International Journal of Mathematical Archive-4(5), 2013, 251-273
 IMA Available online through www.ijma.info ISSN 2229-5046

SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES

T. Veerapandi
Associate Professor of Mathematics, P. M. T. College, Melaneelithanallur-627953, India
T. Thiripura Sundari*
Department of Mathematics, Sri K. G. S Arts College. Srivaikuntam, India
J. Paulraj Joseph
Associate Professor of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India

(Received on: 04-04-13; Revised \& Accepted on: 25-04-13)

Abstract

In this paper we prove some common fixed point theorems for generalized contraction mappings in two complete metric spaces.

Keywords and Phrases: fixed point, common fixed point and complete metric space.
AMS Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

The study of common fixed point theorems satisfying contractive type mappings and non-expansive mappings has been a very active field of research during the last three decades. In 1922, the polish mathematician, Banach, proved his famous Banach fixed point theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. This theorem provides a technique for solving a variety of applied problems in mathematical sciences and engineering. Later many authors proved fixed point theorems in different ways. Some of them ([1]-[6]), [9]) proved fixed point theorems for contractive type mappings and non-expansive mappings. In [7], Fisher proved a related fixed point theorem in two metric spaces. Recently many authors [8], [10], proved common fixed point theorems in various ways. The main purpose of this paper is to present some common fixed point theorems in two complete metric spaces. The following definitions are necessary for present study.

Definition 1.2: A sequence $\left\{x_{n}\right\}$ in a metric space (X, d) is said to be convergent to a point $x \in X$ if given $\in>0$ there exists a positive integer n_{0} such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)<\in$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.

Definition1.3: A sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ in a metric space (X, d) is said to be a Cauchy sequence in X if given $\in>0$ there exists a positive integer n_{0} such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)<\in$ for all $\mathrm{m}, \mathrm{n} \geq \mathrm{n}_{0}$.

Definition1.4: A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point in X .
Definition1.5: Let X be a non-empty set and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be a map. An element x in X is called a fixed point of X if $\mathrm{f}(\mathrm{x})=\mathrm{x}$.

Definition1.6. Let X be a non-empty set and f , $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two maps. An element x in X is called a common fixed point of f and g if $f(x)=g(x)=x$.

2. MAIN RESULTS

Theorem 2.1: Let (X, d) and (Y, e) be complete metric spaces. Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$\mathrm{d}\left(\mathrm{SAx}, \mathrm{TBx} x^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{x}, \mathrm{SAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TBx} x^{\prime}\right), \mathrm{e}\left(\mathrm{Ax}, B \mathrm{~B}^{\prime}\right), \frac{d\left(x, T B x^{\prime}\right)}{2}, \frac{d\left(S A x, x^{\prime}\right)}{2}\right\}$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$\mathrm{e}\left(\mathrm{BS}_{2}, \mathrm{ATy}^{\prime}\right) \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}(\mathrm{y}, \mathrm{BSy}), \mathrm{e}\left(\mathrm{y}^{\prime}\right.\right.$, ATy $\left.^{\prime}\right), \mathrm{d}\left(\right.$ Sy, $\left.\left.\mathrm{Ty}^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(B S y, y^{\prime}\right)}{2}\right\}$
for all x, x^{\prime} in X and y, y^{\prime} in Y where $0 \leq c_{1}<1$ and $0 \leq c_{2}<1$. If one of the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, $\mathrm{Az}=\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by
$A x_{2 n-2}=y_{2 n-1}, S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n ;} T y_{2 n}=x_{2 n}$ for $n=1,2,3 \ldots$.
Now we have
$d\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)=\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)$

$$
\begin{aligned}
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx} \mathrm{Tn}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{d\left(x_{2 n}, T B x_{2 n-1}\right)}{2}, \frac{d\left(S A x_{2 n}, x_{2 n-1}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{d\left(x_{2 n}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n+1}, x_{2 n-1}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), 0, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}
\end{aligned}
$$

Now
$e\left(y_{2 n}, y_{2 n+1}\right)=e\left(B S y_{2 n-1}, A T y_{2 n}\right)$

$$
\begin{align*}
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n}, A T y_{2 n}\right), d\left(S_{2 n-1}, \operatorname{Ty}_{2 n}\right), \frac{e\left(y_{2 n-1}, A T y_{2 n}\right)}{2}, \frac{e\left(B S y_{2 n-1}, y_{2 n}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n+1}\right)}{2}, \frac{e\left(y_{2 n}, y_{2 n}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}, 0\right\} \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} \tag{3}
\end{align*}
$$

Hence
$\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right) \leq \mathrm{c}_{1} \mathrm{C}_{2} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}$
We have

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n-1}\right) & =d\left(x_{2 n-1}, x_{2 n}\right) \\
& =d\left(S A x_{2 n-2}, \operatorname{TBx}_{2 n-1}\right) \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n-2}, S A x_{2 n-2}\right), d\left(x_{2 n-1}, T B x_{2 n-1}\right), e\left(A x_{2 n-2}, \operatorname{Bx}_{2 n-1}\right), \frac{d\left(x_{2 n-2}, T B x_{2 n-1}\right)}{2}, \frac{d\left(\operatorname{SAx}_{2 n-2}, x_{2 n-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \frac{d\left(x_{2 n-2}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n-1}, x_{2 n-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \frac{d\left(x_{2 n-2}, x_{2 n-1}\right)+d\left(x_{2 n-1}, x_{2 n}\right)}{2}, 0\right\} \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), e\left(y_{2 n-1}, y_{2 n}\right)\right\}
\end{aligned}
$$

Now

$$
e\left(y_{2 n}, y_{2 n-1}\right)=e\left(B S y_{2 n-1}, A T y_{2 n-2}\right)
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$$
\begin{align*}
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n-2}, A T y_{2 n-2}\right), d\left(S y_{2 n-1}, T y_{2 n-2}\right), \frac{e\left(y_{2 n-1},\right.}{} A T y_{2 n-2}\right) \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), \frac{e\left(y_{2 n-1}, y_{2 n-2}\right)}{2}\right\} \\
& \left.\left.\leq y_{2 n-1}\right), \frac{e\left(y_{2 n}, y_{2 n-2}\right)}{2}\right\} \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), 0, \frac{e\left(y_{2 n}, y_{2 n-1}\right)+e\left(y_{2 n-1}, y_{2 n-2}\right)}{2}\right\} \tag{5}\\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), d\left(x_{2 n-1}, x_{2 n-2}\right)\right\}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)\right\} \tag{6}
\end{equation*}
$$

From inequalities (3), (4), (5) and (6), we have
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}\left(\mathrm{c}_{2}\right)^{\mathrm{n}} . \max \left\{\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
$\mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right) \leq \mathrm{c}_{2}{ }^{\mathrm{n}} . \max \left\{\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
Thus $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are Cauchy sequences in (X, d) and (Y, e) respectively. Since (X, d) and (Y, e) are complete, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point z in X and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converges to a point w in Y .

Suppose A is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Az}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $\mathrm{SAz}=\mathrm{z}$.
Suppose $\mathrm{SAz} \neq \mathrm{z}$.
We have

$$
\begin{aligned}
\mathrm{d}(\mathrm{SAz}, \mathrm{z}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAz}, \mathrm{TBx} \mathrm{rn}^{1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~TB} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBx} \mathrm{~TB}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{SAz}), 0,0,0, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{SAz}) \\
& <\mathrm{d}(\mathrm{z}, \mathrm{SAz}) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus SAz = z.
Hence Sw = z. (Since Az = w)
Now we prove BSw = w.
Suppose BSw $\neq \mathrm{w}$.

