International Journal of Mathematical Archive-4(5), 2013, 288-295

A NOTE ON THE LEVITZKI RADICAL OF A NEAR FIELDS (LR - NF)

N. V. Nagendram^{*}

Assistant Professor (Mathematics), Department of Mathematics, Lakireddy Bali Reddy College of Engineering, Krishna District, Mylavaram 521 230, Andhra Pradesh India

T. V. Pradeep Kumar

Assistant Professor (Mathematics), Acharya Nagarjuna University college of Engineering Nagarjuna Nagar, Nambur, Guntur District 522 510, Andhra Pradesh India

(Received on: 10-04-13; Revised & Accepted on: 01-05-13)

ABSTRACT

In this paper we study and obtain some results on Levitzki radical of a near-field over a defined near-ring earlier. It is known that a near-field N the Levitzki radical L(N) i.e., the sum of all locally nilpotent ideals is the intersection of all the prime ideals P in near-field N such that N / P has zero Levitzki radical. The purpose of these note is to prove that L(N) is the intersection of a certain class of prime ideals called 1-prime ideals. Every 1-prime ideal P is such that N / Phas zero Levitzki radical. We also introduce an 1-prime ideal if and only if N / P has zero Levitzki radical of the nearfield as the intersection all the 1-semi-prime ideals.

Subject Classification Code: 1980 16A76; secondary 09 A 40.

Key words: Near-ring, Near-field, nilpotent ideals, l-system, l-semi-prime ideal, l-system [w-system], l-radical [w-radical].

SECTION 1 - INTRODUCTION - PRELIMINARIES AND DEFINITIONS

In this section we study about near-fields called as locally nilpotent ideals and Levitzki radical of near-field N. Also extending about the study of features like l-prime ideals, l-semi-prime ideals, l-system, w-system and l-radical, w-radical of a near-field N.

For that preliminaries and basic definitions required and are as follows:

Definition 1.1: A Near Field N with 1 is a semi simple, or Left semi simple to be precise. If the free left N-module underlying N is a sum of simple N-module.

Fig. 1

Definition 1.2: A Near field N with 1 is simple or left simple to be precise, if N is semi simple and any two simple left ideals (i.e., any two simple left sub near-fields of N) are isomorphic.

Corresponding author: N. V. Nagendram^{*}

Assistant Professor (Mathematics), Department of Mathematics, Lakireddy Bali Reddy College of Engineering, Krishna District, Mylavaram 521 230, Andhra Pradesh India

Note 1.3: A near-field N is semi simple if and only if there exists a near-field S and semi simple S-module M of finite length such that $N \cong \text{End}_{S}(M)$.

Note. 1.4: Let N be a semi simple near-field. Then N is isomorphic to a finite direct product Π N_i for all i=1, 2...,n where each N_i is a simple near-field.

Note 1.5: Let N be a simple near-field. Then there exists a division field D and a positive integer n such that $N \cong M_n$ (D).

Definition 1.6: Let N be a near-field with 1. Define radical of N to be the intersection of all maximal left ideals of N. The above defined definition uses left N-modules emphasized by me that η is the left radical of near-field N.

Note 1.7: The radial of a semi simple near-field is zero.

Note 1.8: Let N be a simple near-field. Then N has no non-trivial two sided ideals and its radical is zero.

Definition 1.9: A near-field is an algebraic system, $(N, +, \cdot)$ satisfying (i) (N, +) is a group, (ii) (N, \cdot) is a semi group and (iii) $(x + y) z = xz + yz \forall x, y, z \in N$. we abbreviate $(N, +, \cdot)$ as N a near-field.

Note 1.10: If P and Q are subsets of near-field N, we denote the set $\{pq / p \in P, q \in Q\}$ by PQ. For $n \in \eta$, the definition of Pⁿ is then clear.

Definition 1.11: A normal subgroup I of (N, +) is called an ideal of a near-field N ($I \triangleleft N$) if IN $\subseteq I$ and n(n' + i) - nn' $\in I$ for n,n' $\in N$ and all $i \in I$.

