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ABSTRACT 

In this paper an attempt has been made to study the free convective heat transfer of a viscous, electrically conducting 
fluid through a porous medium confined in a vertical channel under the influence of a uniform transverse magnetic 
field. The walls of the channel are maintained at non-uniform temperature and quadratic temperature distribution. The 
governing non-linear momentum equations are reduced to a single equation in terms of the Stokes stream functionψ, on 
eliminating pressure and using the equation of continuity .The temperature on the boundary is assumed to vary slowly 
in axial direction with slope δ(<<1).The stream function ψ and the temperature θ are given expansions in powers of 
δ,and the equations corresponding to the zeroth, first and second order are solved with the approximate boundary 
conditions. The velocity and temperature distributions have been analysed for variations in the governing parameters. 
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INTRODUCTION 
The hydro magnetic thermal convection has gained significance in the recent times owing to its abundant technological 
applications. With the advent of space technology the problem of controlling the skin friction and heat transfer around 
speed vehicles, has gained greater importance. It is well established that the primary use of electromagnetic fields in 
convection flows is to control the heat transfer and hence a detailed study of the influence of a magnetic field on that 
heat transfer of convection flows of an electrically conducting fluid is necessary. The heat transfer problems are 
generally solved for two types of configurations(1)Problems where the semi-infinite fluid is bounded by a non-
porous(or porous)rigid boundary with a free stream which moves either with a uniform or time dependent fluctuation 
velocity(2) Problems where in the fluid is confined between non-porous(or porous) rigid boundaries. It is intuitively 
evident that the temperature distribution around a hot boundary in a fluid stream gives rise to a thermal boundary layer 
across which the temperature gradient is large. Hence apart from the velocity distribution in the flow the study of the 
thermal boundary layer and the influence of different forces (or kinematical factors) on the boundary layer is a major 
aspect of the heat transfer problem. When the buoyancy force is disregarded and the heat is transferred due to 
conduction alone the velocity field no longer depends on the temperature fields, although the dependence of the 
temperature field on the velocity field still persists, This happens at large Reynolds number and small temperature 
differences. Such flows being termed as forced flows while the temperature dependent buoyancy caused flows are 
known as free (or natural) convection flows. 
 
Problems where the fluid is semi-infinite in extent bounded by a rigid wall and the free stream oscillations with time 
dependent velocity are often encountered in engineering applications viz., aerodynamics of a helicopter rotor or in 
fluttering aerofoil or in a variety of Bio-engineering problems. The analysis of the force oscillatory (with free stream 
oscillations)flow has been dealt by several authors. The flow and heat transfer characteristics have been found to 
depend on the heat source parameter, the Prandtl number and the Eckert number. In general the heat source parameter 
has been found to delay the fluid flow reversal and to act as catalyst (retarding) to the frequency parameter in 
augmenting(diminishing) the amplitude (phase) of the rate of heat transfer at the wall. The equations governing the 
flow and heat transfer have been solved numerically by the method of Runge-Kutta-Gill. It has been found that there 
are chances for the fluid velocity to exceed the free stream velocity although the plate velocity is smaller than the free 
stream. For the moving plate case, the presence of heat sources diminish the velocity in the fluid heating case and 
enhances in the fluid cooling case. The fluid temperature always decreases in the presence of heat sources and increases 
considerably with an increase in either the free stream parameter or the friction heating parameter. The presence of heat 
source has been found to diminish the rate of heat transfer coefficient at the plate considerably and this is true in the 
case of water. The governing equations of the problem, along with the boundary conditions, are integrated numerically 
for several sets of values of the parameters. It is found that the rate of heat transfer coefficient is a decreasing function 
of the heat source/sink   parameter. 
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In all the above investigations, the variation of density is taken in the linear form  
 

)( T∆−=∆ ρβρ                                                              (1.1) 
 
where β  is the coefficient of thermal expansion and is 2,07x104(0C)-1+.This is valid for temperature variation near 
200C.But this analysis is not applicable to the study of the flow of water at 40C past a vertical plate. This is because ,at  
40C,the density of water is a maximum at atmospheric pressure and the above relations(1.1) dies not hold good. The 
modified form of (1.1) applicable to water at 40C is given by  
 

2)( T∆−=∆ ργρ                                                                                          (1.2) 
 
where 26 )0(108 −−= Cxγ .Taking this fact into account, Goren showed in this case ,similarity solutions for the free 
convection flow of water at  40C past a semi-infinite vertical plate exist.  