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.We have

$$
\begin{aligned}
\mathrm{e}(\mathrm{BSw}, \mathrm{w}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \operatorname{ATy}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \max \left\{\mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \operatorname{ATy}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{Siw}_{\mathrm{w}}, \mathrm{Ty}_{2 \mathrm{n}}\right), \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{ATy}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \frac{\mathrm{e}(\mathrm{w}, \mathrm{w})}{2}, \frac{\mathrm{e}(\mathrm{BSw}, \mathrm{w})}{2}\right\} \\
& \left.<\mathrm{e}(\mathrm{w}, \mathrm{BSw}) \quad \text { (Since } 0 \leq \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus BSw = w.
Hence Bz = w. (Since Sw = z)
Now we prove $\mathrm{TBz}=\mathrm{z}$.
Suppose TBz $\neq \mathrm{z}$.

$$
\begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{TBz}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{TBz}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBz}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bz}\right), \frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}(\mathrm{w}, \mathrm{Bz}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{TBz})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{z})}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{0, \mathrm{~d}(\mathrm{z}, \mathrm{TBz}), 0, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}, 0\right\} \\
& <\mathrm{d}(\mathrm{z}, \mathrm{TBz}) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{TBz}=\mathrm{z}$.
Hence Tw = z. (Since $\mathrm{Bz}=\mathrm{w}$)
Now we prove ATw = w.
Suppose ATw $\neq \mathrm{w}$.

$$
\begin{aligned}
& e(w, A T w)=\lim _{n \rightarrow \infty} e\left(y_{2 n}, A T w\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{ATw}\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} . \max \left\{e\left(y_{2 n-1}, B S y_{2 n-1}\right), e(w, A T w), d\left(\mathrm{Sy}_{2 \mathrm{n}-1}, T w\right), \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, A T w\right)}{2}, \frac{\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{w}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e(w, w), e(w, A T w), d(z, z), \frac{e(w, A T w)}{2}, \frac{e(w, w)}{2}\right\} \\
& =c_{2} . \max \left\{0, \mathrm{e}(\mathrm{w}, \mathrm{ATw}), 0, \frac{\mathrm{e}(\mathrm{w}, \mathrm{ATw})}{2}, 0\right\} \\
& <\mathrm{e}\left(\mathrm{w}, \text { ATw) (Since } 0 \leq \mathrm{c}_{2}<1\right. \text {) }
\end{aligned}
$$

Which is a contradiction.
Thus ATw = w.
The same results hold if one of the mappings B, S and T is continuous.

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Uniqueness: Let z^{\prime} be another common fixed point of SA and TB in X, w^{\prime} be another common fixed point of BS and AT in Y.

We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{SAz}, \mathrm{TBz}{ }^{\prime}\right)$

$$
\begin{aligned}
& \leq c_{1} \cdot \max \left\{d(z, S A z), d\left(z^{\prime}, T B z^{\prime}\right), e\left(A z, B z^{\prime}\right), \frac{d\left(z, T B z^{\prime}\right)}{2}, \frac{d\left(S A z, z^{\prime}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d(z, z), d\left(z^{\prime}, z^{\prime}\right), e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}, \frac{d\left(z, z^{\prime}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d(z, z), d\left(z^{\prime}, z^{\prime}\right), e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{0,0, e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}\right\} \\
& \leq e\left(w, w^{\prime}\right) \\
e\left(w, w^{\prime}\right) & =e\left(B S w, A T w^{\prime}\right) \\
& \leq c_{2} \cdot \max \left\{e(w, B S w), e\left(w^{\prime}, A T w^{\prime}\right), d\left(S w, T w^{\prime}\right), \frac{e\left(w, A T w^{\prime}\right)}{2}, \frac{e\left(B S w, w^{\prime}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e(w, w), e\left(w^{\prime}, w^{\prime}\right), d\left(z, z^{\prime}\right), \frac{e\left(w, w^{\prime}\right)}{2}, \frac{e\left(w, w^{\prime}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{0,0, d\left(z, z^{\prime}\right), \frac{e\left(w, w^{\prime}\right)}{2}\right\} \\
& <d\left(z, z^{\prime}\right)
\end{aligned}
$$

Hence $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$
Which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique common fixed point of BS and AT.

Remark: 2.2: If we put $\mathrm{A}=\mathrm{B}, \mathrm{S}=\mathrm{T}$ in the above theorem 2.1, we get the following corollary.
Corollary 2.3: Let (X, d) and (Y, e) be two complete metric spaces. Let A be a mapping of X into Y and T be a mapping of Y into X satisfying the inequalities.
$\mathrm{d}\left(\mathrm{TAx}, \mathrm{TAx}{ }^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{x}, \mathrm{TAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TAx}\right), \mathrm{e}\left(A x, A x^{\prime}\right), \frac{d\left(x, T A x^{\prime}\right)}{2}, \frac{d\left(T A x, x^{\prime}\right)}{2}\right\}$
$\mathrm{e}\left(\mathrm{ATy}, \mathrm{ATy}^{\prime}\right) \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}(\mathrm{y}, \mathrm{ATy}), \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right), \mathrm{d}\left(\mathrm{Ty}, \mathrm{Ty} y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(A T y, y^{\prime}\right)}{2}\right\}$
for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A and T is continuous, then TA has a unique fixed point z in X and AT have a unique fixed point w in Y . Further, $\mathrm{Az}=\mathrm{w}$ and $\mathrm{Tw}=\mathrm{z}$.

Theorem2.4: Let (X, d) and (Y , e) be complete metric spaces. Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$d\left(S A x, T B x^{\prime}\right) \leq c_{1} \cdot \max \left\{d\left(x, x^{\prime}\right), d(x, S A x), d\left(x^{\prime}, T B x^{\prime}\right), e\left(A x, B x^{\prime}\right), \frac{d\left(x, T B x^{\prime}\right)+d\left(S A x, x^{\prime}\right)}{2}\right\}$
$e\left(B S y, A T y^{\prime}\right) \leq c_{2}$. max $\left\{e\left(y, y^{\prime}\right), e(y, B S y), e\left(y^{\prime}, A T y^{\prime}\right), d\left(S y, T y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)+e\left(B S y, y^{\prime}\right)}{2}\right\}$
for all x, x^{\prime} in X and y, y^{\prime} in Y where $0 \leq c_{1}<1$ and $0 \leq c_{2}<1$. If one of the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, $\mathrm{Az}=\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
A x_{2 n-2}=y_{2 n-1}, S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n ;} T y_{2 n}=x_{2 n} \text { for } n=1,2,3 \ldots
$$

Now we have
$d\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)=\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)$

$$
\begin{aligned}
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, S A x_{2 n}\right), d\left(x_{2 n-1}, T B x_{2 n-1}\right), e\left(A x_{2 n}, B x_{2 n-1}\right), \frac{d\left(x_{2 n}, T B x_{2 n-1}\right)+d\left(S A x_{2 n}, x_{2 n-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n+1}, y_{2 n}\right), \frac{d\left(x_{2 n}, x_{2 n}\right)+d\left(x_{2 n+1}, x_{2 n-1}\right)}{2}\right\} \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n+1}, y_{2 n}\right), \frac{d\left(x_{2 n+1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)}{2}\right\} \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n+1}, y_{2 n}\right)\right\}
\end{aligned}
$$

Now

$$
\begin{align*}
e\left(y_{2 n}, y_{2 n+1}\right) & =e\left(B S y_{2 n-1}, A T y_{2 n}\right) \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n}, A T y_{2 n}\right), d\left(S_{2 n-1}, T y_{2 n}\right), \frac{e\left(y_{2 n-1}, A T y_{2 n}\right)+e\left(B S y_{2 n-1}, y_{2 n}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n+1}\right)+e\left(y_{2 n}, y_{2 n}\right)}{2}\right\} \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}\right\} \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} \tag{3}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \tag{4}
\end{equation*}
$$

we have

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n-1}\right)= & d\left(x_{2 n-1}, x_{2 n}\right) \\
= & d\left(S A x_{2 n-2}, \operatorname{TBx}_{2 n-1}\right) \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, S A x_{2 n-2}\right), d\left(x_{2 n-1}, T B x_{2 n-1}\right), e\left(A x_{2 n-2}, B x_{2 n-1}\right),\right. \\
& \left.\frac{d\left(x_{2 n-2}, T B x_{2 n-1}\right)+d\left(S_{2 n-2}, x_{2 n-1}\right)}{2}\right\} \\
= & c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), \frac{d\left(x_{2 n-2}, x_{2 n}\right)+d\left(x_{2 n-1}, x_{2 n-1}\right)}{2}\right\} \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), \frac{d\left(x_{2 n-2}, x_{2 n-1}\right)+d\left(x_{2 n-1}, x_{2 n}\right)}{2}\right\} \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), e\left(y_{2 n-1}, y_{2 n}\right)\right\}
\end{aligned}
$$

Now

$$
\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right)=\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \text { ATy }_{2 \mathrm{n}-2}\right)
$$

$$
\leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n-2}, A T y_{2 n-2}\right), d\left(S y_{2 n-1}, T y_{2 n-2}\right)\right.
$$

$$
\left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{ATy}_{2 \mathrm{n}-2)}+\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)\right.}{2}\right\}
$$

$$
=c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), \frac{e\left(y_{2 n-1}, y_{2 n-1}\right)+e\left(y_{2 n}, y_{2 n-2}\right)}{2}\right\}
$$

$$
\leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), \frac{e\left(y_{2 n}, y_{2 n-1}\right)+e\left(y_{2 n-1}, y_{2 n-2}\right)}{2}\right\}
$$

$$
\begin{equation*}
\leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right)\right\} \tag{5}
\end{equation*}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)\right\} \tag{6}
\end{equation*}
$$

from inequalities (3), (4), (5) and (6), we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}\left(\mathrm{c}_{2}\right)^{\mathrm{n}} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \\
& \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right) \leq \mathrm{c}_{2}{ }^{\mathrm{n}} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Thus $\left\{\mathrm{X}_{n}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are Cauchy sequences in (X, d) and (Y, e) respectively. Since (X, d) and (Y, e) are complete, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point z in X and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converges to a point w in Y .