Definition 1.12: P of N is called a prime ideal if for any ideals L and M of N; $LM \subseteq P$ implies either $L \subseteq P$ or $M \subseteq P$.

Definition 1.13: An ideal P of a near-field N is called a semi-prime ideal if for any ideal L of N, $L^2 \subseteq P$ implies $L \subseteq P$.

Definition 1.14: by Bhandari and saxena [1], we call a near-field N locally nilpotent if every finite subset of N is nilpotent. Let us denote the sum of all locally nilpotent ideals in N by L (N).

Definition 1.15: The class of locally nilpotent near-fields is a hereditary radical class.

Definition 1.16: If $L(N) = \bigcap \{P \mid P \text{ is a prime ideal with } L(N/P) = (0) \}$ then it is called the Levitzki radical of near-field N and denoted by L(N).

Definition 1.17: By [01], now we define that, for associate near-fields, L(N) coincides with a certain class of prime ideals called l-prime ideals.

Definition 1.18: By [05], we define the intersection of all the l-semi-prime ideals of a near-field N coincides with L(N). We now extend some of these results to near-fields.

Definition 1.19: A set of elements L of a near-field is called an l-system if to every element $a \in L$ is assigned a finite number of elements $a_1, a_2, a_3, \dots, a_{n(a)}$ in the principal ideal generated by the element a, such that the following condition is satisfied. If $a, b \in L$ then for every n > 1 ($n \in \eta$) there exists a product of $N \ge n$ factors, consisting of a_i 's and b_i 's, which is in L. ϕ is defined to be an l-system.

Definition 1.20: An ideal P in a near-field N is an l-prime ideal if and only if the complement C(P) of P in N is an l-system.

Definition 1.21: A set of elements W of a near-field N is called w-system if to every element $a \in W$ is assigned a finite number of elements $a_{1,a_{2},a_{3},...,a_{n(a)}}$ such that the following is satisfied. If $a \in W$, then for every n > 1 ($n \in \eta$) there exists a product of $N \ge n$ factors, consisting of the a_{i} 's, which is in W. ϕ is defined to be an w-system.

Definition 1.22: An ideal Q of N is an l-semi-prime ideal if and only if the complement C(Q) of Q in near-field N is a w-system.

Fig. 8

Note 1.23: In a Near-field N, every l-prime ideal is an l-semi – prime ideal and every l-semi-prime ideal is a semi-prime ideal.

Definition 1.25: The l-radical [w-radical] l(H) [w(H)] of the ideal H of the near-field N is the set of all elements $r \in N$ with the property that every l-system [w-system] which contains r contains an element of A.

Definition 1.26: the l-radical [w-radical] of the near-field N is l((0)) [w((0))].

SECTION 2 MAIN RESULTS ON THE LEVITZKI RADICAL OF A NEAR-FIELD N

In this section, myself and guide Dr. T V Pradeep Kumar we study and obtained main results by considering, analyzing and extending features cum similarities of the rings with the help of Lemma 1 of vander walt [02]) to the near-fields. By making the necessary adjustments and using similar techniques proof follows for the near-fields mentioned here in this section by us which are very useful for future assumptions over near-rings of near-fields.

Theorem 2.1: Let H be any ideal in the near-field N. Then l(H) [w(H)] is the intersection of all the l-prime [l-semi-prime] ideals which contain H.

Proof: We shall prove the theorem for the l-radical of a near-field N. The proof for w-radical is quite analogous. Let $h \in l(H)$ and suppose $h \in C(K)$ where K is an l-prime ideal containing H. Now $C(K) \cap H = \Phi$ (empty), contradicting the definition of l(H). Thus l(H) is contained in the intersection of all the l-prime ideals containing H in near-field N.

Now $h \notin l(H)$. Hence by the definition of l(H), there exists an l-system L containing h such that $L \cap H = \Phi$. From lemma 1.1 there exists an l-prime ideal K such that $H \subseteq K$ and $H \cap K = \Phi$, i.e., $h \notin K$. thus h cannot be in the intersection of all the l-prime ideals in a near-field N containing H, and this completes the proof.

