ON REGULAR ^ GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES

Savithiri.D1* & Janaki.C2

¹Department of Mathematics, Sree Narayana Guru College, Coimbatore, India ²Department of Mathematics, L. R. G. Govt. Arts College (W), Tirupur, India

(Received on: 28-02-13; Revised & Accepted on: 21-03-13)

ABSTRACT

The aim of this paper is to introduce a new class of sets called r^g - closed sets in topological spaces and to study their properties. Further, we define and study r^g - open sets and r^g - continuity.

Mathematics Subject Classification: 54A05.

Key Words: r^g - closed sets, r^g - open sets, r^g continuous.

1. INTRODUCTION

In 1970, Levine [9] introduced the concept of generalized closed set in the topological spaces and a class of topological spaces called $T_{1/2}$ spaces. Extensive research on generalizing closedness was done in recent years by many mathematicians. In 1990, S.P. Arya and T.M. Nour [2] define generalized semi-open sets, generalized semi-closed sets. In 1993, N.Palaniappan and K. Chandrasekhara Rao [15] introduced regular generalized closed (rg-closed) sets. In 2000, A. Pushpalatha[16] introduced a new class of closed sets called weakly closed(w- closed) sets .In 2007, S.S. Benchalli and R. S. Wali[3] introduced the class of set called regular w-closed(rw-closed) sets in topological spaces. Recently SanjayMishra and VarunJoshi [17] introduced the concept of regular generalized weakly (rgw-closed) sets.

In this paper, we introduce a new class of sets called regular ^ generalised - closed sets (briefly r^g -closed sets) and we study their basic properties. We recall the following definitions, which will be used often throughout this paper.

2. PRELIMINARIES

Throughout this paper, X, Y, Z denote the topological spaces (X, τ) , (Y, σ) and (Z, η) respectively, on which no separation axioms are assumed.

Definition 2.1: A subset A of a space X is called

- (1) a preopen set if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$.
- (2) a semi-open set if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- (3) an α -open set if $A \subset int(cl(int(A)))$ and a α -closed set if $cl(int(cl(A))) \subset A$.
- (4) a semi-preopen set (= β -open) if $A \subset cl(int(cl(A)))$ and a semi-preclosed set (β -closed) if $int(cl(int(A))) \subset A$.

The semi-closure (resp. α -closure) of a subset A of (X,τ) is denoted by scl(A) (resp. $\alpha cl(A)$ and spcl(A))and is the intersection of all semi-closed (resp. α -closed and semi-preclosed) sets containing **A.**

Definition 2.2: A subset A of X is called

- 1. a generalized closed (briefly g-closed) [9] set iff $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 2. Strongly generalized closed (briefly g^* closed)[20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X
- 3. a regular open [18] set if A = int(cl(A)) and regular closed [18] set if A = cl(int(A)).
- 4. a semi generalized closed (briefly sg closed)[4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.
- 5. a generalized semi closed (briefly gs closed)[2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 6. a generalized semi-pre closed (briefly gsp closed)[5] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 7. a regular generalized closed (briefly rg closed)[15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 8. a generalized preclosed (briefly gp closed) [10]if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 9. a generalized pre regular closed (briefly gpr closed)[7] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

Savithiri.D^{1*} & Janaki.C²/ On Regular ^ Generalized Closed Sets in Topological Spaces/ IJMA- 4(4), April-2013.

- 10. a weakly closed (briefly w closed)[16] if $cl(A) \subset U$ whenever $A \subset U$ and U is semiopen in X.
- 11. a regular weakly closed (briefly rw closed)[3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen in X.
- 12. a weakly generalized semi closed (briefly wg closed) [13] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 13. a regular weakly generalized semi closed (briefly rwg closed)[13] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 14. a regular generalized weakly semi closed (briefly rgw closed)[17] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.
- 15. a Mildly generalized closed (briefly mildly g closed) [12] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- 16. a semi weakly generalized closed (briefly swg closed)[13] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.
- 17. a semi weakly g^* closed (briefly swg* closed)[12] if $gcl(A) \subset U$ whenever $A \subset U$ and U is semiopen in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3: A map $f: X \rightarrow Y$ is said to be

