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ABSTRACT 
 

Uncertainty analysis of the retention function of any radionuclide either ingested or inhaled plays a central role in the 
dosimetry of internally deposited radionuclide. The modeling approach presented in International Commission of Ra-
diological Protection publication used exponential retention curves to calculate dose to the possible target or critical 
organs. Presence of large scatter or imprecision measurement of biokinetic model parameters demands uncertainty 
analysis of model for its better refinement. Uncertainty analysis of the retention function of a typical radionuclide say 
strontium is the focal theme of the paper. Uncertainties present in strontium retention function in biokinetic models 
arise from the assumptions of the biokinetic model, values of the model parameters, radiation weighting factor and tis-
sue weighting coefficients. Mathematically, strontium retention function is expressed as the product of the parameters 
representing the fraction of strontium absorbed from the gastrointestinal tract, fraction initially retained in the skele-
ton, proportional to uptake rate, power function slope and strontium elimination rate. Uncertainty associated with a 
biokinetic model is expressed in terms of lower and upper bounds, A and B, such that there is judged to be roughly a 
90% probability that the true central value is no less than A and no more than B. Uncertainty is expressed in terms of 
these bounds termed as uncertainty factor defined details in the paper. Polynomial chaos expansion method has been 
adopted to estimate the propagation of uncertainties in the parameters of the strontium retention function. The   paper 
describes the details of polynomial chaos expansion technique to address the uncertainty propagation. Polynomial 
chaos expansion is an efficient simulation compared to traditional Monte Carlo. 
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1.0 INTRODUCTION 
Computational techniques for assimilating data in biokinetic models to understand the uncertainty of the retention func-
tion of any radionuclide either ingested or inhaled play a central role in the dosimetry of internally deposited radionuc-
lide. Comprehensive uncertainty analyses of computational physics models are essential, especially when these models 
are used in decision making. This is especially true for internal dosimetry, where complex computer programs are often 
used to model and assess the internal dose received by the personnel. The systematic accounting of parametric uncer-
tainty in internal dosimetry models is important, as this aid in the quantification of the degree of confidence in assess-
ing the internal dose received by the personnel while working in radioactive area. Uncertainties are typically classified 
as aleatory and epistemic [1]. Aleatory uncertainty (also called probabilistic uncertainty) arises from randomness in the 
system whereas epistemic uncertainty arises due to the lack of knowledge (or ignorance). Epistemic uncertainties may 
also arise from assumptions introduced in the mathematical model and it can be possible to reduce using inference from 
experimental observations. Uncertainty that is explicitly recognized by a stochastic model is categorized as aleatory.  
Uncertainty of the model parameters and the model itself is epistemic. Hence the aleatory/epistemic split of the total 
uncertainty is model-dependent [2]. Uncertainties associated with the physical parameters of the biokinetic and dosime-
tric models are due to lack of sufficiency of relevant data or knowledge and error in the measurements of bioassay 
samples. The stages involved in the uncertainty quantification of a model generally include (a) estimation of uncertain-
ties of model inputs, (b) estimation of uncertainty of the model output and (c) propagation of uncertainty in the model 
output. Monte Carlo methods are the most widely used techniques for statistical/probabilistic uncertainty analysis, with 
diverse applications. Given input uncertainty distributions (frequency or probability density data) these methods in-
volve repeated generation of pseudo-random instantiations (sampling) of inputs followed by application of the model to 
these instantiations to yield a set of model responses. These model outputs are then further analyzed statistically. 
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A traditional “uncertainty analysis or error analysis” typically focuses on uncertainty present in the data itself labeled as 
the “data uncertainty”. Traditional method consists of (a) the characterization of uncertainty in model parameters/inputs 
via their probability density functions (pdfs) and (b) the propagation of these pdfs through model equations to obtain 
the pdf of selected output metrics[3]. A large number of sample realizations (106 or more) of model inputs are required 
to achieve an acceptable level of confidence about the model output uncertainty. The large numbers of realizations re-
duce the efficiency of the simulation even though it involves standard or Latin Hypercube sampling. In case of compu-
tationally intensive models, the time and resources required by these methods will be prohibitively expensive. Howev-
er, number of simulations for adequate estimation of uncertainty of the model output can be substantially reduced as 
compared to conventional simulation, if the model uncertain inputs and output are expressed in the form of a series ex-
pansion of standard normal random variable (chaotic expansion); Output of the model then contains the coefficients 
which are calculated from a limited number of model simulations. The net result is to create a statistically equivalent 
polynomial approximation to the model outputs. This efficient simulation method presented in this paper is called as 
“Polynomial Chaos Expansion” (PCE)[3]. PCE is applied for quantification and propagation of the uncertainty of the 
strontium retention function as model output with a limited number of model run.  