Lemma 2.2: Let L[W] be an l-system [w-system] in a near-field N, and H be an ideal which does not meet L[W]. Then H is contained in an ideal K which is maximal in the class of ideals not meeting L[W]. K necessarily an l-prime [l-semi-prime] ideal.

Proof: by using lemma 1.1 of N J Groenewald and P C Potgieter [06] the proof follows similarity to that for near-rings in A P J Wander walt,[01 & 02]. This completes the proof.

Fig. 9

Theorem 2.3: Let N be any near-field. L((0)) [w((0))] coincides with the levitzki radical L(N) of the near-field N.

Proof: refer theorem 2 [01].

Theorem 2.4: Let N be any near-field. If Q is an ideal in a near-field N, then Q is 1-semi-prime if and only if N/Q contains no non-zero locally nilpotent ideals.

Proof: suppose Q is 1-semi-prime. Hence C(Q) is a w-system. Let H/Q be any non-zero ideal of N/Q. since H/Q is non-zero there exists an $h \in H$, $h \notin Q$. Because Q is an 1-semi-prime ideal and $h \notin Q$ there exists elements $a_1, a_2, a_3, \dots, a_{n(a)} \in (a)$ such that for every n > 1 there is a product of $N \ge n$ factors consisting of the a_i 's which is not in Q. There thus exists a finite set $\{a_1+Q, a_2+Q, a_3+Q \dots a_{n(a)}+Q\} \subseteq H/Q$ such that $\{a_1+Q, a_2+Q, a_3+Q, \dots a_{n(a)}+Q\}^m \neq Q$ for every m. Hence H/Q is not locally nilpotent.

Now suppose N/Q contains no non-zero locally nilpotent ideals. Let $p \in C(Q)$ be an arbitrary. Since, $(0) \neq (p) / (p) \cap Q \leq N/Q$, it follows from our assumption that $(p) / (p) \cap Q$ is not locally nilpotent. Hence there exists $p_1, p_2, p_{3,..}, p_n \in (p)$, $p_i \notin Q$, such that $\{p_1+Q, p_2+Q, p_3+Q, \ldots, p_{n(a)}+Q\}$ is not nilpotent. Therefore, for every $p \in C(Q)$, we can find elements $p_1, p_2, p_{3,\ldots, m}, p_n \in (p)$ such that for every $n > 1(n \in \eta)$ there exists a product of $N \ge n$ factors consisting of the p_i 's which is on C(Q). Hence C(Q) is a w-system. This completes the proof.

Note 2.5: If $(S_k)_{k \in K}$ is a family of l-semi-prime ideals in a near-field N the $S = \bigcap_{k \in K} S_k$ is also a l-semi-prime ideal in a near-field N.

Note 2.6: any intersection of l-prime ideals is l-semi-prime.

Theorem 2.7: Let N be a near-field. Q is an l-semi-prime ideal in a near-field N if and only if L(Q) = Q.

Proof: \Rightarrow If L(Q) = Q it follows from Theorem 1.2 and the cor. Lemma 1.5 [06] that Q is an l-semi-prime ideal. \Leftarrow suppose now Q is an l-semi-prime ideal of a near-field N. from the definition of l(Q) we have Q \subseteq l(Q).

Furthermore, it follows from Th. 2.3 and Th. 2.4 that $l(Q) \subseteq Q$. This completes the proof.

We now make the following general conclusions. We have the following characterization of the Levitzki radical L(N) of the near-field N over near-rings.

Note 2.8: If N is any near-field, then L(N) coincides with the intersection of all l-semi-prime ideals in N, i.e., L(N) is an l-semi-prime ideal which is contained in every l-semi-prime ideal in a near-field N.

Note 2.9: by Bhandari and saxena [05], L(N) is the smallest ideal H of near-field N such that N / H has no non-zero locally nilpotent ideals.

Corollary 2.10: L(N) = (0) if and only if N has no non-zero locally nilpotent ideals.