- 1. a continuous function[1]if f¹(V) is closed in X for every closed set V in Y.
- 2. a pr continuous [1] if $f^{-1}(V)$ is pr closed in X for every closed set V in Y.
- 3. a rg continuous [4] if $f^{-1}(V)$ is r ω closed in X for every closed set V in Y.
- 4. a sg -continuous [1] if $f^{1}(V)$ is rg closed in X for every closed set V in Y.
- 5. a gs -continuous [1] if f¹(V) is gs closed in X for every closed set V in Y.
- 6. a rw-continuous[13] if $f^{-1}(V)$ is rw- closed in X for every closed set V in Y.
- 7. a rwg-continuous [13] if $f^{1}(V)$ is rwg-closed in X for every closed set V in Y.
- 8. a rgw-continuous[13] if f⁻¹(V) is rgw-closed in X for every closed set V in Y.
- 9. a swg –continuous[13] if $f^{1}(V)$ is swg- closed in X for every closed set V in Y.
- **Theorem 2.3:** Every regular open set in X is regular semiopen but not conversely.
- **Theorem 2.4:** Every regular semiopen set in X is semiopen but not conversely.
- **Theorem 2.5:** [6] If A is regular semiopen in X, then X/A is also regular semiopen.
- **Theorem 2.6:** [6] In a space X, the regular closed sets, regular open sets and clopen sets are regular semiopen.

3. Regular ^ Generalized Closed Sets (r^g - closed sets)

Definition 3.1: A subset A of (X,τ) is called a regular ^generalized closed (**briefly r^g closed**) if $gcl(A) \subset U$, whenever $A \subset U$ and U is regular open in X.

We denote the family of all r^g closed sets in space X by $R^GC(X)$.

Theorem 3.2: Every closed set of a topological space (X,τ) is r^og closed set.

Proof: Let $A \subset X$ be a closed set and $A \subset U$ where U be regular open. Since A is closed and every closed set is gclosed, $gcl(A) \subset cl(A) = A \subset U$. Hence A is an r^a closed set.

Remark 3.3: The converse of the above theorem need not be true as seen in the following example.

Example 3.4: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{a, b\}$ then A is an r^g closed set but it is not a closed set.

Theorem 3.5: Every gclosed set is r^g closed.

Proof: Let A be a gclosed set. Let $A \subset U$ where U is regular open. Since every regular open set is open and A is gclosed, $cl(A) \subset U$. Every closed set is gclosed therefore $gcl(A) \subset cl(A) \subset U$. Hence A is r^g closed.

Remark 3.6: The converse of the above theorem need not be true as seen in the following example.

Example 3.7: In example 3.4, $A = \{a, b\}$ is gclosed set but it is not a closed set.

Theorem 3.8: Every regular generalized closed set is r^g closed.

Proof: Let A be regular generalized closed. Let $A \subset U$ and U be regular open. Then $cl(A) \subset U$, since A is rg closed. Every closed set is gclosed therefore $gcl(A) \subset cl(A) \subset U$. Hence A is r^g closed.

Remark 3.9: The converse of the above theorem need not be true as seen in the following example.

Example 3.10: Let $X = \{a, b, c, d, e\}$ $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$. Let $A = \{a\}$. Then A is r^g closed but not rg closed.

Theorem 3.11: Every g*closed set is r^g closed.

Proof: Let A be g*closed in (X,τ) . Let $A \subset U$ where U is regular open. Since every regular open set is gopen and A is g*closed, $cl(A) \subset U$. Every closed set is gclosed, then $gcl(A) \subset cl(A) \subset U$. Hence A is r^g closed.

Remark 3.12: The converse of the above theorem need not be true as seen in the following example.

Example 3.13: In example 3.4, the set $A = \{a, b\}$ is r^g closed but not g^* closed.

Theorem 3.14:

Every r^og closed set is rwg closed.

Every r^og closed set is rgw closed.

Every r^og closed set is pr-closed.

Proof: Straight forward.

Remark 3.15: The converse of the above theorem need not be true as seen in the following examples.

Example 3.16:

- Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Let $A = \{d\}$, then A is rwg closed but not r^g closed set.
- Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Let $B = \{d\}$, then B is rgw closed but not r^g closed set.
- Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$. Let $B = \{d\}$, then B is pr closed but not r^g closed.

Remark 3.16: r^og closed sets and semi closed sets are independent to each other as seen from the following examples.

Example 3.17:

- * Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{b\}, A$ is semiclosed but not r^g closed.
- * Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\$, the subset $\{a, c\}$ in X is r'g closed but not semiclosed.

Remark 3.18: r^og closed sets and preclosed sets are independent to each other as seen from the following examples.

Example 3.19:* Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{a, b\}$, then A is r^g closed but not preclosed. * Let $X = \{a, b, c, d, e\}$, $\tau = \{X, \phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$. Let $A = \{a\}$, then A is preclosed but not an r^g closed set.

