering applications and have been studied as stated in Johnson et al. [13].  In the recent years, there has been quite 
an intense activity connected to a broad class of continuous probability distributions which are generated starting from 
a symmetric distributions and applying a suitable form of perturbation of the symmetry.  As a general result, Azzalini 
[9] showed that any symmetric distribution was viewed as a member of more general class of skewed distributions.  
Many authors have recently studied similar distributions, (see, Arnold and Beaver [4] and [5], Chang et al. [10], and 
Wahed and Ali [21]). The main feature of these models is that a skewness parameter α  is introduced to control 
skewness and kurtosis.  These models are useful in many practical situations (see, Arnold et al. [6], and Hill and Dixon 
[11]), and have also been used in studying robustness and as priors in Bayesian estimation (see, Mukhopadhyay and 
Vidakovic [16] and O'Hagan and Leonard [19]). 
 
The skew-symmetric models defined by different researchers based on the following general result by Azzalini [9]: 
 
Lemma 1.1: Let U and V be two arbitrary absolutely continuous independent random variables symmetric about zero, 
with probability density functions (pdfs) h(.) and g(.), and cumulative distribution functions (CDFs),  H(.) and G(.), 
respectively.  Then for any α ∈ R, the function 
 
f(x|α ) = 2 h(x) G(α x), α ∈ R                                                                                                                                            (1)   
 
is a valid pdf of a random variable,  say X.  
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In fact, when h(.) and G(.) are the pdf and CDF of a Laplace distribution, respectively, then (1)  is called a skew-
Laplace distribution with parameter α, (SL(α)).  Nadarajah and Kotz [17] defined skew-symmetric models with h(.) as 
the pdf of a Laplace distribution and G(.) being the CDF of: normal, Student’s t, Cauchy, logistic, and uniform 
distributions.  Ali and Woo [1] defined skew- 
 
symmetric distributions for a number of reflected distributions symmetric about zero and derived their moments.  Ali et 
al. [2] discussed skew-symmetric models with reflected gamma kernel and G(.) as the CDF of: Laplace, double 
Weibull, reflected Pareto, reflected beta prime and reflected generalized uniform distributions. Ali et al. [3] constructed 
some skewed distributions with a Laplace kernel, with h(.) is taken to be a Laplace pdf and G(.) is the one of the 
following distributions: Laplace, double Weibull, reflected Pareto, reflected beta prime, or reflected generalized 
uniform distribution. They are studied the properties of the resulting distributions. 
 
Furthermore Inusah and Kozuhowski [12] discussed many properties of SL (α) on  the real line. Kozubowski and Nolan 
[14] showed that a SL(α) is infinity divisible. Arslan [7] produced some fundamental properties of the multivariate 
SL(α) and introduced some examples to demonstrate the modeling strength of SL(α) .  Nekoukhov and Altamatsaz [18] 
studied more general class of skew-distributions and they generalized the results of Umbach [20], and Aryal and Rao 
[8] which connection with truncated SL(α).   
 
Mazilu [15] presented a new family of skewness distributions, and SL(α) including the basic properties. He defined the 
pdf of GSL random variable X with two parameters α  and β as follows: 
 
Definition 1.1: The random variable X is distributed according to the GSL distribution with parameters α and β and 
denote it by X ∼ GSL(α, β) distribution, if its pdf is given by: 
 

                                                                                                           (2)   
   
where A1 = 1 / (1 + β),  A2 = 1 / (1 − β), α ∈ R, β∈[0, 1), h(.) and G(.) are the pdf and CDF of the standard Laplace 
distribution. 
 
It is clear that the class of the GSL (α, β) distribution contains the standard Laplace distribution, (take α = 0, and β = 0) 
and the SL(α), (take β = 0).  
 
In this paper, we study the basic properties such as a stochastic representation and moment estimators of the class of the 
GSL distribution.  We consider the general case by inclusion of location and scale parameters. We derive the CDF and 
the general properties of the GSL(α, β) density function given in (2) in explicit form, such as: the moment generating 
function (MGF), characteristic function (CF), Laplace and Fourier transforms. Expressions for the nth

 moment, 
skewness and kurtosis coefficients are obtained.  Graphical illustration of the probability density function (pdf) and 
CDF of the GSL (α,β) distribution are also given.  Skewness-kurtosis graphs for this distribution have been represented.  
Further, we get a numerical example for skewness-kurtosis coefficients for this distribution, and finally conclusions of 
our results are presented. 
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Figure 1: Examples of the GSL(α, β) density function for (a)α = 2 and β = 0 (solid line),  β = 0.3 (dotted line) and β = 
0.7 (dashed line), (b) β = 0.5 and α = −1 (solid line), α = 0 (dotted line) and α = 7 (dashed line), (c) β = 0.5 and α ∈ 
[−10, 10], and (d) α  = 2 and β ∈ [0, 1). 
 