Suppose A is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Az}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $\mathrm{SAz}=\mathrm{z}$. .
Suppose $\mathrm{SAz} \neq \mathrm{z}$.
We have

$$
\begin{aligned}
\mathrm{d}(\mathrm{SAz}, \mathrm{z}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAz}, \mathrm{TBx}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~TB} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~TB} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{z})+\mathrm{d}(\mathrm{SAz}, \mathrm{z})}{2}\right\} \\
& =\mathrm{c}_{1} . \max \left\{0, \mathrm{~d}(\mathrm{z}, \mathrm{SAz}), 0,0, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{SAz}) \\
& <\mathrm{d}(\mathrm{z}, \mathrm{SAz}) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.

Thus SAz = z.
Hence $\mathrm{Sw}=\mathrm{z}$. $($ Since $\mathrm{Az}=\mathrm{w})$
Now we prove BSw = w.
Suppose BSw $\neq \mathrm{w}$.
We have

$$
\begin{aligned}
e(B S w, w) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \operatorname{ATy}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \operatorname{ATy}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{Sw}, \mathrm{Ty}_{2 \mathrm{n}}\right), \frac{\mathrm{e}\left(\mathrm{w}, \operatorname{ATy}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{\mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \frac{\mathrm{e}(\mathrm{w}, \mathrm{w})+\mathrm{e}(\mathrm{BSw}, \mathrm{w})}{2}\right\} \\
& <\mathrm{e}(\mathrm{w}, \mathrm{BSw}) \quad\left(\text { Since } 0 \leq c_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus BSw = w.

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Hence $B z=w .($ Since $S w=z)$
Now we prove $\mathrm{TBz}=\mathrm{z}$.
Suppose TBz $\neq \mathrm{z}$.
$\mathrm{d}(\mathrm{z}, \mathrm{TBz})=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{TBz}\right)$
$=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBz}\right)$
$\leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bz}\right), \frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)}{2}\right\}$
$=c_{1} \cdot \max \left\{d(z, z), d(z, z), d(z, T B z), e(w, B z), \frac{d(z, T B z)+d(z, z)}{2}\right\}$
$=c_{1} \cdot \max \left\{0,0, d(z, T B z), 0, \frac{d(z, T B z)}{2}\right\}$
$<\mathrm{d}\left(\mathrm{z}\right.$, TBz) \quad (Since $0 \leq \mathrm{c}_{1}<1$)
Which is a contradiction.
Thus TBz = z.
Hence $\mathrm{Tw}=\mathrm{z}$. $\quad($ Since $\mathrm{Bz}=\mathrm{w})$
Now we prove ATw = w.
Suppose ATw $\neq \mathrm{w}$.

$$
\begin{aligned}
& e(w, A T w)=\lim _{n \rightarrow \infty} e\left(y_{2 n}, \text { ATw }\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{ATw}\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} \cdot \max \left\{e\left(y_{2 n-1}, w\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e(w, A T w), d\left(S y_{2 n-1}, T w\right), \frac{e\left(y_{2 n-1}, A T w\right)+e\left(B S y_{2 n-1}, w\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e(w, w), e(w, w), e(w, A T w), d(z, z), \frac{e(w, A T w)+e(w, w)}{2}\right\} \\
& <\mathrm{e}(\mathrm{w}, \mathrm{ATw}) \quad \text { (Since } 0 \leq \mathrm{c}_{2}<1 \text {) }
\end{aligned}
$$

Which is a contradiction.
Thus ATw = w.
The same results hold if one of the mappings B, S and T is continuous.
Uniqueness: Let z^{\prime} be another common fixed point of SA and TB in X, w^{\prime} be another common fixed point of BS and AT in Y.

We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{SAz}, \mathrm{TBz}^{\prime}\right)$

$$
\begin{aligned}
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{TB} z^{\prime}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bz} z^{\prime}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBz}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{z}^{\prime}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bz}^{\prime}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)+\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), 0,0, \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right\} \\
& \leq \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$$
\begin{aligned}
\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right) & =\mathrm{e}\left(\mathrm{BSw}, A T w^{\prime}\right) \\
& \leq c_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}\left(\mathrm{w}^{\prime}, A T \mathrm{w}^{\prime}\right), \mathrm{d}\left(\mathrm{Sw}, \mathrm{~T} w^{\prime}\right), \frac{\mathrm{e}\left(\mathrm{w}, A T \mathrm{w}^{\prime}\right)+\mathrm{e}\left(\mathrm{BS} \mathrm{w}, \mathrm{w}^{\prime}\right)}{2}\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}\left(\mathrm{w}^{\prime}, \mathrm{w}^{\prime}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)+\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), 0,0, \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)\right\} \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$
Which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique common fixed point of BS and AT.

Remark 2.5: If we put $\mathrm{A}=\mathrm{B}, \mathrm{S}=\mathrm{T}$ in the above theorem 2.4 , we get the following corollary.
Corollary 2.6: Let (X, d) and (Y, e) be two complete metric spaces. Let A be a mapping of X into Y and T be a mapping of Y into X satisfying the inequalities.
$d\left(T A x, T A x^{\prime}\right) \leq c_{1} . \max \left\{d\left(x, x^{\prime}\right), d(x, T A x), d\left(x^{\prime}, T B x^{\prime}\right), e\left(A x, A x^{\prime}\right), \frac{d\left(x, T A x^{\prime}\right)+d\left(T A x, x^{\prime}\right)}{2}\right\}$
$e\left(A T y, A T y^{\prime}\right) \leq c_{2} \cdot \max \left\{e\left(y, y^{\prime}\right), e(y, A T y), e\left(y^{\prime}, A T y^{\prime}\right), d\left(T y, T y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)+e\left(A T y, y^{\prime}\right)}{2}\right\}$
for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and y, y in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A and T is continuous, then TA has a unique fixed point z in X and AT have a unique fixed point w in Y . Further, $\mathrm{Az}=\mathrm{w}$ and $\mathrm{Tw}=\mathrm{z}$.

Theorem 2.7: Let (X, d) and (Y, e) be complete metric spaces. Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$\mathrm{d}\left(\mathrm{SAx}, \mathrm{TBx} x^{\prime}\right) \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{SAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, T B x^{\prime}\right), \mathrm{e}\left(A x, B x^{\prime}\right), \frac{d\left(x, T B x^{\prime}\right)}{2}, \frac{d\left(S A x, x^{\prime}\right)}{2}\right\}$
$e\left(B S y, A T y^{\prime}\right) \leq c_{2}$. $\max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}(\mathrm{y}, \mathrm{BSy}), \mathrm{e}\left(\mathrm{y}^{\prime}\right.\right.$, ATy $\left.\left.^{\prime}\right), \mathrm{d}\left(S y, T y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(B S y, y^{\prime}\right)}{2}\right\}$
for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, $\mathrm{Az}=\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
A x_{2 n-2}=y_{2 n-1}, S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n ;} T y_{2 n}=x_{2 n} \text { for } n=1,2,3 \ldots
$$

Now we have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right) & =\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBx}_{2 \mathrm{n}-1}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx} \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{d\left(x_{2 n}, T B x_{2 n-1}\right)}{2}, \frac{d\left(S A x_{2 n}, x_{2 n-1}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{d\left(x_{2 n}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n+1}, x_{2 n-1}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), 0, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Now
$e\left(y_{2 n}, y_{2 n+1}\right)=e\left(B S y_{2 n-1}, A T y_{2 n}\right)$

$$
\begin{align*}
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n}, A T y_{2 n}\right), d\left(S y_{2 n-1}, T_{y_{2 n}}\right), \frac{e\left(y_{2 n-1}, A T y_{2 n}\right)}{2},\right. \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n+1}\right)}{2}, \frac{e\left(y_{2 n}, y_{2 n}\right)}{2}\right\} \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}, 0\right\} \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \tag{4}
\end{equation*}
$$

we have

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n-1}\right)= & d\left(x_{2 n-1}, x_{2 n}\right) \\
= & d\left(S A x_{2 n-2}, T B x_{2 n-1}\right) \\
\leq & c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, S A x_{2 n-2}\right), d\left(x_{2 n-1}, T B x_{2 n-1}\right), e\left(A_{2 n-2}, B_{2 n-1}\right),\right. \\
& \left.\frac{d\left(x_{2 n-2}, T B x_{2 n-1}\right)}{2}, \frac{d\left(S A x_{2 n-2}, x_{2 n-1}\right)}{2}\right\} \\
= & c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \frac{d\left(x_{2 n-2}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n-1}, x_{2 n-1}\right)}{2}\right\} \\
\leq & c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \frac{d\left(x_{2 n-2}, x_{2 n-1}\right)+d\left(x_{2 n-1}, x_{2 n}\right)}{2}, 0\right\} \\
\leq & c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), e\left(y_{2 n-1}, y_{2 n}\right)\right\}
\end{aligned}
$$