It is found that the flow and heat transfer both depend upon a new parameter 1

0

Tβγ
β

 
= ∆ 
 

 in addition to the heat 

source parameter α and free convection parameter k. 
 
Thermal convection problem in porous media occurs in a broad spectrum of the disciplines, ranging from Chemical 
Engineering to Geophysics. Applications include heat insulations by fibrous materials, spreading of pollutants, 
convection of Earth’s mantle. A large cross section of fundamental research has been carried out by several authors in 
the recent times.A few other technological applications of a natural convection in a porous medium are cooling of 
nuclear fuel in shipping flasks and water filled storage bays, insulation of high temperature gas cooled reactor vessels, 
burrying of drums containing heart generating chemicals in the earth, thermal energy storage tanks, regenerative heat 
exchangers containing porous materials, petroleum reservoir and chemical catalytic reactions.  
 
In all the above mentioned investigations the bounding walls are maintained at constant temperature. However, there 
are a few physical situations which warrant the boundary temperature to be maintained non-uniform. It is evident that 
in forced or free convection flow in a channel (pipe) a secondary flow can be created either by corrugating the 
boundaries or by maintaining non-uniform wall temperature. Such a secondary flow may be of interest in a few 
technological processes. For example, in drawing optical glass fibres of extremely low loss and wide width, the process 
of modified chemical vapour deposition (MCVD) has been suggested in recent times. In the MCVD process reactant 
flow through a rotating fused silica tube typically 1.5 to 3.0 cm in diameter, which is heated by an exterior torch. The 
torch slowly traverses (10 to 30 cm/min) in the same direction as the interior gas flows. As the cool reactant 
gases(Sicl)2,O2,various dopants) approach the hot zone of the traversing in the formation of particles typically 0,15 to 
0,3 m in diameter. Some heterogeneous reaction occurs on the walls. Then the hot gas and suspended particles flow 
through the section of tube down stream of the hot zone, where the wall is at a lower temperature than the gas. Here 
apart of the particles will deposit thermophoretically due to the radial temperature gradients. Further down stream gas 
and wall temperature equilibrate and deposition ceases. As the torch transverses, the particulate deposit is consolidated 
into a thin various pore free layer by a viscous sintering mechanism, when the torch reaches the end of a traverses, it 
quickly returns to the entrance end of the tube and the process is repeated. A gradient index profile can be achieved by 
varying the dopant concentration for each pass. After 30 to 50 layers are deposited, the tube is collapsed into a solid 
rod, which is substantially drawn into a thin optical fibre, using a high temperature furnace. In commercialization of 
this product ,it is desirable to increase the efficiency of the thermophoretic deposition rate, since the cost of the fibre 
depends on the production of performs. Combined heat and mass transfer by free convection under boundary layer 
approximations has been studied by Bejan and Khair[2], Lai and Kulacki[4] and Murthy and Singh[5].Coupled heat 
and mass transfer by mixed convection in Darcian fluid-saturated porous media has been analysed by Lai [3].The free 
convection heat and mass transfer in a porous enclosure has been studied recently by Angirasa et al [1]. The combined 
effects of thermal and mass diffusion in channel flows has been studied in recent times by a few authors, notably 
Nelson and Wood [6, 7], and others [11, 12]. 
 
In this paper an attempt has been made to study the free convective heat transfer of a viscous, electrically conducting 
fluid through a porous medium confined in a vertical channel under the influence of a uniform transverse magnetic 
field. The walls of the channel are maintained at non-uniform temperature and quadratic temperature distribution. 
Important features of our analysis are (i) we take into account the axial dependence of the flow variables in accordance 
to the prescribed non-uniform temperature on the boundary (ii) the analysis is valid for all finite values of the 
parameters governing the flow viz., the Reynolds niumber R, The Grashof number G, the Peclect number Pe, the Darcy 
parameter D-1 and  α the amplitude of the non-uniform boundary temperature. The governing non-linear momentum 
equations are reduced to a single equation in terms of the Stokes stream function ψ,on eliminating pressure and using 
the equation of continuity .The temperature on the boundary is assumed to vary slowly in axial direction with slope  
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δ(<<1).The stream function ψ and the temperature θ are given expansions in powers of δ,and the equations 
corresponding to the zeroth,  
 
first and second order are solved with the approximate boundary conditions. The velocity and temperature distributions 
have been analysed for variations in the governing parameters in detail. The average Nusselt number has been 
evaluated for different values of G, D-1, M, R and z. 
 