Remark 3.20: r^og closed sets and semi-preclosed sets are independent to each other as seen from the following example.

Example 3.21:* Let $X = \{a, b, c\}$, $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. The subset $\{a\}$ is semi- preclosed but not r^g closed and the subset $\{a, b\}$ is r^g closed but not semi- preclosed.

Remark 3.22: r^og closed sets and wg closed sets are independent to each other as seen from the following examples.

Example 3.23:

- * Let $X = \{a, b, c, d,\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Let $A = \{d\}$, then A is wg closed but not an r^g closed set in X.
- * Let $X = \{a, b, c, d,\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}\}\}$, the subset $\{a, c\}$ is an r^g closed set but not a wg closed in X.

Remark 3.24: The concepts of r^g closed sets and gs closed sets are independent of each other as seen from the following examples.

Example 3.25:

- * Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Let $B = \{a\}$, then B is gs closed but it is not an r^g closed set.
- * Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$, the subset $\{a, d\}$ is an r^g closed set but not gs closed set.

Remark 3.26: The concepts of r^og closed sets and sg closed sets are independent of each other as seen from the following example.

Example 3.26: Let $X = \{a, b, c, d\}, \tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\} \{c, d\} \{a, c, d\} \}$. The subset $\{a\}$ is sg closed but not r^g closed and the subset $\{a, c\}$ is r^g closed but not sg closed.

Remark 3.27: The concepts of r^og closed sets and α closed sets are independent of each other as seen from the following examples.

Example 3.28:

- * Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\{c, d\}\}$. Let $A = \{d\}$, then A is α closed set but not an r^g closed set.
- * Let $X = \{a, b, c\}$, $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. The subset $\{a, b\}$ is r^g closed set but it is not an α closed set.

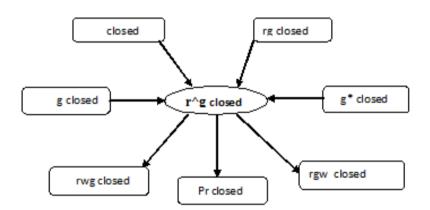
Remark 3.29: r^og closed sets and swg closed sets are independent to each other as seen from the following examples.

Example 3.30: Let $X = \{a, b, c, d\}$, $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\} \{c, d\} \{a, c, d\} \}$. The subset $\{d\}$ is swg closed set but not an r^og closed set and the subset $\{a, c\}$ is r^og closed set but not swg closed.

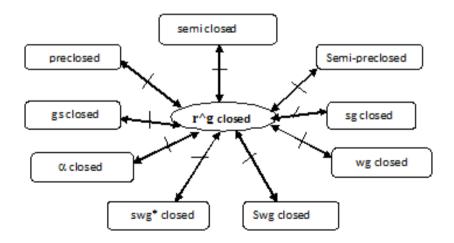
Remark 3.31: r^og closed sets and swg* closed sets are independent to each other as seen from the following examples.

Example 3.32: Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\} \{c, d\} \{a, c, d\} \}$. Let $A = \{d\}$, $B = \{a, c, d\}$, then A is swg* closed set but not an r^g closed set and B is an r^g closed set but not an swg* closed set.

Remark 3.33: The above discussions are shown in the following diagram.



Remark 3.34: The following is the diagrammatic representation of independent concepts of the sets with r^og closed sets.



Theorem 3.35: Let A be an r^g closed set in a topological space X. Then gcl(A) - A contains no non-empty regular closed set in X.

Savithiri.D^{1*} & Janaki.C²/ On Regular ^ Generalized Closed Sets in Topological Spaces/ IJMA- 4(4), April-2013.

Proof: Let F be a regular closed set such that $F \subset gcl(A) - A$. Then $F \subset X-A$ implies $A \subset X-F$. Since A is r^g closed and X-F is regular open, then $gcl(A) \subset X-F$. That is $F \subset X-gcl(A)$. Hence $F \subset gcl(A) \cap (X-gcl(A)) = \varphi$. Thus $F = \varphi$, whence gcl(A)-A does not contain nonempty regular closed set.

Remark 3.36: The converse of the above theorem need not be true, that means if gcl(A)-A contains no nonempty regular closed set, then A need not to be an r^g closed as seen in the following example.

Example 3.37: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{b\}$. gcl $(A) - A = \{d\}$, it does not contain non-empty regular closed set in X. But $A = \{b\}$ is not an $r^{\circ}g$ closed set.