Proof: obvious from the definition of L(N).

Theorem 2.11: If N is a near-field and H is any ideal of near-field N, the Levitzki radical of the near-field H is $H \cap L(N)$.

Proof: \Rightarrow Let K be any l-semi-prime ideal in a near-field N. C(K) is a w-system and it is easy to show that C(K) \cap H is a w-system on H. Hence K \cap H is an l-semi-prime ideal in H. From theorem 2.3 it now follows that, if we denote the l-radical of the near-field H by P, then P $\subseteq l(N) \cap H$.

 \Leftarrow (converse) if $h \in H \cap l(N)$, then every 1-system in a near-field N which contains h, also contains 0. Hence $h \in H$ and $H \cap l(N) \subseteq P$. We have therefore, shown that $P = H \cap l(N) = H \cap L(N)$. This completes the proof.

REFERENCES

[1] A P J Wander walt, 'on the Levitzki nil radical', Arch. Math. 16(1965), 22-24.

[2] A P J Wander walt, 'Prime ideals and nil radicals in near-rings' Arch. Math. 15(1964), 408-414.

[3] Gunter Pilz near-rings, North Holland, Amsterdam and New Yark, 1977.

[4] H J Le Roux 'contribution to the theory of radicals in associative rings' Doctoral thesis Univ. of Orange Free state, R.S.A, 1977 (In Afrikaans).

[5] M C Bhandari and P K saxena 'A note on Levitzki radical of a near-ring' kyangpook. Math. J. 20(1980), 183-188.

[6] N J Groenewald and P C Potgieter, 'A note on the Levitzki radical of near-ring', J. Austral. Math. Soc. Series A, 36(1984), 416-420.

[7] N V Nagendram, Dr. T V Pradeep Kumar "SOME PROBLEMS AND APPLICATIONS OF ORDINARY DIFFERENTIAL EQUATIONS TO HILBERT SPACES IN ENGINEERING MATHEMATICS (SP-ODE-HEM)" communicated and accepted by International Journal of Mathematical Archive (IJMA), ISSN NO.2229-5046, ref No. 4-43, March, 2013.

[8] N.V. Nagendram, 'Amalgamated Duplications of Some Special Near-Fields (AD-SP-N-F)', International Journal of Mathematical Archive (IJMA) -4(3), 2013, ISSN 2229-5046, Pp. 1-7.

[9] N.V. Nagendram, 'Infinite Sub-near-Fields of Infinite-near-fields and near-left almost-near-fields(IS-NF-INF-NL-A-NF)', International Journal of Mathematical Archive (IJMA) Published ISSN. No.2229 - 5046, Vol. no.4, no.2, pp. 90-99 (2013).

[10] N.V. Nagendram, Dr. T. V. Pradeep Kumar & Dr. Y. Venkateswara Reddy, 'Semi Simple near-fields generating from Algebraic K-theory(SS-NF-G-F-AK-T) ', International Journal of Mathematical Archive (IJMA) -3(12), 2012, ISSN 2229-5046, Pp. 1-7.

[11] N.V. Nagendram, Dr. T. V. Pradeep Kumar & Dr. Y. Venkateswara Reddy, 'A note on generating near fields effectively: Theorems from Algebraic-Theory-(G-NF-E-TFA-KT)', International Journal of Mathematical Archive - 3(10), 2012, ISSN 2229-5046, Pp. 3612-3619.

[12] N V Nagendram, B Ramesh paper "A Note on Asymptotic value of the Maximal size of a Graph with ranbow connection number 2*(AVM-SGR-CN2*)" published in an International Journal of Advances in Algebra(IJAA) Jordan @ Research India Publications, Rohini, New Delhi, ISSN 0973-6964 Volume 5, Number 2 (2012), pp. 103-112.

[13] N V Nagendram 1 and B Ramesh 2 on "Polynomials over Euclidean Domain in Noetherian Regular Delta Near Ring Some Problems related to Near Fields of Mappings (PED-NR-Delta-NR & SPR-NF)" published in an International Journal of Mathematical Archive (IJMA), An International Peer Review Journal for Mathematical, Science & Computing Professionals ISSN: 2229-5046, Vol.3(8), pp no.2998 – 3002 August, 2012.