Now

$$
\begin{align*}
& e\left(y_{2 n}, y_{2 n-1}\right)=e\left(B S y_{2 n-1}, A T y_{2 n-2}\right) \\
& \leq c_{2} . \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n-2}, A T y_{2 n-2}\right), d\left(S y_{2 n-1}, T y_{2 n-2}\right),\right. \\
& \left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{ATy}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), \frac{e\left(y_{2 n-1}, y_{2 n-1}\right)}{2}, \frac{e\left(y_{2 n}, y_{2 n-2}\right)}{2}\right\} \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), 0, \frac{e\left(y_{2 n}, y_{2 n-1}\right)+e\left(y_{2 n-1}, y_{2 n-2}\right)}{2}\right\} \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right)\right\} \tag{5}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)\right\} \tag{6}
\end{equation*}
$$

from inequalities (3), (4), (5) and (6), we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}\left(\mathrm{c}_{2}\right)^{\mathrm{n}} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \\
& \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right) \leq\left(\mathrm{c}_{2}\right)^{\mathrm{n}} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Thus $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are Cauchy sequences in (X, d) and (Y, e) respectively. Since (X, d) and (Y, e) are complete, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point z in X and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converges to a point w in Y .

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Suppose A is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Az}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $\mathrm{SAz}=\mathrm{z}$. .
Suppose $\mathrm{SAz} \neq \mathrm{z}$.
We have

$$
\begin{aligned}
\mathrm{d}(\mathrm{SAz}, \mathrm{z}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAz}, \mathrm{TBx}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~TB}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, T B \mathrm{~T}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{0, \mathrm{~d}(\mathrm{z}, \mathrm{SAz}), 0,0,0, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{SAz}) \\
& <\mathrm{d}(\mathrm{z}, \mathrm{SAz}) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{SAz}=\mathrm{z}$.
Hence Sw = z. (Since Az = w)

Now we prove BSw = w.
Suppose BSw $\neq \mathrm{w}$.
We have

$$
\begin{aligned}
\mathrm{e}(\mathrm{BSw}, \mathrm{w}) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \operatorname{ATy}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \operatorname{ATy}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{Siw}_{\mathrm{n}}, \mathrm{Ty}_{2 \mathrm{n}}\right), \frac{\mathrm{e}\left(\mathrm{w}, \operatorname{ATy}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}\right\} \\
& =\mathrm{c}_{2} . \max \left\{\mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \frac{\mathrm{e}(\mathrm{w}, \mathrm{w})}{2}, \frac{\mathrm{e}(\mathrm{BSw}, \mathrm{w})}{2}\right\} \\
& <\mathrm{e}(\mathrm{w}, \mathrm{BSw}) \quad\left(\text { Since } 0 \leq c_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus BSw = w.
Hence $B z=w$. (Since $S w=z$)
Now we prove $\mathrm{TBz}=\mathrm{z}$.

$$
\begin{aligned}
& \text { Suppose } \mathrm{TBz} \neq \mathrm{z} . \\
& \begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{TBz}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{TBz}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBz}\right)
\end{aligned}
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$$
\begin{aligned}
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bz}\right), \frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}(\mathrm{w}, \mathrm{Bz}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{TBz})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{z})}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{0,0, \mathrm{~d}(\mathrm{z}, \mathrm{TBz}), 0, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}, 0\right\} \\
& <\mathrm{d}(\mathrm{z}, \mathrm{TBz}) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus TBz = z.
Hence $\mathrm{Tw}=\mathrm{z}$. $\quad($ Since $\mathrm{Bz}=\mathrm{w})$
Now we prove ATw = w.
Suppose ATw $\neq \mathrm{w}$.

$$
\begin{aligned}
& e(w, A T w)=\lim _{n \rightarrow \infty} e\left(y_{2 n}, A T w\right) \\
& =\lim _{n \rightarrow \infty} e\left(\text { BSy }_{2 n-1}, A T w\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} \cdot \max \left\{e\left(y_{2 n-1}, w\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e(w, A T w), d\left(S y_{2 n-1}, T w\right), \frac{e\left(y_{2 n-1}, A T w\right)}{2}, \frac{e\left(B S y_{2 n-1}, w\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e(w, w), e(w, w), e(w, A T w), d(z, z), \frac{e(w, A T w)}{2}, \frac{e(w, w)}{2}\right\} \\
& =c_{2} \cdot \max \left\{0,0, e(w, A T w), 0, \frac{e(w, A T w)}{2}, 0\right\} \\
& <\mathrm{e}(\mathrm{w}, \mathrm{ATw}) \text { (Since } 0 \leq \mathrm{c}_{2}<1 \text {) }
\end{aligned}
$$

Which is a contradiction.
Thus ATw = w.
The same results hold if one of the mappings B, S and T is continuous.
Uniqueness: Let z^{\prime} be another common fixed point of SA and TB in X, w^{\prime} be another common fixed point of BS and AT in Y.

We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{SAz}, \mathrm{TBz}^{\prime}\right)$

$$
\begin{aligned}
& \leq c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d(z, S A z), d\left(z^{\prime}, T B z^{\prime}\right), e\left(A z, B z^{\prime}\right), \frac{d\left(z, T B z^{\prime}\right)}{2}, \frac{d\left(S A z, z^{\prime}\right)}{2}\right\} \\
& \leq c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d(z, z), d\left(z^{\prime}, z^{\prime}\right), e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}, \frac{d\left(z, z^{\prime}\right)}{2}\right\} \\
&=c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d(z, z), d\left(z^{\prime}, z^{\prime}\right), e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}\right\} \\
&=c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), 0,0, e\left(w, w^{\prime}\right)\right\} \\
& \leq e\left(w, w^{\prime}\right) \\
& e\left(w, w^{\prime}\right)=e\left(B S w, A T w^{\prime}\right) \\
& \leq c_{2} \cdot \max \left\{e\left(w, w^{\prime}\right), e(w, B S w), e\left(w^{\prime}, A T w^{\prime}\right), d\left(S w, T w^{\prime}\right), \frac{e\left(w, A T w^{\prime}\right)}{2}, \frac{e\left(B S w, w^{\prime}\right)}{2}\right\} \\
&=c_{2} \cdot \max \left\{e\left(w, w^{\prime}\right), e(w, w), e\left(w^{\prime}, w^{\prime}\right), d\left(z, z^{\prime}\right), \frac{e\left(w, w^{\prime}\right)}{2}, \frac{e\left(w, w^{\prime}\right)}{2}\right\}
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$$
\begin{aligned}
& =c_{2} \cdot \max \left\{e\left(w, w^{\prime}\right), 0,0, d\left(z, z^{\prime}\right), \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}\right\} \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$
Which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique common fixed point of BS and AT.

Remark 2.8: If we put $\mathrm{A}=\mathrm{B}, \mathrm{S}=\mathrm{T}$ in the above theorem 2.7, we get the following corollary.
Corollary 2.9: Let (X, d) and (Y , e) be two complete metric spaces. Let A be a mapping of X into Y and T be a mapping of Y into X satisfying the inequalities.
$\mathrm{d}\left(\mathrm{TAx}, T A x^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{TAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TAx}\right), \mathrm{e}\left(A x, A x^{\prime}\right), \frac{d\left(x, T A x^{\prime}\right)}{2}, \frac{d\left(T A x, x^{\prime}\right)}{2}\right\}$
$e\left(A T y, A T y^{\prime}\right) \leq c_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}\left(\mathrm{y}, \mathrm{ATy}^{\prime}\right), \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right), \mathrm{d}\left(\mathrm{Ty}, T y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(A T y, y^{\prime}\right)}{2}\right\}$
for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A and T is continuous, then TA has a unique fixed point z in X and AT have a unique fixed point w in Y . Further, $\mathrm{Az}=\mathrm{w}$ and $\mathrm{Tw}=\mathrm{z}$.