FORMULATION OF THE PROBLEM 
We consider the fully developed laminar steady flow of an incompressible, electrically conducting, viscous fluid 
confined in a vertical channel bounded by two flat walls, which are maintained at non-uniform temperature in the 
presence of a heat generating sources. The Boussinesq approximation is used so that the density variations will be 
considered only in the buoyancy force. The viscous dissipation is neglected in comparison to the transport of heat by 
conduction and convection. Also the kinetic viscosity ν, the thermal conductivity k are treated as constants. We choose 
the Cartesian coordinate system O(x, y) with x-axis in the vertical direction and y-axis normal to the walls. The walls of 
the channel are at y = ±L. The equations governing the steady flow and heat transfer are 

2 2
2 2

2 2 ( )e e o
u u p u uu v g H u u
x y x x y k

µρ ν ρ σµ
  ∂ ∂ ∂ ∂ ∂  + = − + + − − −    ∂ ∂ ∂ ∂ ∂     

                                          (2.1)

  
2 2
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x y y x y k

µρ ν
  ∂ ∂ ∂ ∂ ∂  + = − + + −    ∂ ∂ ∂ ∂ ∂     

                                                         (2.2)
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2)( ee TT −−=− γρρ                                                              (2.5) 

 
where suffices x,y indicates differentiation with respect to variables,ρe,Te are density and temperature of the fluid in the 
equilibrium state,(u,v) are the velocity components along the O(x,y) directions, p is the pressure, T is the temperature in 
the flow region,ρ is the density,µe is the magnetic permeability ,σ is the electrical conductivity of the medium, Cp is 
the specific heat at constant pressure.λ is the coefficient of thermal conductivity and γ is coefficient of volume 
expansion. 
 
In the equilibrium state  

g
x
p

e
e ρ−

∂
∂

−=0                                                              (2.6) 

where p = pD +pe, pD  being the hydrodynamaic pressure. The boundary conditions relevant to the problem are  
 
u=0,v=0,T-Te=f(δx/L) on y = ±L                                                                                                   (2.7) 
 
f is chosen twice differentiable function,δ is a small parameter proportional to the slope of the temperature variation on 
the boundary. 
 
Also the flow is maintained by a constant imposed flux for which a characteristic velocity U is defined as  

∫−=
L

L
dyu

L
U 1

                                                              (2.8) 

 
We introduce the non-dimensional variables as 
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2
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QLT T L T L
λ

∆ = − − =  

 
Substituting these non-dimensional variables in equations (2.1)-(2,5) and eliminating the pressure, the momentum 
equations in terms of the the dimensionlesss stream function ψ redces to (after dropping the dashes) 
 

2 2 2
4 2 1 2

2

( ) ( ) 2 GR M D
y x x y R y y
ψ ψ ψ ψ θ ψψ θ ψ− ∂ ∂ ∇ ∂ ∂ ∇ ∂ ∂

− = ∇ + − − ∇ ∂ ∂ ∂ ∂ ∂ ∂ 
                                                  (2.9) 

2 1 eP u v
x y
θ θθ αθ

 ∂ ∂
∇ − = + ∂ ∂ 

                                                                                                                  (2.10) 

where 

ν
ULR =               (Reynolds number)       2

3

ν
β LTg

G e∆
=      (Grashof number) 

λ
ρ ULC

P pe
e =   (Peclet number)        

k
LD

2
1 =−              (Darcy paramater) 

pC
QL
λ

α
2

=           (Heat source parameter) 

 
The boundary conditions in the non-dimensional form for ψ and θ are  

( ,1) ( , 1) 1x x for all xψ ψ− − =  
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                                              (2.11) 
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The value of ψ on the boundary assures the constant volumetric flow in consistent with the hypothesis (2.8).Also the 
wall temperature varies in the axial distance in accordance with the prescribed arbitrary function f. 
 
ANALYSIS OF THE FLOW 
The aim of this analysis is to discuss the perturbation created over a combined free and forced convection flow due to 
non-uniform slowly varying temperature imposed on the boundaries. 
 