 
The selection of  90Sr retention function as a model for carrying out uncertainty analysis using PCE is mainly due to its 
importance in  radiation protection, as its yield is high during the fission of  235U. When 90Sr is released into the envi-
ronment, it enters the human body through contaminated dietary foodstuffs, because it is absorbed by the gastrointes-
tinal (GI) tract. Therefore, ingestion of 90Sr is a major exposure pathway for both workers in nuclear industry and the 
members of the public. Once absorbed in the human body, 90Sr migrates from body fluids to other organs and tissues, 
especially to bones and retains there for many years. Irradiation of bone tissue increases the risk of cancer such as leu-
kemia or bone cancer. Accurate internal dose estimation is directly related to the quantitative analysis of cancer risk. 
The prime factor on which the estimation of internal dose due to contamination of 90Sr depends is the intestinal absorp-
tion fraction, f1. The relative uptake of strontium from contaminated food is not well known, i.e, highly uncertain. Simi-
larly, elimination rate of strontium, percentage of the amount of strontium retained in the skeleton are also not well 
known. Hence, these uncertainties propagate in the retention function of the strontium and accordingly, accuracy in the 
estimated internal dose decreases. In fact, quantification of uncertainty of the retention function will dictate the amount 
of accuracy in internal dose, in the sense that, less the uncertainty more will be the accuracy. So, uncertainty analysis in 
this regard is an important issue.  
       
The paper presents the development of algorithm to quantify the uncertainty associated with the retention function of 
Sr-90. The paper is organized in the following way. Section 2 presents the mathematical details of PCE. Section 3 de-
scribes the model used for computing uncertainty. Methodology of uncertainty analysis of the model output is de-
scribed in section 4. Section 5 presents the results of uncertainty analysis of the model output and corresponding dis-
cussions. Finally conclusion is described in section 6.  
  
2.0 MATHEMATICS OF POLYNOMIAL CHAOS EXPANSION 
The Polynomial Chaos Expansion (PCE) approach has its foundation in the work of Wiener (1938)[4], who represented 
a Gaussian process as an infinite series of Hermite polynomials that take a vector of random variables as arguments. 
Ghanem and Spanos (1991)[5] used this representation to develop the stochastic finite element method. Xiu and Kar-
niadakis (2002)[6] extended the theoretical framework to non-Gaussian process by using different polynomial basis 
functions. This generalized polynomial chaos approach was used to address the problem of heat transfer with random 
material properties by Wan et al. 2004[7].  
 
The PCE is the representation of a random variable, more generally a stochastic process, with an infinite series of or-
thogonal polynomials that take a vector of independent and identically distributed (iid) random variables as arguments. 
Mathematically, PCE of a random process can be represented by 
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where {aj,k | k = 0, 1,...., n-1} are unknown coefficients to be determined with respect to the specified model used for   
uncertainty analysis,  n represents the number of uncertain model inputs and Γp({ξ})’s are defined to be multivariate 
Hermite polynomials in the p – dimensional sequence of uncorrelated standard normal random variables, {ξi}. The 
multivariate Hermite polynomials can be written as, 
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The inputs are represented as functions of identically independently distributed (iid) normal random variables {ξi| 
i=1,n} and each ξi has zero mean and unit variance. These random variables are referred to as “Standard Random Va-
riables (srvs)”. Once the inputs are expressed as functions of these srvs, the output metrics can be represented as func-
tions of the same set of srvs[8]. The minimum number of srvs needed to represent the inputs is defined as the “number 
of degrees of freedom” in input uncertainty. In practice, in the theory of PCE, the minimum number of simulations re 
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quired for generating the sample points of the uncertain inputs from the respective pdf depends on the order of the 
Hermite polynomial and the number of uncertain inputs. Therefore, if n is the number of uncertain inputs and r be the 
order of the polynomial, the number of simulations required can be formulated as  

! !
! )(

rn
rnN +

=                                                                                       (3) 

 
Since the model outputs are deterministic functions of model inputs, they have at most the same number of degrees of 
freedom in uncertainty. So, the number of unknown coefficients to be determined for the fitted polynomial that 
represents the model output can be explicitly written using eqn. (3) as   
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So, an explicit representation of 2nd order polynomial chaos expansion for three uncertain inputs can be written using 
equations (1-5) as: 
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So, according to the number of uncertain model inputs, n = 2, 3, and 4, the number of unknown coefficients to be de-
termined in the polynomial chaos expansion can be obtained using equations (4) and (5) as {6, 10 and 15} and {10, 20 
and 35} respectively. Number of unknown coefficients will guide the number of simulations. Thus for two uncertain 
model inputs, second order polynomial chaos expansion needs six simulations to estimate the unknown coefficients. 
For reference, the first few Hermite polynomials are given by 
 
H0(ξ) =1, H1(ξ) = 2ξ, H2(ξ) = 2(ξ2-1)                                                                                     (7) 

 
and the higher order Hermite polynomials can be generated using the recurrence relation given by 
 