Theorem 2.10: Let (X, d) and (Y, e) be complete metric spaces. Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$\mathrm{d}\left(S A x, T B x^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{SAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, T B x^{\prime}\right), \mathrm{e}\left(A x, B x^{\prime}\right), \frac{d\left(x, T B x^{\prime}\right)}{2}, \frac{d\left(S A x, x^{\prime}\right)}{2}\right.$,

$$
\begin{equation*}
\left.\frac{\mathrm{d}\left(\mathrm{x}, \mathrm{TBx} \mathrm{x}^{\prime}\right)+\mathrm{d}\left(\mathrm{SAx}, \mathrm{x}^{\prime}\right)}{2}\right\} \tag{1}
\end{equation*}
$$

$\mathrm{e}\left(\mathrm{BSy}, \mathrm{ATy}^{\prime}\right) \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}(\mathrm{y}, \mathrm{BSy}), \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy} y^{\prime}\right), \mathrm{d}\left(S y, T y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(B S y, y^{\prime}\right)}{2}\right.$,

$$
\begin{equation*}
\left.\frac{\mathrm{e}\left(\mathrm{y}, \mathrm{ATy}^{\prime}\right)+\mathrm{e}\left(\mathrm{BSy}, \mathrm{y}^{\prime}\right)}{2}\right\} \tag{2}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, $\mathrm{Az}=\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
\mathrm{Ax}_{2 \mathrm{n}-2}=\mathrm{y}_{2 \mathrm{n}-1}, S y_{2 n-1}=\mathrm{x}_{2 \mathrm{n}-1}, B \mathrm{x}_{2 \mathrm{n}-1}=\mathrm{y}_{2 \mathrm{n} ;} \mathrm{Ty}_{2 \mathrm{n}}=\mathrm{x}_{2 \mathrm{n}} \text { for } \mathrm{n}=1,2,3 \ldots \ldots
$$

$$
\begin{aligned}
& \text { Now we have } \\
& d\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)=\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n},}, \mathrm{TBx}_{2 \mathrm{n}-1}\right) \\
& \qquad \begin{array}{c}
\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{d\left(x_{2 n}, T B x_{2 n-1}\right)}{2},\right. \\
\left.\qquad \frac{d\left(S A x_{2 n}, x_{2 n-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
=\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{d\left(x_{2 n}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n+1}, x_{2 n-1}\right)}{2},\right. \\
\left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\}
\end{array}
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$\leq c_{1} \cdot \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n+1}, y_{2 n}\right), 0, \frac{d\left(x_{2 n+1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)}{2}\right.$,

$$
\left.\frac{\mathrm{d}\left(\mathrm{x}_{2 n+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\}
$$

$$
\leq c_{1} \cdot \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n+1}, y_{2 n}\right)\right\}
$$

Now

$$
\begin{aligned}
& e\left(y_{2 n}, y_{2 n+1}\right)= e\left(B S y_{2 n-1}, A T y_{2 n}\right) \\
& \leq c_{2 \cdot} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n}, A T y_{2 n}\right), d\left(S y_{2 n-1}, T y_{2 n}\right) \cdot \frac{e\left(y_{2 n-1}, A T y_{2 n}\right)}{2},\right. \\
&\left.\frac{e\left(B S y_{2 n-1}, y_{2 n}\right)}{2}, \frac{e\left(y_{2 n-1}, A T y_{2 n}\right)+e\left(B S y_{2 n-1}, y_{2 n}\right)}{2}\right\} \\
&= c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n+1}\right)}{2}, \frac{e\left(y_{2 n}, y_{2 n}\right)}{2},\right. \\
&\left.\frac{e\left(y_{2 n-1}, y_{2 n+1}\right)+e\left(y_{2 n}, y_{2 n}\right)}{2}\right\} \\
& \leq c_{2 \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right),\right.} \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}, \\
&\left.0, \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} . \max \left\{\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \tag{4}
\end{equation*}
$$

We have

$$
\begin{aligned}
& d\left(x_{2 n}, x_{2 n-1}\right)=d\left(x_{2 n-1}, x_{2 n}\right) \\
& =\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}-2,}, \mathrm{TBX}_{2 \mathrm{n}-1}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{SAx} \mathrm{x}_{2 \mathrm{n}-}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 n-1}\right), \mathrm{e}\left(\mathrm{Ax}_{2 n-2}, \mathrm{Bx}_{2 n-1}\right), \frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2}\right. \text {, } \\
& \left.\frac{\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \frac{d\left(x_{2 n-2}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n-1}, x_{2 n-1}\right)}{2}\right. \text {, } \\
& \left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \frac{d\left(x_{2 n-2}, x_{2 n-1}\right)+d\left(x_{2 n-1}, x_{2 n}\right)}{2}\right. \\
& \left.0, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{nn}-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \\
& \text { Now } \\
& e\left(y_{2 n} y_{2 n-1}\right)=e\left(B S y_{2 n-1}, A T y_{2 n-2}\right) \\
& \leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e\left(y_{2 n-2}, A T y_{2 n-2}\right), d\left(S_{2 n-1}, \operatorname{Ty}_{2 n-2}\right), \frac{e\left(y_{2 n-1}, A T y_{2 n-2}\right)}{2},\right. \\
& \left.\frac{e\left(\mathrm{BSy}_{2 n-1}, \mathrm{y}_{2 n-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{ATy}_{2 n-2}\right)+\mathrm{e}\left(\mathrm{BSy}_{2 n-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}\right\}
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$$
\begin{align*}
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), \frac{e\left(y_{2 n-1}, y_{2 n-1}\right)}{2}\right. \text {, } \\
& \left., \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), 0,\right. \\
& \left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}\right\} \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 n-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 n-2}\right)\right\} \tag{5}
\end{align*}
$$

Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 n-1}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 n-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 n-2}\right)\right\} \tag{6}
\end{equation*}
$$

From inequalities (3), (4), (5) and (6), we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}\left(\mathrm{c}_{2}\right)^{\mathrm{n}} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \\
& \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right) \leq\left(\mathrm{c}_{2}\right)^{\mathrm{n}} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Thus $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are Cauchy sequences in (X, d) and (Y, e) respectively. Since (X, d) and (Y, e) are complete, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point z in X and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converges to a point w in Y .

Suppose A is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Az}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 n+1}=\mathrm{w} .
$$

Now we prove $\mathrm{SAz}=\mathrm{z}$.

Suppose $\mathrm{SAz} \neq \mathrm{z}$.

We have

$$
\begin{aligned}
& \mathrm{d}(\mathrm{SAz}, \mathrm{z})=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAz}^{2}, \mathrm{TBx}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 n-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~TB} \mathrm{x}_{2 n-1}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bx}_{2 n-1}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2},\right. \\
& \left.\frac{\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}\right. \text {, } \\
& \left.\frac{\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}\right\} \\
& =c_{1} \cdot \max \left\{0, d(z, S A z), 0,0,0, \frac{d(S A z, z)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}(\mathrm{z}, \mathrm{SAz}) \\
& <\mathrm{d}(\mathrm{z}, \mathrm{SAz}) \quad \text { (Since } 0 \leq \mathrm{c}_{1}<1 \text {) }
\end{aligned}
$$

Which is a contradiction.
Thus SAz $=\mathrm{z}$.
Hence $\mathrm{Sw}=\mathrm{z}$. $($ Since $\mathrm{Az}=\mathrm{w}$)

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Now we prove BSw = w.
Suppose BSw $\neq w$.
We have

$$
\begin{aligned}
& e(B S w, w)=\lim _{n \rightarrow \infty} e\left(B S w, y_{2 n+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \mathrm{ATy}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} \max \left\{e\left(w, y_{2 n}\right), e(w, B S w), e\left(y_{2 n}, A T y_{2 n}\right), d\left(S w, T y_{2 n}\right), \frac{e\left(w, A T y_{2 n}\right)}{2}\right. \text {, } \\
& \left.\frac{\mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{ATy}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{BSy}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e(w, w), e(w, B S w), e(w, w), d(z, z), \frac{e(w, w)}{2}, \frac{e(B S w, w)}{2}, \frac{e(B S w, w)}{2}\right\} \\
& <\mathrm{e}(\mathrm{w}, \mathrm{BSw}) \quad \text { (Since } 0 \leq \mathrm{c}_{2}<1 \text {) }
\end{aligned}
$$

Which is a contradiction.
Thus BSw = w.
Hence Bz = w. (Since Sw = z)
Now we prove $\mathrm{TBz}=\mathrm{z}$.
Suppose TBz $\neq \mathrm{z}$.