[14] N V Nagendram research paper on "Near Left Almost Near-Fields (N-LA-NF)" communicated to for 2nd intenational conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mindreader publications, New Delhi on 23-04-2012 also for publication.

[15] N V Nagendram, T Radha Rani, Dr T V Pradeep Kumar and Dr Y V Reddy "A Generalized Near Fields and (m, n) Bi-Ideals over Noetherian regular Delta-near rings (GNF-(m, n) BI-NR-delta-NR)", communicated to International Journal of Theoretical Mathematics and Applications (TMA), Greece, Athens, dated 08-04-2012.

[16] N V Nagendram, Smt.T. Radha Rani, Dr T V Pradeep Kumar and Dr Y V Reddy "Applications of Linear Programming on optimization of cool freezers(ALP-on-OCF)" Published in International Journal of Pure and Applied Mathematics, IJPAM-2012-17-670 ISSN-1314-0744 Vol-75 No-3(2011).

[17] N V Nagendram "A Note on Algebra to spatial objects and Data Models(ASO-DM)" Published in international Journal American Journal of Mathematics and Mathematical Sciences, AJMMS,USA, Copyright @ Mind Reader Publications, Rohini, New Delhi, ISSN. 2250-3102, Vol.1, No.2 (Dec. 2012), pp. 233 – 247.

[18] N V Nagendram, Ch Padma, Dr T V Pradeep Kumar and Dr Y V Reddy "A Note on Pi-Regularity and Pi-S-Unitality over Noetherian Regular Delta Near Rings (PI-R-PI-S-U-NR-Delta-NR)" Published in International Electronic Journal of Pure and Applied Mathematics, IeJPAM-2012-17-669 ISSN-1314-0744 Vol-75 No-4(2011).

[19] N V Nagendram, Ch Padma, Dr T V Pradeep Kumar and Dr Y V Reddy "Ideal Comparability over Noetherian Regular Delta Near Rings(IC-NR-Delta-NR)" Published in International Journal of Advances in Algebra(IJAA, Jordan), ISSN 0973-6964 Vol:5, NO:1(2012), pp.43-53@ Research India publications, Rohini, New Delhi.

[20] N. V. Nagendram, S. Venu Madava Sarma and T. V. Pradeep Kumar, "A NOTE ON SUFFICIENT CONDITION OF HAMILTONIAN PATH TO COMPLETE GRPHS (SC-HPCG)", IJMA-2(11), 2011, pp.1-6.

[21] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On Noetherian Regular Delta Near Rings and their Extensions(NR-delta-NR)", IJCMS, Bulgaria, IJCMS-5-8-2011, Vol.6, 2011, No.6, 255-262.

[22] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On Semi Noehterian Regular Matrix Delta Near Rings and their Extensions(SNRMdeltaNR)", Jordan, @ResearchIndiaPublications, Advances in Algebra ISSN 0973-6964 Volume 4, Number 1 (2011), pp.51-55© Research India Publicationspp.51-55

[23] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On Boolean Noetherian Regular Delta Near Ring(BNR-delta-NR)s", International Journal of Contemporary Mathematics, IJCM Int. J. of Contemporary Mathematics, Vol. 2, No. 1-2, Jan-Dec 2011, Mind Reader Publications, ISSN No: 0973-6298, pp. 23-27.

[24] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On Bounded Matrix over a Noetherian Regular Delta Near Rings(BMNR-delta-NR)", Int. J. of Contemporary Mathematics, Vol. 2, No. 1-2, Jan-Dec 2011, Copyright @ Mind Reader Publications, ISSN No: 0973-6298, pp.11-16

[25] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On Strongly Semi Prime over Noetherian Regular Delta Near Rings and their Extensions(SSPNR-delta-NR)", Int. J. of Contemporary Mathematics, Vol. 2, No. 1, Jan-Dec 2011, Copyright @ Mind Reader Publications, ISSN No: 0973-6298, pp.69-74.