Hk+1(ξ) = 2ξ Hk(ξ) – 2 k Hk-1(ξ)                                                                                              (8) 

 
2.1 Transformation of Model Inputs 
Number of sample values for the model outputs will have to be generated on the basis of number of unknown coeffi-
cients. Therefore, for six unknown coefficients, six model outputs are to be generated for the specified model. Sam-
pling points for generation of these outputs will be obtained from the model uncertain inputs for which inputs are to be 
transformed into standard normal random variables (srvs) [8]. In PCE, approach for transforming model uncertain in-
puts is based on the principle that random variables with well-behaved (square-integrable) probability density functions 
(pdfs) can be represented as functions of a set of srvs [8],[9]. Standard transformation of the uniform, normal, lognor-
mal and gamma pdfs of model inputs in terms of srvs can be written as 
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Lognormal (µ,σ):  )exp( σξµ +  

 
Sample values of the output metrics (eqn. (6)) and the corresponding polynomial chaos expansion are finally arranged 
in the matrix form as [ξ]{a} = y, from which coefficient vector, {a} can be solved using singular value decomposition.  

 
3.0 ALGORITHM and MODEL USED IN COMPUTATION 
Algorithm developed for computing the uncertainty using polynomial chaos is based on efficient Monte Carlo simula-
tion. Efficiency of the algorithm dictates on the basis of a substantial reduction in simulation compared to traditional 
Monte Carlo simulation. The model used to demonstrate our algorithm addresses the retention functions of strontium is 
used for uncertainty analysis. The whole body strontium retention in adult humans at time t days after acute oral admin-
istration can be represented by the combination of power and exponential functions [10] and the same is given by 
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where, f1 (Gut absorption factor) is the fraction of strontium absorbed from the gastrointestinal tract, ‘P’ represents 
fraction initially retained in the skeleton, proportional to uptake rate, ‘b’ signifies the power function slope, and λ is the 
strontium elimination rate. This simplified model describes the time history of strontium content in bone relative to the 
ingested amount, but does not describe the uneven distribution through different bone tissues. It is known that for times 
greater than 100 days, almost all ingested strontium is incorporated in bone. Input parameters btPf − and , , 1  of the 
model (eqn. (10)) are considered as uncertain and their uncertainties are described by the respective probability density 
function given in Table 1. This model retention function numerically coincides with the biokinetic model for adults 
used for 90Sr-dose calculation [10]. 
 

Table 1 Uncertainty of Input Parameters of Model  
 

Parameters Description Distribution Alpha Beta 
f1 Fraction of strontium absorbed from the GI tract lognormal 0.38 2.06 
P Fraction initially retained in the skeleton normal 0.79 0.05 
b Power-function slope normal 0.18 0.04 
λ Strontium elimiantion rate lognormal 2.36 1.88 

 
Note: Alpha and Beta are GM and GSD for lognormal distribution and arithmetic mean and arithmetic standard devia-
tion for normal distribution 
 
3.1 Uncertainty Analysis of Model Input Parameters  
The propagation of total uncertainty of the model output depends on the analysis of variability in all the inputs of the 
biokinetic model. Finally the model output is expressed as a function of time following intake. The model output being 
a function of the several inputs and each input being uncertain, the uncertainty analysis of the output is dependent on 
the resultant uncertainty analysis of the each input. In other words, it is desired to express the error propagation in the 
final output. Uncertainty analysis of the input parameters is expressed in terms of the respective probability density 
function. The estimated distributions for individual parameters of model are considered on the basis of the literature da-
ta [11].  According to Hollriegl, Li and Oeh [11], the probability function of the parameter, f1, representing the fraction 
of 90Sr absorbed from the gastrointestinal tract (GI) is represented by a lognormal curve with  a geometric mean of 0.38 
and a geometric standard deviation of 2.06. The diffusion process of radionuclide into the bone volume can be de-
scribed by the power function, t-b, that depends on the fraction initially retained in the skeleton (P). Likhtarev et al. [12] 
has studied that the parameters ‘P’ and ‘b’ are correlated and the correlation coefficient between them is 0.34 with a 
statistical significance at p < 0.05 level. Statistical analyses performed by   Likhtarev et al [12] shows that the empirical 
distribution of P and b follow normal distribution. The arithmetic mean and the standard deviation of the normal distri-
bution of P are 0.79 and 0.05 respectively and that of the parameter, b are 0.18 and 0.04 respectively. The distribution 
of the long term strontium elimination rate, λ, can be constructed on the basis of repeated measurements of  90Sr body 
burden of large number of individual subjects. Least square fitting of these data and decay correction of 90Sr jointly de-
rive the individual elimination rates. Frequency distribution of the elimination rate parameter, λ,  approximates to a 
lognormal distribution with GM as 2.36 and GSD as 1.88. The frequency distribution of this parameter does not differ 
significantly from lognormal.   . 
 
