
International Journal of Mathematical Archive-4(5), 2013, 288-295 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 4(5), May – 2013                                                                                                               288 

 
A NOTE ON THE LEVITZKI RADICAL OF A NEAR FIELDS (LR - NF) 

 
N. V. Nagendram* 

Assistant Professor (Mathematics), Department of Mathematics, Lakireddy Bali Reddy College of 
Engineering, Krishna District, Mylavaram 521 230, Andhra Pradesh India 

 
T. V. Pradeep Kumar 

Assistant Professor (Mathematics), Acharya Nagarjuna University college of Engineering 
Nagarjuna Nagar, Nambur, Guntur District 522 510, Andhra Pradesh India 

 
(Received on: 10-04-13; Revised & Accepted on: 01-05-13) 

 
 

ABSTRACT 
In this paper we study and obtain some results on Levitzki radical of a near-field over a defined near-ring earlier. It is 
known that a near-field N the Levitzki radical L(N) i.e., the sum of all locally nilpotent ideals is the intersection of all 
the prime ideals P in  near-field N such that N / P has zero Levitzki radical. The purpose of these note is to prove that 
L(N) is the intersection of a certain class of prime ideals called l-prime ideals. Every l-prime ideal P is such that N / P 
has zero Levitzki radical. We also introduce an l-prime ideal if and only if N / P has zero Levitzki radical of the near-
field as the intersection all the l-semi-prime ideals. 
 
Subject Classification Code: 1980 16A76; secondary 09 A 40. 
 
Key words: Near-ring, Near-field, nilpotent ideals, l-system, l-semi-prime ideal, l-system [w-system], l-radical [w-
radical]. 
 
 
SECTION 1 – INTRODUCTION – PRELIMINARIES AND DEFINITIONS 
In this section we study about near-fields called as locally nilpotent ideals and Levitzki radical of near-field N. Also 
extending about the study of features like l-prime ideals, l-semi-prime ideals, l-system, w-system and l-radical, w-
radical of a near-filed N.  
 
For that preliminaries and basic definitions required and are as follows: 
 
Definition 1.1: A Near Field N with 1 is a semi simple, or Left semi simple to be precise. If the free left N-module 
underlying N is a sum of simple N-module. 
 

 
           N      ∑ Mi =N              

       

                                                                     Sum of simple 

      N-modules 

 
Fig. 1 

 
 

Definition 1.2: A Near field N with 1 is simple or left simple to be precise, if N is semi simple and any two simple left 
ideals (i.e., any two simple left sub near-fields of N) are isomorphic. 
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Fig.2                                 N semi simple 

Note 1.3: A near-field N is semi simple if and only if there exists a near-field S and semi simple S-module M of finite 
length such that N ≅ EndS (M). 
 
Note. 1.4: Let N be a semi simple near-field. Then N is isomorphic to a finite direct product  Π Ni for all i=1, 2….n 
where each Ni is a simple near-field. 
 
Note 1.5: Let N be a simple near-field. Then there exists a division field D and a positive integer n such that N ≅ Mn 
(D). 
 
Definition 1.6: Let N be a near-field with 1. Define radical of N to be the intersection of all maximal left ideals of N. 
The above defined definition uses left N-modules emphasized by me that η is the left radical of near-field N. 

 

N Near-Field        η   

  N 

       Left radical of nf N 
 
 
 

 
Fig. 3                        ∩ Mi   ⊆ M=η ⊆ N 

 
Note 1.7:  The radial of a semi simple near-field is zero. 
 
Note 1.8: Let N be a simple near-field. Then N has no non-trivial two sided ideals and its radical is zero. 
 
Definition 1.9: A near-field is an algebraic system, (N, + , ·) satisfying (i) (N, + ) is a group, (ii) ( N , ·) is a semi group 
and (iii) ( x + y ) z = xz + yz ∀ x, y, z ∈ N. we abbreviate (N, + , ·) as N a near-field. 
 
Note 1.10: If P and Q are subsets of near-field N, we denote the set {pq / p ∈ P, q ∈ Q } by PQ. For n∈η, the definition 
of Pn is then clear. 
 
Definition 1.11: A normal subgroup I of (N, +) is called an ideal of a near-field N ( I   N ) if IN ⊆ I and n( n′ + i ) - 
nn′ ∈ I for n,n′ ∈ N and all i ∈ I. 

 

(N, +) near-field      N 

 

Normal subgroup I      Ideal of n-f N 

Fig. 4 
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Definition 1.12: P of N is called a prime ideal if for any ideals L and M of N; LM ⊆ P implies either L ⊆ P or M ⊆ P. 