[26] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On IFP Ideals on Noetherian Regular Delta Near Rings(IFPINR-delta-NR)", Int. J. of Contemporary Mathematics, Vol. 2, No. 1-2, Jan-Dec 2011, Copyright @ Mind Reader Publications, ISSN No: 0973-6298, pp.43-46.

[27] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On Structure Thoery and Planar of Noetherian Regular delta-Near–Rings (STPLNR-delta-NR)", International Journal of Contemporary Mathematics, IJCM , accepted for international conference conducted by IJSMA, New Delhi December 18,2011, pp:79-83, Copyright @ Mind Reader Publications and to be published in the month of Jan 2011.

[28] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "On Matrix's Maps over Planar of Noetherian Regular delta-Near–Rings (MMPLNR-delta-NR)", International Journal of Contemporary Mathematics ,IJCM, accepted for international conference conducted by IJSMA, New Delhi December 18, 2011, pp:203-211, Copyright @ Mind Reader Publications and to be published in the month of Jan 2011.

[29] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "Some Fundamental Results on P- Regular delta-Near–Rings and their extensions (PNR-delta-NR)",International Journal of Contemporary Mathematics, IJCM, Jan-Dec 2011, Copyright @ Mind Reader Publications, ISSN:0973-6298, Vol.2, No.1-2,PP. 81-85.

[30] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "A Generalized ideal based-zero divisor graphs of Noetherian regular Delta-near rings (GIBDNR- d-NR)", International Journal of Theoretical Mathematics and Applications (TMA)accepted and published by TMA,Greece,Athens,vol.1, no.1, 2011, 59-71, ISSN: 1792-9687 (print), 1792-9709 (online), International Scientific Press, 2011.

[31] N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy "Inversive Localization of Noetherian regular Deltanear rings (ILNR- Delta-NR)", International Journal of Pure And Applied Mathematics published by IJPAM-2012-17-668, ISSN.1314-0744 vol-75 No-3, SOFIA, Bulgaria.

[32] N V Nagendram, S V M Sarma, Dr T V Pradeep Kumar "A note on Relations between Barnette and Sparse Graphs" publishd in an International Journal of Mathematical Archive (IJMA), An International Peer Review Journal for Mathematical, Science & Computing Professionals, 2(12), 2011, pg no.2538-2542, ISSN 2229 – 5046.

[33] N V Nagendram "On Semi Modules over Artinian Regular Delta Near Rings(S Modules-AR-Delta-NR) published in an International Journal of Mathematical Archive (IJMA)", An International Peer Review Journal for Mathematical, Science & Computing Professionals ISSN: 2229-5046, Vol.3(8), pp No.2991 - 2997, August, 2012.

[34] N VNagendram1, N Chandra Sekhara Rao2 "Optical Near field Mapping of Plasmonic Nano Prisms over Noetherian Regular Delta Near Fiedls (ONFMPN-NR-Delta-NR)" accepted for 2nd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 15 – 16 th December 2012 also for publication.

[35] N V Nagendram, K V S K Murthy(Yoga), "A Note on Present Trends on Yoga Apart From Medicine Usage and Its Applications(PTYAFMUIA)" published by International Journal of Advancements in Research & Technology, Volume 2, Issue2, February-2013 1 ISSN 2278-7763, pp no.1-12.

[36] N V Nagendram, B Ramesh, Ch Padma, T Radha Rani and S V M Sarma research article "A Note on Finite Pseudo Artinian Regular Delta Near Fields(FP AR-Delta-NF)" Published by International Journal of Advances in Algebra, IJAA, Jordan ISSN 0973-6964 Volume 5, Number 3 (2012), pp. 131-142.

[37] Y V Reddy and C.V.L.N. Murthy, "on strongly regular near-rings" Proc. Edinburgh Math. Soc. 27(1984), pp. 62-64.

Source of support: Nil, Conflict of interest: None Declared