2. SOME PROPERTIES OF THE GSL DISTRIBUTION   
In this section, we develop a stochastic representation and some useful properties of GSL(α, β) distribution.  The main 
idea is to notice that if the random variable X ∼ GSL (α, β) density function defined by (2),  then X can be represented 
as the product of two dependent random variables. 
 
2.1 CUMULATIVE DISTRIBUTION FUNCTION 
The pdf of the random variable X ∼ GSL (α, β) density function given in (2) can be written as follows: 
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where B1 = 1 / (1 + α) and B2 = 1 / (1 − α). 
 
Then the CDF of the random variable X is given by 
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Figure 2: Examples of the GSL(α, β) distribution function for (a) α  = 2 and β = 0 (solid line),  β = 0.3 (dotted line) and 
β = 0.7 (dashed line), (b) β = 0.5 and α = −1 (solid line), α = 0 (dotted line) and α = 7 (dashed line), (c) β = 0.5 and α ∈ 
[−10, 10], and (d)  α  = 2 and β ∈ [0, 1). 
 
2.2 Moments and Moment Generating Function 
The MGF of the random variable X ∼ GSL (α, β) distribution is given by the following theorem. 
 
Theorem 2.2.1: The MGF of the random variable X with pdf   f(x|α, β )  defined by (2) is given by: 
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Proof: By using f(x|α, β) given by (2), it is then necessary to consider two cases separately, when α < 0  and  α ≥ 0.  
Firstly, when α < 0, we have  
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Consequently, the nth
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 moment of the random variable X ∼ GSL (α, β) distribution is given by: 

                           (4) 

 
The first and second moments are given as follows:  
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Therefore, the variance is given by 
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In Equations (4) to (7), if β = 0, the results of Mazilu [15] are obtained as special cases and if β = 1, the results of Ali et 
al. [3] are obtained as special cases.   
 
The characteristic function (CF) is the general case of the MGF which is given by the following theorem.  
 
Theorem 2.2.2: Let X be a random variable with GSL (α, β) distribution.  Then its CF is given by  
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Proof: By using the formula,Ψ (t) = E(exp[itx]), 1−=i  we can  prove Theorem 2.2.2.  

The results given by Equations (4) to (7) can be obtained by using the formula
0
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2.3. THE SKEWNESS AND KURTOSIS COEFFICIENTS 
The skewness coefficient is measured by, 1γ = M3 / σ 3, and the kurtosis coefficient is measured by, 2γ = M4 / σ 4, 
where M3 and M4 are the third and fourth moments about the mean and σ 2 is the variance of the random variable X 
given by (7). 
 
Theorem 2.3.1: The skewness coefficient of the random variable X with GSL(α, β) distribution is given as follows 
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If β = 0, in (8), we get the result of Mazilu [15] as a special case. 
 

 
 
Figure 3: Examples of the skewness coefficient of GSL(α, β) distribution for (a) β = 0 (solid line),  β = 0.3 (dotted 
line), β = 0.7 (dashed line) and α ∈[ −15, 15], (b) α = −1 (solid line), α  = 0 (dotted line),α  = 7 (dashed line) and β ∈[ 
0, 1), (c) α ∈[ −15, 15] and β ∈[ 0, 1) and (d) α ∈[ −2, 2] and β ∈[ 0, 1). 
 
From equation (8), we see that the admissible intervals for the skewness if β = 0 is −2 < γ1(x) < 2. 
 
Theorem 2.3.2: The kurtosis coefficient of the random variable X with GSL (α, β) distribution, is given as follows 
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The result of Mazilu [15] is obtained as a special case by putting β = 0, in (9). 

 
Figure 4: Examples of the kurtosis coefficient of GSL(α, β) distribution for (a) β = 0 (solid line), β = 0.3 (dotted line), 
β = 0.7 (dashed line) and α ∈[ −15, 15], (b) α = −1 (solid line), α  = 0 (dotted line), α  = 7 (dashed line) and β ∈[ 0, 1), 
(c)  
α ∈[ −10, 10] and β ∈[ 0, 1) and (d) α ∈[ −15, 15] and β ∈[ 0, 1). 
 