$$
\begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{TBz}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{TBz}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBz}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bz}\right), \frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)}{2}\right. \\
& \left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)+\mathrm{d}(\mathrm{SAx}}{2 \mathrm{n}}, \mathrm{z}\right) \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{TBz})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})+\mathrm{d}(\mathrm{z}, \mathrm{z})}{2}\right\} \\
& =\mathrm{c}_{1} . \max \left\{0,0, \mathrm{~d}(\mathrm{z}, \mathrm{TBz}), 0, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}, 0, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}\right\} \\
& <\mathrm{d}(\mathrm{z}, \mathrm{TBz}) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus TBz = z .
Hence $\mathrm{Tw}=\mathrm{z}$. $\quad($ Since $\mathrm{Bz}=\mathrm{w})$
Now we prove ATw = w.
Suppose ATw $\neq \mathrm{w}$.

$$
\begin{aligned}
& e(w, A T w)=\lim _{n \rightarrow \infty} e\left(y_{2 n}, A T w\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{ATw}\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} \cdot \max \left\{e\left(y_{2 n-1}, w\right), e\left(y_{2 n-1}, B S y_{2 n-1}\right), e(w, A T w), d\left(S y_{2 n-1}, T w\right), \frac{e\left(y_{2 n-1}, A T w\right)}{2}\right. \text {, } \\
& \left.\frac{\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{w}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{ATw}\right)+\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{w}\right)}{2}\right\}
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$$
\begin{aligned}
& =c_{2} \cdot \max \left\{e(w, w), e(w, w), e(w, A T w), d(z, z), \frac{\mathrm{e}(\mathrm{w}, \mathrm{ATw})}{2}, \frac{\mathrm{e}(\mathrm{w}, \mathrm{w})}{2},\right. \\
& \left.\frac{\mathrm{e}(\mathrm{w}, \mathrm{ATw})+\mathrm{e}(\mathrm{w}, \mathrm{w})}{2}\right\} \\
& =c_{2} \cdot \max \left\{0,0, \mathrm{e}(\mathrm{w}, \mathrm{ATw}), 0, \frac{\mathrm{e}(\mathrm{w}, \mathrm{ATw})}{2}, 0, \frac{\mathrm{e}(\mathrm{w}, A T w)}{2}\right\} \\
& <\mathrm{e}(\mathrm{w}, \operatorname{ATw})\left(\text { Since } 0 \leq c_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus ATw = w.
The same results hold if one of the mappings B, S and T is continuous.
Uniqueness: Let z^{\prime} be another common fixed point of SA and TB in $\mathrm{X}, \mathrm{w}^{\prime}$ be another common fixed point of BS and AT in Y.

We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{SAz}, \mathrm{TBz} \mathrm{z}^{\prime}\right)$

$$
\begin{aligned}
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{TBz} z^{\prime}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bz} z^{\prime}\right), \frac{\mathrm{d}(\mathrm{z}, \mathrm{TBz}}{2}\right), \frac{\mathrm{d}\left(\mathrm{SAz}, \mathrm{z}^{\prime}\right)}{2}, \\
& \left.\frac{\mathrm{~d}\left(\mathrm{z}, \mathrm{TBz} \mathrm{z}^{\prime}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{z}^{\prime}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d(z, z), d\left(z^{\prime}, z^{\prime}\right), e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}, \frac{d\left(z, z^{\prime}\right)}{2}, \frac{d\left(z, z^{\prime}\right)+d\left(z, z^{\prime}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d(z, z), d\left(z^{\prime}, z^{\prime}\right), e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}, d\left(z, z^{\prime}\right)\right\} \\
& =c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), 0,0, e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}, d\left(z, z^{\prime}\right)\right\} \\
& \leq \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right) \\
& e\left(w, w^{\prime}\right)=e(B S w, A T w ') \\
& \leq c_{2} \cdot \max \left\{e\left(w, w^{\prime}\right), e(w, B S w), e\left(w^{\prime}, A T w^{\prime}\right), d\left(S w, T w^{\prime}\right), \frac{e\left(w, A T w^{\prime}\right)}{2}, \frac{e\left(B S w, w^{\prime}\right)}{2},\right. \\
& \left.\frac{\mathrm{e}\left(\mathrm{w}, \mathrm{ATw} \mathrm{w}^{\prime}\right)+\mathrm{e}\left(\mathrm{BSw}, \mathrm{w}^{\prime}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(w, w^{\prime}\right), e(w, w), e\left(w^{\prime}, w^{\prime}\right), d\left(z, z^{\prime}\right), \frac{e\left(w, w^{\prime}\right)}{2}, \frac{e\left(w, w^{\prime}\right)}{2}, \frac{e\left(w, w^{\prime}\right)+e\left(w, w^{\prime}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(w, w^{\prime}\right), 0,0, d\left(z, z^{\prime}\right), \frac{e\left(w, w^{\prime}\right)}{2}, e\left(w, w^{\prime}\right)\right\} \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$
Which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique common fixed point of BS and AT.

Remark 2.11: If we put $\mathrm{A}=\mathrm{B}, \mathrm{S}=\mathrm{T}$ in the above theorem 2.10 , we get the following corollary.
Corollary 2.12: Let (X, d) and (Y, e) be two complete metric spaces. Let A be a mapping of X into Y and T be a mapping of Y into X satisfying the inequalities.

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$\mathrm{d}\left(\mathrm{TAx}, \mathrm{TAx}{ }^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{TAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TAx}{ }^{\prime}\right), \mathrm{e}\left(A x, \mathrm{Ax}^{\prime}\right), \frac{d\left(x, T A x^{\prime}\right)}{2}, \frac{d\left(T A x, x^{\prime}\right)}{2}\right.$,

$$
\left.\frac{\mathrm{d}\left(\mathrm{x}, \mathrm{TAx} \mathrm{x}^{\prime}\right)+\mathrm{d}\left(\mathrm{TAx}, \mathrm{x}^{\prime}\right)}{2}\right\}
$$

$\mathrm{e}\left(\mathrm{ATy}, \mathrm{ATy}^{\prime}\right) \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}(\mathrm{y}, \mathrm{ATy}), \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right), \mathrm{d}\left(\mathrm{Ty}, \mathrm{Ty} y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(A T y, y^{\prime}\right)}{2}\right.$,

$$
\left.\frac{\mathrm{e}(\mathrm{y}, \mathrm{ATy} \text { ' })+\mathrm{e}\left(\mathrm{ATy}, \mathrm{y}^{\prime}\right)}{2}\right\}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A and T is continuous, then TA has a unique fixed point z in X and AT have a unique fixed point w in Y . Further, $\mathrm{Az}=\mathrm{w}$ and $\mathrm{Tw}=\mathrm{z}$.

Theorem 2.13: Let (X, d) and (Y, e) be complete metric spaces. Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.

$$
\begin{align*}
& d\left(S A x, T B x^{\prime}\right) \leq c_{1} \cdot \max \left\{d\left(x, x^{\prime}\right), d(x, S A x), d\left(x^{\prime}, T B x^{\prime}\right), e\left(A x, B x^{\prime}\right), \frac{d\left(x, T B x^{\prime}\right)}{2}, \frac{d\left(S A x, x^{\prime}\right)}{2}\right. \\
&\left.\frac{d\left(x, T B x^{\prime}\right)+d\left(S A x, x^{\prime}\right)}{2}, \frac{d(x, S A x)+d\left(x^{\prime}, T B x^{\prime}\right)}{2}\right\} \tag{1}
\end{align*}
$$

$\mathrm{e}\left(\mathrm{BSy}, \mathrm{ATy}^{\prime}\right) \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}(\mathrm{y}, \mathrm{BSy}), \mathrm{e}\left(\mathrm{y}^{\prime}, A T y^{\prime}\right), \mathrm{d}\left(S y, T y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(B S y, y^{\prime}\right)}{2}\right.$,

$$
\begin{equation*}
\left.\frac{\mathrm{e}\left(\mathrm{y}, \mathrm{ATy}^{\prime}\right)+\mathrm{e}\left(\mathrm{BSy}, \mathrm{y}^{\prime}\right)}{2}, \frac{\mathrm{e}(\mathrm{y}, \mathrm{BSy})+\mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right)}{2}\right\} \tag{2}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, $\mathrm{Az}=\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
A x_{2 n-2}=y_{2 n-1}, S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n} ; \mathrm{Ty}_{2 n}=x_{2 n} \text { for } n=1,2,3 \ldots
$$