                                  

                                                                                  P               Prime ideal P 

N near-field (n-f) 

 

 

 

 

 
Fig. 5 

 
 
Definition 1.13: An ideal P of a near-field N is called a semi-prime ideal if for any ideal L of N, L2 ⊆ P implies L ⊆ P. 
 
Definition 1.14: by Bhandari and saxena [1], we call a near-field N locally nilpotent if every finite subset of N is 
nilpotent. Let us denote the sum of all locally nilpotent ideals in N by L (N). 
 
Definition 1.15: The class of locally nilpotent near-fields is a hereditary radical class.  
 
Definition 1.16: If L(N) = ∩ {P / P is a prime ideal with L(N/P) = (0) } then it is called the Levitzki radical of near-
field N and denoted by L(N). 
 
Definition 1.17: By [01], now we define that, for associate near-fields, L(N) coincides with a certain class of prime 
ideals called l-prime ideals. 
 
Definition 1.18:  By [05], we define the intersection of all the l-semi-prime ideals of a near-field N coincides with 
L(N). We now extend some of these results to near-fields. 
 
Definition 1.19: A set of elements L of a near-field is called an l-system if to every element a ∈ L is assigned a finite 
number of elements a1,a2,a3,....,an(a) in the  principal ideal generated by the element a, such that the following condition 
is satisfied. If a, b ∈ L then for every n > 1 (n ∈ η ) there exists a product of N ≥ n factors, consisting of ai’s and bi’s, 
which is in L. φ is defined to be an l-system. 
 

N near-field    N near-field                      l-system 

            L set of elements 

 

 

 

Fig. 6 
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Definition 1.20: An ideal P in a near-field N is an l-prime ideal if and only if the complement C(P) of P in N is an l-
system. 
 
N near-field             N near-field                  w-system = P 

P ideal 

 

 

 

Fig. 7 

Definition 1.21: A set of elements W of a near-field N is called w-system if to every element a ∈ W is assigned a finite 
number of elements a1,a2,a3,....,an(a)  such that the following is satisfied. If a ∈ W, then for every n > 1 ( n ∈ η ) there 
exists a product of N ≥ n factors, consisting of the ai’s , which is in W. φ is defined to be an w-system. 
 
Definition 1.22: An ideal Q of N is an l-semi-prime ideal if and only if the complement C(Q) of Q in near-field N is a 
w-system. 
 
N near-field    N near-field                 w-system = Q 
 
Q semi-primeideal 
 

 
 
 
 
 
 
 

Fig. 8 
 
Note 1.23: In a Near-field N, every l-prime ideal is an l-semi – prime ideal and every l-semi-prime ideal is a semi-
prime ideal. 
 
Definition 1.25: The l-radical [w-radical] l (H) [w (H)] of the ideal H of the near-field N is the set of all elements r ∈ N 
with the property that every l-system [w-system] which contains r contains an element of A. 
 
Definition 1.26: the l-radical [w-radical] of the near-field N is l ((0)) [w ((0))]. 
 
SECTION 2 MAIN RESULTS ON THE LEVITZKI RADICAL OF A NEAR-FIELD N 
In this section, myself and guide Dr. T V Pradeep Kumar we study and obtained main results by considering, analyzing 
and  extending features cum similarities of the rings with the help of Lemma 1 of vander walt [02]) to the near-fields. 
By making the necessary adjustments and using similar techniques proof follows for the near-fields mentioned here in 
this section by us which are very useful for future assumptions over near-rings of near-fields. 
 
Theorem 2.1: Let H be any ideal in the near-field N. Then l(H) [w(H)] is the intersection of all the l-prime [l-semi-
prime] ideals which contain H. 
 
Proof: We shall prove the theorem for the l-radical of a near-field N. The proof for w-radical is quite analogous. 
Let h ∈ l(H) and suppose h ∈ C(K) where K is an l-prime ideal containing H. Now C(K) ∩ H = Φ (empty), 
contradicting the definition of l(H). Thus l(H) is contained in the intersection of all the l-prime ideals containing H in 
near-field N. 
 
Now h ∉ l(H). Hence by the definition of l(H), there exists an l-system L containing h such that L ∩ H = Φ. From 
lemma 1.1 there exists an l-prime ideal K such that H ⊆ K and H ∩ K = Φ, i.e., h ∉ K. thus h cannot be in the 
intersection of all the l-prime ideals in a near-field N containing H, and this completes the proof. 
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Lemma 2.2: Let L[W] be an l-system [w-system] in a near-field N, and H be an ideal which does not meet L[W]. Then 
H is contained in an ideal K which is maximal in the class of ideals not meeting L[W]. K necessarily an l-prime [l-
semi-prime] ideal. 
 