Theorem 3.38: The finite union of two r^og closed sets are r^og closed.

Proof: Assume that A and B are r^g closed sets in X. Let $A \cup B \subset U$ where U is regular open. Then $A \subset U$ and $B \subset U$. Since A and B are r^g closed, $gcl(A) \subset U$ and $gcl(B) \subset U$. Then $gcl(A \cup B) = gcl(A) \cup gcl(B) \subset U$. Hence AUB is r^g closed.

Remark 3.39: The intersection of two r^og closed set in X need not be an r^og closed set as seen in the following example.

Example 3.40: $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}.$ If $A = \{a, b\}$ and $B = \{a, c\}.$ Then A and B are r^g closed sets. But $A \cap B = \{a\}$ is not an r^g closed set.

Theorem 3.41: In a topological space X, if $RO(X) = \{X, \phi\}$, then every subset of X is an r^og closed set.

Proof: Let X be a topological space and $RO(X) = \{X, \phi\}$. Let A be any arbitrary subset of X. Suppose $A = \phi$, then ϕ is an r^og closed set in X. If $A \neq \phi$, then X is the only set containing A and so $gcl(A) \subset X$. Hence A is r^og closed. Thus every subset of X is r^og closed.

Remark 3.42: The converse of the above theorem need not be true as seen in the following example.

Example 3.43:Let $X = \{a, b, c, d, e\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. All the subsets of (X, τ) are r^og closed sets, but $RO(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$.

Theorem 3.44: Let A be an r^{n} g closed set in the topological space (X,τ) . Then A is gclosed iff gcl(A)-A is regular closed.

Proof: Necessity: Let A be gclosed then gcl(A) = A and so $gcl(A) - A = \varphi$ which is regular closed.

Sufficiency: Suppose gcl(A) - A is regular closed. Then $gcl(A) - A = \varphi$, by theorem 3.37. That is gcl(A) = A. Hence A is gclosed.

Theorem 3.45: If A is an r^og closed subset of X such that $A \subset B \subset gcl(A)$, then B is an r^og closed set.

Proof: Let $B \subset U$ where U is regular open. Then $A \subset B$ implies $A \subset U$. Since A is r^g closed, $gcl(A) \subset U$. By hypothesis $gcl(B) \subset gcl(gcl(A)) = gcl(A) \subset U$. Hence B is r^g closed.

Remark 3.46: The converse of the above theorem need not be true as seen in the following example.

Example 3.47: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{c\}$ and $B = \{a, c\}$. Then A and B are r^g closed sets. But $A \subset B$ is not a subset of gcl(A).

Theorem 3.48: Let (X,τ) be a topological space, then for $x \in X$, the set $X \setminus \{x\}$ is either r^g closed set or regular open set.

Proof: If $X \setminus \{x\}$ is not a regular open set, then X is the only regular open set containing $X \setminus \{x\}$. This implies that $gcl\{X\setminus \{x\}\} \subset X$. Hence $X\setminus \{x\}$ is r^g closed set.

4. Regular ^ Generalized Open Set:

Definition 4.1: A set $A \subset X$ is called regular $^$ generalized open ($r^$ g open) set if and only if its compliment is regular $^$ generalized closed.

The collection of all r^g open sets is denoted by $R^GO(X)$.

Remark 4.2: gcl(X - A) = X - gint(A)

Theorem 4.3: $A \subset X$ is r^g open iff $F \subseteq gint(A)$, whenever F is regular closed and $F \subset A$.

Proof: Necessity: Let A be r^g closed and $F \subset A$. Then $X - A \subset X - F$ where X - F is regular open and r^g closedness of X - A implies $gcl(X - A) \subset X - F$. By remark 4.2, $X - gintA \subset X - F$. Therefore $F \subset gint(A)$.

Sufficiency: Suppose F is regular closed and $F \subset A$ then $F \subset gint(A)$. Let $X-A \subset U$, where U is regular open. Then $X-U \subset A$, where X-U is regular closed. By hypothesis, $X-U \subset gintA$. Then $X-gint(A) \subset U$. By remark 4.2, $gcl(X-A) \subset U$. Hence X-A is r^og closed and A is r^og open.

Theorem 4.4: If gint $A \subset B \subset A$ and if A is r^g open then B is r^g open.

Proof: Given gint $A \subset B \subset A$, then $X - A \subset X - B \subset gcl(X - A)$. Since A is r^g open, X -A is r^g closed. This implies X - B is r^g closed. Hence B is r^g open.