Now we have
$d\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)=\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)$

$$
\begin{aligned}
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}-1}\right), \frac{d\left(x_{2 n}, T B x_{2 n-1}\right)}{2},\right. \\
& \frac{d\left(S A x_{2 n}, x_{2 n-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, T B x_{2 n-1}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \\
& \left.\frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{d\left(x_{2 n}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n+1}, x_{2 n-1}\right)}{2},\right. \\
& \left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), 0, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2},\right. \\
& \left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}\right\}
\end{aligned}
$$

$$
\leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right) & =\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \operatorname{ATy}_{2 \mathrm{n}}\right) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, B S y_{2 n-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \operatorname{ATy}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{Sy}_{2 \mathrm{n}-1}, \mathrm{Ty}_{2 \mathrm{n}}\right),\right.
\end{aligned}
$$

$$
\begin{gathered}
\frac{e\left(y_{2 n-1}, A T y_{2 n}\right)}{2}, \frac{e\left(B S y_{2 n-1}, y_{2 n}\right)}{2}, \frac{e\left(y_{2 n-1}, A T y_{2 n}\right)+e\left(B S y_{2 n-1}, y_{2 n}\right)}{2}, \\
\left.\frac{e\left(y_{2 n-1}, B S y_{2 n-1}\right)+e\left(y_{2 n}, A T y_{2 n}\right)}{2}\right\} \\
=c_{2 \cdot} \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n+1}\right)}{2},\right. \\
\left.\frac{e\left(y_{2 n}, y_{2 n}\right)}{2}, \frac{e\left(y_{2 n-1}, y_{2 n+1}\right)+e\left(y_{2 n}, y_{2 n}\right)}{2}, \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}\right\} \\
\leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right), \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2},\right. \\
\left.0, \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}, \frac{e\left(y_{2 n-1}, y_{2 n}\right)+e\left(y_{2 n}, y_{2 n+1}\right)}{2}\right\}
\end{gathered}
$$

$$
\begin{equation*}
\leq c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n}\right) \leq c_{1} c_{2} . \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right)\right\} \tag{4}
\end{equation*}
$$

We have
$=c_{1} . \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right)\right.$,

$$
\left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}, 0, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}\right\}
$$

$\leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}$
Now

$$
e\left(y_{2 n}, y_{2 n-1}\right)=e\left(B S y_{2 n-1}, \operatorname{ATy}_{2 n-2}\right)
$$

$\leq c_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, B \mathrm{By}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-2}, \operatorname{ATy}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{Sy}_{2 \mathrm{n}-1}, \mathrm{Ty}_{2 \mathrm{n}-2}\right)\right.$,

$$
\begin{gathered}
\frac{\mathrm{e}\left(\mathrm{y}_{2 n-1}, A T y_{2 n-2}\right)}{2}, \frac{\mathrm{e}\left(B S y_{2 n-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, A T y_{2 n-2}\right)+\mathrm{e}\left(B S y_{2 n-1}, y_{2 n-2}\right)}{2}, \\
\left.\frac{\mathrm{e}\left(\mathrm{y}_{2 n-1}, B S y_{2 n-1}\right)+e\left(y_{2 n-2}, \operatorname{ATy}_{2 n-2}\right)}{2}\right\}
\end{gathered}
$$

$=c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), \frac{e\left(y_{2 n-1}, y_{2 n-1}\right)}{2}\right.$,

$$
\left., \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right)}{2}\right\}
$$

$=c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), 0, \frac{e\left(y_{2 n}, y_{2 n-1}\right)+e\left(y_{2 n-1}, y_{2 n-2}\right)}{2}\right.$,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)=\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}-2}, \mathrm{TBx}_{2 \mathrm{n}-1}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{SAx}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}-2}, \mathrm{Bx}_{2 \mathrm{n}-1}\right)\right. \\
& \frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAx}_{2 n-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 n-2}, \mathrm{TBx}_{2 n-1}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 n-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \\
& \left.\frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{SAx}_{2 \mathrm{n}-2}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \frac{d\left(x_{2 n-2}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n-1}, x_{2 n-1}\right)}{2}\right. \text {, } \\
& \left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}\right\}
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

IJMA- 4(5), May-2013.

$$
\left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right)}{2}\right\}
$$

$$
\begin{equation*}
\leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right)\right\} \tag{5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right) \leq \mathrm{c}_{1} \mathrm{c}_{2} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)\right\} \tag{6}
\end{equation*}
$$

from inequalities (3), (4), (5) and (6), we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}\left(\mathrm{c}_{2}\right)^{\mathrm{n}} \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \\
& \mathrm{e}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right) \leq\left(\mathrm{c}_{2}\right)^{\mathrm{n}} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{0}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Thus $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are Cauchy sequences in (X, d) and (Y,e) respectively. Since (X,d) and (Y,e) are complete, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point z in X and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converges to a point w in Y .

Suppose A is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Az}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $\mathrm{SAz}=\mathrm{z}$.

Suppose $\mathrm{SAz} \neq \mathrm{z}$.

We have

$$
\begin{aligned}
& \mathrm{d}(\mathrm{SAz}, \mathrm{z})=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAz}, \mathrm{TBx}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~TB} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bx}_{2 \mathrm{n}-1}\right)\right. \text {, } \\
& \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{z}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \\
& \left.\frac{\mathrm{~d}(\mathrm{z}, \mathrm{SAz})+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{TBx}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2},\right. \\
& \left.\frac{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{SAz})+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}\right\} \\
& =c_{1} . \max \left\{d(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{SAz})}{2}\right\} \\
& =c_{1} . \max \left\{0, \mathrm{~d}(\mathrm{z}, \mathrm{SAz}), 0,0,0, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{SAz}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{SAz})}{2}\right\} \\
& \leq \mathrm{c}_{1} . \mathrm{d}(\mathrm{z}, \mathrm{SAz}) \\
& <\mathrm{d}(\mathrm{z}, \mathrm{SAz}) \quad \text { (Since } 0 \leq \mathrm{c}_{1}<1 \text {) }
\end{aligned}
$$

Which is a contradiction.
Thus SAz = z.
Hence $S w=z$. $($ Since $A z=w)$
Now we prove BSw = w.
Suppose BSw $\neq \mathrm{w}$.
We have

$$
\mathrm{e}(\mathrm{BSw}, \mathrm{w})=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}+1}\right)
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/ IJMA- 4(5), May-2013.

Which is a contradiction.
Thus BSw = w.
Hence Bz = w. (Since Sw = z)
Now we prove $\mathrm{TBz}=\mathrm{z}$.
Suppose TBz $\neq \mathrm{z}$.

$$
\begin{aligned}
& \mathrm{d}(\mathrm{z}, \mathrm{TBz})= \lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{TBz}\right) \\
&= \lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{TBz}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1}, \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bz}\right), \frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)}{2}\right. \\
&\left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{SAx}_{2 \mathrm{n}}\right)+\mathrm{d}(\mathrm{z}, \mathrm{TBz})}{2}\right\} \\
&= \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{TBz}), \mathrm{e}(\mathrm{w}, \mathrm{Bz}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{TBz})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{z})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})+\mathrm{d}(\mathrm{z}, \mathrm{z})}{2}\right. \\
& 2
\end{aligned}
$$

$$
=c_{1} \cdot \max \left\{0,0, \mathrm{~d}(\mathrm{z}, \mathrm{TBz}), 0, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}, 0, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}\right\}
$$

$$
<\mathrm{d}(\mathrm{z}, \mathrm{TBz}) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
$$

Which is a contradiction.
Thus $\mathrm{TBz}=\mathrm{z}$.
Hence $\mathrm{Tw}=\mathrm{z}$. $\quad($ Since $\mathrm{Bz}=\mathrm{w})$
Now we prove ATw = w.
Suppose ATw $\neq \mathrm{w}$.