4.0 ANALYSIS OF UNCERTAINTY PROPAGATION OF MODEL OUTPUT 
The polynomial chaos expansion is used to construct the response surface representing the model output. Propagation 
of the impact of parameter uncertainty through the model is evaluated using this response surface. Finally, uncertainties 
in strontium retention function resulting from individual variability in metabolic processes are evaluated by a Monte 
Carlo simulation of the generated response surface. Computer software MUUPOCE version 1.0 (“Model Uncertainty 
Using POlynomial Chaos Expansion”) developed by authors is used to evaluate the uncertainty analysis of the model 
output. Execution of the process is schematically depicted in Fig. 1. Standard normal random variables (srvs) are gen-
erated corresponding to each input uncertain parameters. Thus 4 srvs are generated for model. Selection of Hermite po-
lynomial as the basis of the expansion is due to domain variability (-∞ to ∞) of the input parameters. Second order 
Hermite polynomials is selected from the point of simplicity in computation. Based on this second order polynomial 
and number of uncertain input parameters number of unknown coefficients is computed from eqn.(3). Thus for the 
present model, we need to estimate 15 unknown coefficients for constructing the representative polynomial chaos sur-
face. Model output at the respective sampling points is computed using the variability of each uncertain input. Once the 
model output at the sampling points is generated and srvs are known, we obtain a matrix equation (eqn. (6)). Coeffi-
cients of the output approximation (a polynomial chaos surface) are estimated using the singular value decomposition 
method on this matrix.      
 
The output representation in terms of srvs is directly used to construct its probability density function (PDF) and cumu-
lative distribution function (CDF) by using Monte Carlo simulation. Statistical properties of the output, such as the 
mean, median, mode, skewness, kurtosis, individual moments, percentiles, and the correlations between the output and 
inputs are finally evaluated.  
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Fig 1. Schematic diagram of steps involved in PCE method 

 
5.0 RESULTS AND DISCUSSION 

 
5.1 Retention Function Model of 90Sr 
Uncertainties of input parameters of the present model are represented in terms of the corresponding PDF and they are 
shown in Figs. 2-5. PDF and CDF of the model output are generated for a time after intake, t = 0.02 y, 0.05 y, 0.08 y, 1 
y and 5 y respectively and the frequency plots of the PDF for time after intake, t = 0.02y, 0.05y, 0.08y and 1 y are pre-
sented in Figs.6-9. Kolmogorov-Smirnov test has been applied on simulated outputs and it has been found that the 90Sr 
body burdens are lognormal for these wide ranges of time after intake. Fig. 10 presents the cumulative probability plots 
of the retention function of 90Sr for these varying times after intake values. Total uncertainty of the retention function of 
90Sr is then expressed in terms of the 5th (Lower Bound, A) and 95th percentiles (Upper Bound, B). Results of uncertain-
ty of the retention function in terms of percentiles and the statistics of the represented response function for various 
times after intake values are shown in Table 2.  
 

Table 2 Uncertainty Estimate of Retention Function of Sr-90 
 

Time after 
intake (y) 

Geometric 
Mean (GM) 

Geometric 
SD (GSD) 

5th percentile 95th percentile 

0.02 2.14 1.91 0.165 1.955 
0.05 1.81 1.65 0.130 1.53 
0.08 1.65 1.53 0.109 1.31 

1 1.06 1.09 0.0003 0.208 
5 1.00 1.01 0.000 0.004 

 
Fig 2. Frequency distribution of Input parameter, f1 
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Fig 3. Frequency distribution of Input parameter, P 

 
Fig 4.  Frequency Distribution of Parameter b 

 

 
Fig 5.  Frequency Distribution of Parameter  λ 
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Fig 6. Frequency Distribution of Retention Function of Sr-90 

 

 
Fig 7. Frequency Distribution of Retention Function of Sr-90 

 

 
Fig 8. Frequency Distribution of Retention Function of Sr-90 
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Fig 9. Frequency Distribution of Retention Function of Sr-90 

 

 
Fig 10. Cumulative Frequency Distribution of Retention Function of Sr-90 for various time after intakes 

 
 

6.0 CONCLUSION 
Uncertainty analysis of a simplified model of strontium retention is carried out. The computed distributions of individ-
ual body burdens are essentially lognormal for a wide range of time after intake, in a manner consistent with observed 
data on global fallout. Polynomial chaos expansion technique facilitates an efficient method for uncertainty propagation 
compared to traditional Monte Carlo. Domain range of input parameters can dictate the basis function of the response 
surface. Propagation of uncertainty of retention function of Sr-90 can be used as an input for computing the uncertainty 
in dose assessment.  
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