We introduce the temperature xx δ= .With this transformation the equation (2.9) and (2.10) reduce to  

2 2 2
4 2 1 2

2

( ) ( ) 2F F GR F M D F
y x x y R y y
ψ ψ ψ ψ θ ψδ ψ θ ψ− ∂ ∂ ∂ ∂ ∂ ∂

− = + − − ∂ ∂ ∂ ∂ ∂ ∂ 
                                              (3.1) 
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                                                 (3.2) 
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We follow the perturbation scheme and analyse through first order as a regular perturbation problem at finite values of 
R, G, Pe and D-1

. 
 
Introducing the formal asymptotic expansions 
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and substituting them in (3.1) and (3.2) and separating the like powers of δ, the equations to the zeroth order are  
 

4 2
20 0 0

1 04 2

GM
y y R y
ψ ψ θθ∂ ∂ ∂

− = −
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                                                                                             (3.4) 
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                                                                                                                                              (3.5) 

 
The corresponding boundary conditions on 0ψ and 0θ  are 
 

0 0( ,1) ( , 1) 1x x for all xψ ψ− − =  
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The equations to the first order are  
 

2 24 2
2 0 0 0 0 01 1 1

1 0 14 2 2 3

2GM R
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The corresponding boundary conditions are 
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                                                                (3.9) 
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SOLUTION OF THE PROBLEM 
The zeroth order and first order solutions for the stream function and temperature satisfying the corresponding 
boundary conditions are  
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The solutions for ψ1and θ1 corresponding to the first order perturbations are  
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AVERAGE NUSSELT NUMBER 
The average Nusselt number on the channel walls are given by  
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and the corresponding expressions are 
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DISCUSSION OF THE NUMERICAL RESULTS 
The velocity and temperature distributions in an electrically conducting viscous fluid through a porous medium in a 
vertical channel with quadratic density temperature variation are shown in fig 1 - * for different values of G,D-1, R,α,α, 
and x. Fig (1) represents the axial velocity u for a different G. It is found that no reverse flow occurs for any value of 
the governing parameters. The magnitude of u enhances with increasing G>0 and depreciates with G (<0), with 
maximum occurring at y = 0. From fig (2) we find that lesser the permeability of the porous medium higher the 
magnitude of u in the fluid region. Also u enhances with R ≤ 50 and depreciates for higher R ≥ 60. An increase in 
the strength of heat generating sources reduces uin the fluid region. As amplitude α1 of the non-uniform boundary 
temperature increases we notice an enhancement in u in the entire fluid region [fig (3)]. From fig (4) we notice that as 
we move along the axial direction x we observe an enhancement in u for x ≤ Π/2 and depreciates with higher x ≥ Π. 
 
The secondary velocity (v) which is due to the non-uniformity of the boundary temperature is shown in fig (5) – (8) for 
different values of G,D-1, R, α,α1 and x. It is found that for different variations of parameters the secondary velocity 
changes from negative to positive as we move from the left boundary to right boundary Fig (5) represents v with G. It is 
noticed that the magnitude of v experiences an enhancement with increase in G. For G>0, v shifts from towards the 
mid region to the towards the boundary while for G<0 v changes from towards the boundary to towards the mid region 
as we move from left region to right region. From fig (6) we find that lesser the permeability of the porous medium 
larger v. Also is depreciates with increase in R. The variation of v with heat source parameter α shows that 
vdepreciates with increase in the strength of heat generating source. Also v enhances with increase in the 
amplitude α1 of the boundary temperature. Moving along the axial direction the secondary velocity reduces in 
magnitude with x ≥ Π. 
 
The non-dimensional temperature (θ) in shown in figs 9-12 for different values of G, D-1, R, α, α1, and x. for different 
variations of parameters, we find that the temperature is negative. For variations in G, the temperature attains the 
maximum at y = 0.6 for all an increasing in G < 2 x 103 the temperature enhances and for higher G ≥ 3 x 103 the actual 
temperature depreciates in the left region while in the right region it enhances except in the vicinity of the boundaries 
y=±1.From fig (9), we find that lesser the permeability of porous medium larger the actual temperature everywhere in 
the region. Also the temperature enhances with R. From fig (11) we noticed that an increase in the heat source 
parameter α results in a depreciates in the actual temperature. Also an increase in the amplitude α1 of the boundary  
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temperature results in a deprecation in the actual temperature. The variation of θ with axial distance x exhibits an 
oscillating nature in view of the boundary temperature. 
 