$$
=c_{2} \cdot \max \left\{e(w, w), e(w, w), e(w, A T w), d(z, z), \frac{e(w, A T w)}{2}, \frac{e(w, w)}{2}\right.
$$

$$
\begin{aligned}
& e(w, A T w)=\lim _{n \rightarrow \infty} e\left(y_{2 \mathrm{n}}, \text { ATw }\right) \\
& =\lim _{n \rightarrow \infty} e\left(B S y_{2 n-1}, A T w\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, B S y_{2 \mathrm{n}-1}\right), \mathrm{e}(\mathrm{w}, \mathrm{ATw}), \mathrm{d}\left(\mathrm{Sy}_{2 \mathrm{n}-1}, T w\right), \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, A T w\right)}{2},\right. \\
& \left.\frac{\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{w}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, A T w\right)+\mathrm{e}\left(\mathrm{BSy}_{2 \mathrm{n}-1}, \mathrm{w}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, B \mathrm{By}_{2 \mathrm{n}-1}\right)+\mathrm{e}(\mathrm{w}, \mathrm{ATw})}{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{BSw}, \mathrm{ATy}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} c_{2} \max \left\{e\left(w, y_{2 n}\right), e(w, B S w), e\left(y_{2 n}, A T y_{2 n}\right), d\left(S w, T y_{2 n}\right), \frac{e\left(w, A T y_{2 n}\right)}{2}\right. \text {, } \\
& \left.\frac{\mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{ATy}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{BSy}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{e}(\mathrm{w}, \mathrm{BSw})+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, A T y_{2 \mathrm{n}}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e(w, w), e(w, B S w), e(w, w), d(z, z), \frac{e(w, w)}{2}, \frac{e(B S w, w)}{2}, \frac{e(B S w, w)}{2}, \frac{e(B S w, w)}{2}\right\} \\
& <\mathrm{e}(\mathrm{w}, \mathrm{BSw}) \quad \text { (Since } 0 \leq \mathrm{c}_{2}<1 \text {) }
\end{aligned}
$$

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.$$
\begin{aligned}
& \left.\quad \frac{\mathrm{e}(\mathrm{w}, \mathrm{ATw})+\mathrm{e}(\mathrm{w}, \mathrm{w})}{2}, \frac{\mathrm{e}(\mathrm{w}, \mathrm{w})+\mathrm{e}(\mathrm{w}, \mathrm{ATw})}{2}\right\} \\
& =c_{2} \cdot \max \left\{0,0, \mathrm{e}(\mathrm{w}, A T w), 0, \frac{\mathrm{e}(\mathrm{w}, A T w)}{2}, 0, \frac{\mathrm{e}(\mathrm{w}, A T w)}{2}, \frac{\mathrm{e}(\mathrm{w}, A T w)}{2}\right\} \\
& <e(w, A T w)\left(\text { Since } 0 \leq c_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus ATw = w.
The same results hold if one of the mappings B, S and T is continuous.
Uniqueness: Let z^{\prime} be another common fixed point of SA and TB in X, w^{\prime} be another common fixed point of BS and AT in Y.

We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{SAz}, \mathrm{TBz}^{\prime}\right)$

$$
\begin{aligned}
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{SAz}), \mathrm{d}\left(\mathrm{z}^{\prime}, T B z^{\prime}\right), \mathrm{e}\left(\mathrm{Az}, \mathrm{Bz} z^{\prime}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBz} \mathrm{z}^{\prime}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAz}, \mathrm{z}^{\prime}\right)}{2}\right. \\
& \left.\frac{\mathrm{d}\left(\mathrm{z}, \mathrm{TBz}{ }^{\prime}\right)+\mathrm{d}\left(\mathrm{SAz}, \mathrm{z}^{\prime}\right)}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{SAz})+\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{TBz}{ }^{\prime}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)}{2},\right. \\
& \\
& \left.\frac{\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)+\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{z})+\mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right)}{2}\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), 0,0, \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)}{2}, \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), 0\right\} \\
& \leq \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)
\end{aligned}
$$

$$
\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)=\mathrm{e}\left(\mathrm{BSw}, \mathrm{ATw}^{\prime}\right)
$$

$$
\leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{e}(\mathrm{w}, \mathrm{BSw}), \mathrm{e}\left(\mathrm{w}^{\prime}, \mathrm{ATw} \mathrm{w}^{\prime}\right), \mathrm{d}\left(\mathrm{Sw}, \mathrm{Tw} \mathrm{w}^{\prime}\right),\right.
$$

$$
\frac{\mathrm{e}\left(\mathrm{w}, \mathrm{ATw}{ }^{\prime}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{BSw}, \mathrm{w}^{\prime}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{ATw}{ }^{\prime}\right)+\mathrm{e}\left(\mathrm{BSw}, \mathrm{w}^{\prime}\right)}{2}
$$

$$
\left.\frac{\mathrm{e}(\mathrm{w}, \mathrm{BSw})+\mathrm{e}\left(\mathrm{w}^{\prime}, A T \mathrm{w}^{\prime}\right)}{2}\right\}
$$

$$
=c_{2} \cdot \max \left\{e\left(w, w^{\prime}\right), e(w, w), e\left(w^{\prime}, w^{\prime}\right), d\left(z, z^{\prime}\right), \frac{e\left(w, w^{\prime}\right)}{2}, \frac{e\left(w, w^{\prime}\right)}{2}\right.
$$

$$
\left.\frac{\mathrm{e}(\mathrm{w}, \mathrm{w})+\mathrm{e}\left(\mathrm{w}^{\prime}, \mathrm{w}^{\prime}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)+\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}\right\}
$$

$$
=c_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), 0,0, \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}, 0, \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)\right\}
$$

$$
<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
$$

Hence $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$
Which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of SA and TB. Similarly we prove w is a unique common fixed point of BS and AT.

Remark 2.14: If we put $\mathrm{A}=\mathrm{B}, \mathrm{S}=\mathrm{T}$ in the above theorem 2.13 , we get the following corollary.

T. Veerapandi, T. Thiripura Sundari* and J. Paulraj Joseph/SOME COMMON FIXED POINT THEOREMS IN TWO METRIC SPACES/

 IJMA- 4(5), May-2013.Corollary 2.15: Let (X, d) and (Y, e) be two complete metric spaces. Let A be a mapping of X into Y and T be a mapping of Y into X satisfying the inequalities.

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{TAx}, \mathrm{TAx}{ }^{\prime}\right) \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{TAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TAx}{ }^{\prime}\right), \mathrm{e}\left(A x, A x^{\prime}\right), \frac{d\left(x, T A x^{\prime}\right)}{2},\right. \\
& \left.\frac{d\left(T A x, x^{\prime}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{x}, \mathrm{TAx} \mathrm{~T}^{\prime}\right)+\mathrm{d}\left(\mathrm{TAx}, \mathrm{x}^{\prime}\right)}{2}, \frac{\mathrm{~d}(\mathrm{x}, \mathrm{TAx})+\mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TAx}{ }^{\prime}\right)}{2}\right\} \\
& e\left(A T y, A T y^{\prime}\right) \leq c_{2} . \max \left\{e\left(y, y^{\prime}\right), e(y, A T y), e\left(y^{\prime}, A T y^{\prime}\right), d\left(T y, T y^{\prime}\right), \frac{e\left(y, A T y^{\prime}\right)}{2}\right. \text {, } \\
& \left.\frac{e\left(A T y, y^{\prime}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}, \mathrm{ATy} \mathrm{I}^{\prime}\right)+\mathrm{e}\left(\mathrm{ATy}, \mathrm{y}^{\prime}\right)}{2}, \frac{\mathrm{e}(\mathrm{y}, \mathrm{ATy})+\mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy}{ }^{\prime}\right)}{2}\right\}
\end{aligned}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A and T is continuous, then TA has a unique fixed point z in X and AT have a unique fixed point w in Y . Further, $\mathrm{Az}=\mathrm{w}$ and $\mathrm{Tw}=\mathrm{z}$.

REFERENCES

[1] Abdulkrim Aliouche, Brain Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spaces, Hacettepe Journal of Mathematics and Statistics 34, (2005), 39-45
[2] Cho Y.J., Kang S.M,. Kim S.S, Fixed points in two metric spaces, NoviSad J. Math., 29(1), (1999), 47-53.
[3] Cho Y.J, Fixed points for compatible mappings of type Japonica, 38(3), (1993), 497-508.
[4] Constantin A., Common fixed points of weakly commuting Mappings in 2- metric spaces, Math. Japonica, 36(3), (1991), 507-514
[5] Constantin A., On fixed points in noncomposite metric spaces, Publ. Math. Debrecen, 40(3-4), (1992), 297-302.
[6] Fisher B., Fixed point on two metric spaces, Glasnik Mate., 16(36), (1981), 333-337.
[7] Fisher B., Related fixed point on two metric spaces, Math. Seminor Notes, Kobe Univ., 10 (1982), 17-26.
[8] Valeriu Popa A., General fixed point theorem for two pair of mappings on two metric spaces, Novi Sad J. Math., 35(2), (2005), 79-83.
[9] Veerapandi T., Thiripura Sundari T., Paulraj Joseph J., Some fixed point theorems in two complete metric spaces, International Journal of mathematical archive, 3(3), (2012), 826-837.
[10] Xianjiu Huang, Chuanxi Zhu, Xi Wen, Fixed point theorem on two complete cone metric Spaces, Ann Univ Ferrara 57, (2011), 431-352.

Source of support: Nil, Conflict of interest: None Declared