From equation (9), we see that the admissible intervals for the kurtosis if β = 0 is 5.8105 < γ2(x) < 8.8080. 
 

 
 

Figure 5: The skewness and kurtosis of GSL(α, β) distribution, forα ∈ [-10, 10] and  β∈ [0, 1). 
 

Other useful properties of GSL(α, β) distribution are the Laplace and Fourier transforms, which are given by the 
following theorem. 
 
Theorem 2.3.3: The Laplace and Fourier transforms of the random variable X having GSL(α, β) are: 
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3. TRANSFORMATION OF VARIABLES 
In practice, one often works with the family of distribution generated by linear transformation Y =  µ + ηX, where X 
has GSL (α, β) distribution.  The random variable Y gives the general class of the GSL (α,β) distributions by inclusion 
of the location parameter µ and the scale parameter η.  It is easy to show that the random variable Y having also   
GSL(α, β, µ, η) distribution.   
 
Theorem 3.1: Let X be a random variable having GSL (α, β) distribution,  and  Y =  µ + ηX.  Then, the nth
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the random variable Y is given by .                                                                             

 
By elementary calculations, we can prove the theorem.  Consequently, we obtain  
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ii. Var(Y) = η2 Var(X), where Var(X) is given by (7). 
iii. 3

1 1
( ) ( )Y Xηγ γ= , where )(1 Xγ  is given by (8).  

iv. 4

2 2
( ) ( )Y Xη γγ = , where )(2 Xγ  is given by (9). 

 
4. NUMERICAL EXAMPLE  
In this section, we express the flexibility of the distribution to account for a wide range for the skewness and the 
kurtosis. 
 
Table (1): The range of the skewness and the kurtosis of GSL (α, β) distribution, for some particular values of β while 
α ∈ [-10, 10]. 

 
  Skewness Kurtosis 

β = 0  
 

α ∈ [-10, 10] 

−2 < γ1(x) < 2 5.8105 ≤ γ2(x) ≤ 8.0808 
β = 0.1 −2 < γ1(x) <  0.3036 6.158≤ γ2(x) ≤ 8.692 
β = 0.3 −2 < γ1(x) < − 1.393 6.924 ≤ γ2(x) ≤ 8.928 
β = 0.5 −2 < γ1(x) < − 1.826 3.389 ≤ γ2(x) ≤ 8.928 
β = 0.7 −2 < γ1(x) < − 1.978 8.692 ≤  γ2(x) ≤ 8.928 
β = 0.9 −2 < γ1(x) < − 1.979 8.928≤ γ2(x) ≤8.986 

 
For the standard Laplace distribution, γ1(x) = 0 and γ2(x) = 6, which means it is a symmetric platykurtic distribution. In 
order to examine how flexible the GSL distribution defined is, in the sense of skewness and peakedness, we draw the 
skewness-kurtosis graphs.  The graphs have been drawn by computing (γ1(x), γ2(x)) for the set of parameter values as 
follows:α ∈ [-10, 10] and β = 0, 0.1, 0.3, 0.5, 0.7, 0.9. 
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Figure 6: Examples of the skewness of GSL (α, β) distribution, forα ∈ [-10, 10] and (a)  β = 0, (b) β = 0.1,  (c) β = 0.3, 
(d) β = 0.5, (e) β = 0.7, and β = 0.9. 

 
Figure 7: Examples of the kurtosis of GSL(α, β) distribution, forα ∈ [-10, 10] and (a)  β = 0,  (b) β = 0.1,  (c)  β = 0.3, 
(d) β = 0.5, (e) β = 0.7, and β = 0.9. 
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It is quite evident from the graphs that the GSL distribution  investigated is very flexible in terms of exhibiting both 
positive and negative skewness, as well as high and low degrees of peakedness. 
 
5.  CONCLUSIONS 

I. The skew parameter of the GSL distribution is more flexible in the sense that it can take   values in a wide range 
than the skew parameter of the ordinary SL distribution.  

II. The family of GSL distributions has higher degrees of skewness than of ordinary SL distribution.    
III. The family of GSL distributions is more flexibility in its shape by changing the skewness and kurtosis of the 

model. 
IV. The flexibility of the class of GSL distributions in terms of accommodating more general types of skewness than 

the ordinary SL distribution is illustrated by computing moments and, in particular, skewness and kurtosis 
coefficients.  

V. The SL distribution is frequently used to fit the logarithm of particle sizes and it is also used in Economics, 
Engineering (reliability), Finance and Biology.  
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