The average Nusselt number (Nu) which measures the rate of heat transfer at y = ± 1 is shown in tables 1 – 4 for 
different G,D-1, R, α, α and x. It is found that an increase in G > 0 reduces the rate of heat transfer at y = 1 and 
enhances at y = -1 and a reversed effect is observed with increase in G (<0). An increase in the Reynolds number R 
depreciates Nu at both the walls. Lesser the permeability of the porous medium smaller Nu at y = ± 1. Also the 
presence of the heat sources enhances Nu for all G at y = ± 1 (Table 1 & 2). As the amplitude of the non-uniform 
temperature enhances we notice an increment in Nu ay y = 1 for G > 0  and depreciation at y = 1 for G > 0 while for 
G < 0 we find a reversed effect. As we move along the axial distance the rate of heat transfer reduces with x ≤ Π and 
enhances at higher axial distances (Table 3 & 4). 
 
CONCLUSIONS 
1) An increasing amplitude α1 of the non-uniform boundary temperature increases we notice an enhancement in u in 

the entire fluid region. 
2) vdepreciates with increase in the strength of heat generating source. 
3) v enhances with increase in the amplitude α1 of the boundary temperature. 
4) An increase in the heat source parameter α results in a depreciates in the actual temperature. 
5) An increase in the amplitude α1 of the boundary temperature results in a deprecation in the actual temperature. 
6) The presence of the heat sources enhances Nu for all G at y = ± 1. 
7) As the amplitude of the non-uniform temperature enhances we notice an increment in Nu ay y = 1 for G > 0 and 

depreciation at y = 1 for G > 0 while for G < 0 we find a reversed effect. 
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G/Nu 

Tables: 
Table.1 

Average Nusselt Number(Nu) at y= 1, P=0.71, α1=0.5,x=π/4 
I II III IV V VI 

103 -0.5577 -0.5428 -0.5634 -0.5428 -0.6002 -0.6683 
3x103 -0.5276 -0.5030 -0.5437 -0.5231 -0.5987 -0.6483 
-103 -0.5578 -0.5429 -0.5532 -0.5426 -0.6101 -0.6582 

-3x103 -0.5876 -0.5629 -0.5828 -0.5624 -0.6202 -0.6985 
 

Table.2 
Average Nusselt Number(Nu) at y= -1, P=0.71, α1=0.5,x=π/4 
G/Nu I II III IV V VI 
103 0.5578 0.5429 0.5231 0.5626 0.6002 0.6683 

3x103 0.5779 0.5530 0.5328 0.5824 0.6402 0.6583 
-103 0.5577 0.5428 0.5335 0.5528 0.6101 0.6482 

-3x103 0.5476 0.5327 0.5238 0.5331 0.5602 0.6282 
 I II III IV V VI 

R 35 70 35 35 35 35 
D-1 102 102 2x102 3x102 102 102 
α 2 2 2 2 4 6 

 
Table.3 

Average Nusselt Number(Nu) at y=1, P=0.71, α1=0.5,x=π/4 
G/Nu I II III IV V VI 
103 -0.5654 -0.5454 -0.5253 4.3912 -0.5344 -0.5679 

3x103 -0.5454 -0.5253 -0.5152 4.3912 -0.5402 -0.5478 
-103 -0.5656 -0.5458 -0.5255 4.3909 -0.5340 -0.5579 

-3x103 -0.5955 -0.5655 -0.5357 4.3876 -0.5321 -0.5879 
 

Table.4 
Average Nusselt Number(Nu) at y= -1, P=0.71, α1=0.5,x=π/4 

G/Nu I II III IV V VI 
103 0.5654 0.5828 0.6034 -4.3912 0.5342 0.5583 

3x103 0.5678 0.6230 0.6437 -4.3811 0.5278 0.5781 
-103 0.5652 0.5829 0.6232 -4.3914 0.5267 0.5682 

-3x103 0.5435 0.5629 0.6028 -4.3945 0.5321 0.5585 
 I II III IV V VI 
α1 0.1 0.3 0.7 0.5 0.5 0.5 
x π/4 π/4 π/4 π/2 π 2π 
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