Remark 4.5: For any $A \subset X$, $gint(gcl(A) - A) = \varphi$.

Theorem 4.6: If $A \subset X$ is r^g closed, then gcl(A) - A is r^g open.

Proof: Let A be an r^g closed and let F be a regular closed set such that $F \subset gcl(A) - A$. Then by theorem 3.37, $F = \varphi$. So $F \subset gint(gcl(A) - A)$. By theorem 4.3, gcl(A) - A is r^g open.

Remark 4.7: The converse of the above theorem need not be true as seen in the following example.

Example 4.8: Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{b\}$, then $gcl(A) - A = \{c\}$ which is r^g open in X but A is not r^g closed in X.

5. r^g Continuous and r^g Irresolute Functions:

Definition 5.1: A function $f:(X,\tau)\to (Y,\sigma)$ is called r^g continuous if every $f^{-1}(V)$ is r^g closed in X for every closed set V of Y.

Definition 5.2: A function $f: (X,\tau) \to (Y,\sigma)$ is called r^g irresolute if every $f^{-1}(V)$ is r^g closed in X for every r^g closed set V of Y.

Example 5.3:Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. $Y = \{a, b, c, d\}$, $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Here the inverse image of the closed sets in Y are $r^{\alpha}g$ closed sets in X. Hence f is $r^{\alpha}g$ continuous.

Example 5.4:Let $X=\{a, b, c, d\}$, $\tau=\{\phi, X, \{a, b\}, \{c\}, \{a, b, c\}\}$ and $Y=X, \sigma=\{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$. Define $f:(X,\tau) \to (Y,\sigma)$ by f(a)=a, f(b)=b, f(c)=c, f(d)=d. The inverse image of every $r^{\alpha}g$ closed set in Y is $r^{\alpha}g$ closed set in X. Hence f is $r^{\alpha}g$ irresolute.

Remark 5.5: Every r^og irresolute function is r^og continuous but the converse is not true as seen in the following example.

Example 5.6: In example 5.3, f is r^og continuous but not r^og irresolute.

Remark 5.7: Every continuous function is r^og continuous. But the converse is not true as seen in the following example.

Example 5.8:*Let $X = \{a, b, c, d\}$. $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and Y = X, $\sigma = \{Y, \phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ the identity mapping. Then f is r^g continuous but not continuous.

Remark 5.9: Every r^og continuous mapping is pr continuous, rgw continuous, rwg continuous. But the converse need not be true as seen in the following example.

Example 5.10: * Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}, Y = X.$ $\sigma = \{Y, \phi, \{a, b, c\}\}.$ Let $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = d, f(d) = c. Then f is pr continuous, rgw continuous, rwg continuous, but not $r^{\circ}g$ continuous.

Remark 5.11: r^og continuity and rw continuity are independent concepts as seen in the following example.

Example 5.12:

- * Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}, Y = X.$ $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.$ Let $f: (X, \tau) \to (Y, \sigma)$ the identity mapping. Then f is rw continuous but not r^{α} continuous.
- * Let $X = \{a, b, c, d\}\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Y = X. $\sigma = \{Y, \phi, \{b\}, \{b, c\}, \{a, d\}, \{a, b, d\}\}$ Define $g:(X, \tau) \to (Y, \sigma)$, the identity mapping. Here g is r^{σ} continuous but not rw continuous.

Remark 5.13: sg continuity, gs continuity, swg continuity are independent concepts with r^g continuity as seen in the following example.

Example 5.14:

- * Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}, Y = X, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}\}$. Define $f:(X, \tau) \to (Y, \sigma)$, by f(a) = a, f(b) = c, f(c) = b, f(d) = d. Then f is sg continuous, gs continuous and swg continuous but not r^g continuous.
- * Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}, Y = X$. $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.$ Let $g: (X, \tau) \rightarrow (Y, \sigma)$ the identity mapping. Then g is $r^{\sigma}g$ continuous but not sg continuous, g continuous and swg continuous.

Remark 5.15: r^og continuity and wg continuity are independent concepts as seen in the following example.

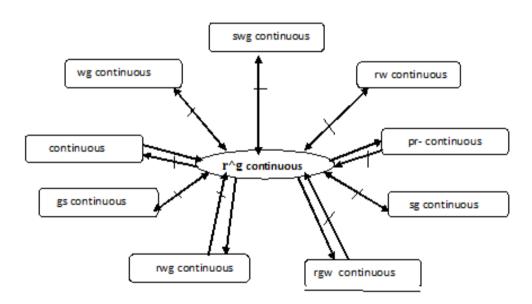
Example 5.16:

* Let
$$X = \{a, b, c, d\}$$
, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. $Y = \{a, b, c, d\}$, $\sigma = \{Y, \emptyset, \{b\}, \{b, c\}, \{a, d\}, \{a, b, d\}\}$.