Proof: by using lemma 1.1 of N J Groenewald and P C Potgieter [06] the proof follows similarity to that for near-rings 
in A P J Wander walt,[01 & 02]. This completes the proof. 
 

 

       Near-field N 

 

                                                             

 

 

 

 

 

Fig. 9  
 

Theorem 2.3: Let N be any near-field. L((0)) [w((0))] coincides with the levitzki radical L(N) of the near-field N. 
 
Proof: refer theorem 2 [01]. 
 
Theorem 2.4: Let N be any near-field. If Q is an ideal in a near-field N, then Q is l-semi-prime if and only if N/Q 
contains no non-zero locally nilpotent ideals. 
 
Proof: suppose Q is l-semi-prime. Hence C(Q) is a w-system. Let H/Q be any non-zero ideal of N/Q. since H/Q is non-
zero there exists an h ∈ H, h ∉ Q. Because Q is an l-semi–prime ideal and h ∉ Q there exists elements a1,a2,a3,....,an(a)  
∈ (a) such that for every n > 1 there is a product of N ≥ n factors consisting of the ai’s which is not in Q. There thus 
exists a finite set {a1+Q, a2+Q, a3+Q … an(a)+Q} ⊆ H/Q such that {a1+Q, a2+Q, a3+Q,……an(a)+Q}m ≠ Q for every m. 
Hence H/Q is not locally nilpotent. 
 
Now suppose N/Q contains no non-zero locally nilpotent ideals. Let p ∈ C(Q) be an arbitrary. Since, (0) ≠ (p) / (p) ∩ Q 
  N/Q, it follows from our assumption that (p) / (p) ∩ Q is not locally nilpotent. Hence there exists p1, p2, p3,.. pn ∈ (p), 
pi ∉ Q, such that {p1+ Q, p2 + Q, p3 + Q,……… pn(a) + Q} is not nilpotent. Therefore, for every p ∈ C(Q), we can find 
elements p1, p2, p3,…….. pn ∈ (p) such that for every n > 1(n ∈ η) there exists a product of N ≥ n factors consisting of the 
pi’s which is on C(Q). Hence C(Q) is a w-system. This completes the proof. 
 
Note 2.5: If (Sk)k ∈ K is a family of l-semi-prime ideals in a near-field N the S = ∩ k ∈ K Sk is also a l-semi-prime ideal in 
a near-field N. 
 
Note 2.6: any intersection of l-prime ideals is l-semi-prime. 
 
Theorem 2.7: Let N be a near-field. Q is an l-semi-prime ideal in a near-field N if and only if L(Q)  =  Q. 
 
Proof: ⇒ If L(Q)  = Q it follows from  Theorem 1.2  and the cor. Lemma 1.5 [06] that Q is an l-semi-prime ideal. 
           ⇐ suppose now Q is an l-semi-prime ideal of a near-field N. from the definition of l(Q) we have Q ⊆ l(Q).  
 
Furthermore, it follows from Th. 2.3 and Th. 2.4 that l(Q) ⊆ Q. This completes the proof. 
 
We now make the following general conclusions. We have the following characterization of the Levitzki radical L(N) 
of the near-field N over near-rings. 
 
 

  L/W 

 

     P 

W 

H 



N. V. Nagendram* & T. V. Pradeep Kumar/A Note on the Levitzki Radical of a Near Fields (LR - NF)/ IJMA- 4(5), May-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                       293   

 
Note 2.8: If N is any near-field, then L(N) coincides with the intersection of all l-semi-prime ideals in N, i.e., L(N) is 
an l-semi-prime ideal which is contained in every l-semi–prime ideal in a near-field N. 
 
Note 2.9: by Bhandari and saxena [05], L(N) is the smallest ideal H of near-field N such that N / H  has no non-zero 
locally nilpotent ideals. 
 
Corollary 2.10: L(N) = (0)  if and only if N has no non-zero locally nilpotent ideals. 
 
Proof: obvious from the definition of L(N). 
 
Theorem 2.11: If N is a near-field and H is any ideal of near-field N, the Levitzki radical of the near-field H is 
H ∩ L(N). 
 
Proof: ⇒ Let K be any l-semi-prime ideal in a near-field N. C(K) is a w-system and it is easy to show that C(K) ∩ H is 
a w-system on H. Hence K ∩ H is an l-semi–prime ideal in H. From theorem 2.3 it now follows that, if we denote the l-
radical of the near-field H by P, then P ⊆ l(N) ∩ H. 
 
⇐ (converse) if h ∈ H ∩ l(N), then every l-system in a near-field N which contains h, also contains 0. Hence h ∈ H and 
H ∩ l(N) ⊆ P. We have therefore, shown that P = H ∩ l (N) = H ∩ L (N). This completes the proof. 
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