Define f: $(X,\tau) \to (Y,\sigma)$, the identity mapping, then f is r^og continuous but not wg continuous.

* Let $X = Y = \{a, b, c, d\}$ $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$, $\sigma = \{Y, \phi, \{a, b, c\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$, the identity mapping, then f is wg continuous but not $r^{A}g$ continuous.

The above discussions are implicated as shown below.



Theorem 5.17: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

- (i) (gof) is r^g-continuous if g is continuous and f is r^g -continuous
- (ii) (gof) is r^g -irresolute, if g is r^g -irresolute and f is r^g -irresolute.
- (iii) (gof) is r^g continuous if g is r^g continuous and f is r^g -irresolute.

Proof:

- (i) Let V be any closed set in (Z,η) . Then $g^{-1}(V)$ is closed in (Y,σ) , since g is continuous. By hypothesis, $f^{-1}(g^{-1}(V))$ is r^g closed in (X,τ) . Hence gof is r^g continuous.
- (ii) Let V be r^og closed set in (Z,η) . Since g is r^og irresolute, $g^{-1}(V)$ is r^og closed in (Y,σ) . As f is r^og irresolute, $f^{-1}g^{-1}(V) = (gof)^{-1}(V)$ is r^og closed in (X,τ) . Hence gof is r^og irresolute.

$Savithiri.D^{1*}$ & $Janaki.C^2/On$ Regular \land Generalized Closed Sets in Topological Spaces/ IJMA- 4(4), April-2013.

(iii) Let V be closed in (Z,η) . Since g is r^g continuous. $g^{-1}(V)$ is r^g closed in (Y,σ) . As f is r^g irresolute, $f^{-1}g^{-1}(V) = (gof)^{-1}(V)$ is r^g closed in (X,τ) . Hence (gof) is r^g continuous.

REFERENCES

- [1]. D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [2]. S.P. Arya and T. M. Nour, Characterizations of s normal spaces, Indian J. pure app. Math, 21(1990).
- [3]. Benchelli.S.S. and Wali.R.S, On rw closed sets in topological spaces, Bull. Malayas. Math. Soc (2) 2007, 99-110.
- [4]. P. Bhattacharyya and B. K. Lahiri, semi-generalized closed sets in topology, Indian J. Math. 29(1987), 376-382.
- [5]. J. Dontchev, On generalizing semi-preopen sets, Mem. Fac Sci. Kochi. Univ. Ser. A. Math., 1 6(1995), 35-48.
- [6]. G. L. Garg and D. Sivaraj, On sc-compact and S closed spaces, Boll. Un. Mat. Ital., 6(3B) (1984), 321332.
- [7]. Gnanambal.Y, On generalized preregular closed sets in topological spaces, Indian J. Pure App. Math, 28(1997), 351-360.
- [8]. N. Leivine, semiopen sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [9]. N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2) (1970), 89-96.
- [10]. H. Maki, J.Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem.Fac. Sci. Kochi univ. Ser. A. Math., 17(1996), 33-42.
- [11]. A.S. Mashhour, M.E.Abd. El Monsef and S.N. El-Deeb, On precontinuous mappings and weak pre-continuous mappings, Proc Math., Egypt, 53(1982), 47-53.
- [12]. C. Mugundan, Nagaveni.N, a weaker form of closed sets, 2011, 949-961.
- [13]. N.Nagaveni, Studies on Generalization of Homeomorphisms in Topological spaces, Ph.D Thesis, Bharathiar university, Coimbatore.
- [14]. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [15]. N. Palaniappan & K.C. Rao, Regular generalized closed ets, Kyungpook Math. 3(2) (1993), 211.
- [16]. A. Pushpalatha, studies on generalization of mappings in topological spaces, Ph.D Thesis, Bharathiar university.
- [17]. Sanjay mishraw, Regular generalized weakly closed sets, 2012, [1939-1952].
- [18]. M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. 41(1937), 374-481.
- [19]. P. Sundaram and M. Sheik John, On w closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [20]. M.K.R.S. Veera Kumar, Between closed sets and g closed sets, Mem.Fac.Sci Kochi Univ.(math),21(2000), 1-19.

Source of support: Nil, Conflict of interest: None Declared

.